光电效应测定普朗克常数1
光电效应测定普朗克常数
光电效应测定普朗克常数(FB807型光电效应(普朗克常数)测定仪)实验讲义杭州精科仪器有限公司1光电效应测定普朗克常数当光照射在物体上时,光的能量只有部分以热的形式被物体所吸收,而另一部分则转换为物体中某些电子的能量,使这些电子逸出物体表面,这种现象称为光电效应。
在光电效应这一现象中,光显示出它的粒子性,所以深入观察光电效应现象,对认识光的本性具 有极其重要的意义。
普朗克常数h 是1900年普朗克为了解决黑体辐射能量分布时提出的“能量子”假设中的一个普适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。
1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为ν的光子其能量为ν∙h 。
当电子吸收了光子能量ν∙h 之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能,v m 212∙即 W h v m 212-ν∙=∙ (1) 上式称为爱因斯坦光电效应方程。
1916年密立根首次用油滴实验证实了爱因斯坦光电效应方程,并在当时的条件下,较为精确地测得普朗克常数为:秒焦尔∙⨯=-341057.6h , 其不确定度大约为% 5.0。
这一数据与现在的公认值比较,相对误差也只有% 9.0。
为此,1923年密立根因这项工作而荣获诺贝尔物理学奖。
目前利用光电效应制成的光电器件和光电管、光电池、光电倍增管等已成为生产和科研中不可缺少的重要器件。
【实验目的】1. 了解光电效应的基本规律,验证爱因斯坦光电效应方程。
2. 掌握用光电效应法测定普朗克常数h 。
【实验原理】光电效应的实验示意图如图1所示,图中GD 是光电管,K 是光电管阴极,A 为光电管阳极,G 为微电流计,V 为电压表,E 为电源,R 为滑线变阻器,调节R 可以得到实验所需要的加速电位差AK U 。
光电管的A 、K 之间可获得从 U -到0再到 U +连续变化的电压。
实验时用的单色光是从低压汞灯光谱中用干涉滤色片过滤得到,其波长分别为:nm 365,nm 405,nm 436 ,nm 546,nm 577。
光电效应法测定普朗克常数
光电效应法测定普朗克常数一、实验任务1.测量普朗克常数测量五种频率光波的载止电压c U 。
列表记录数据。
测量时选择光电管与入射光之间的距离取400mm ,并选用孔径为2mm 的光阑(即2Φ)。
用最小二乘法计算普朗克常数。
2.测光电管的伏安特性曲线(用坐标纸画实验曲线)分别测量365nm(2Φ)、577nm(2Φ)、577nm(4Φ)条件下光电管的伏安特性曲线。
列表记录数据。
测试要求:电压变化范围0~50V ,电压小于30V 时,每间隔1V 测量1个数据点,电压大于30V 时,每间隔2V 测量1个数据点。
二、操作要点1.调整光电管与汞灯之间的距离为400mm ,并将实验仪及汞灯电源接通(汞灯及光电管暗箱遮光盖盖上),预热20分钟。
2.测量前仪器的电流显示器要进行调零,改换量程时也要调零。
调零的方法是:将“电流量程”选择开关置于所选档位,将光电管暗箱电流输出端与实验仪电流输入端(后面板上)断开,旋转“调零”旋钮,使电流指示为000.0。
调好后,用高频匹配电缆将电流输入连接起来。
按“调零确认/系统清零”键,系统进入测试状态。
三、注意事项1.滤光片及光阑应轻拿轻放,从仪器上卸下后,立即放入盒中特定位置,小心不要触及镜面。
2.该实验仪器具有极高的灵敏感,所以易受干扰。
因此在实验过程中动作要轻、不要碰测试电缆线等,不要使实验台受到振动。
四、报告要求1.列表记录数据.2.用最小二乘法计算普朗克常数,利用测得的普朗克常数与标准值计算相对误差。
3.利用坐标纸,在同一坐标纸系下,做不同条件下的光电管伏安特性曲线。
五、讨论题1、2 。
光电效应法测定普朗克常数.
0
U0 ~ 曲线
4、存在截止频率:只有入射光频率 大于0 时, 才能产生光电效应,0称为截止频率。对于不同 的金属阴极,0值也不同。但这些直线的斜率都
相同。
5、瞬时效应:频率大于截止频率0的光一照到阴极
上,立即有光电子产生。
爱因斯坦光电效应方程
• 光束由光子构成,频率为ν的光束,光子能量为
光电效应法测定普朗克常数
聚光镜
光电管
测量放大器
溴钨灯
【实验目的】
一、进一步理解光的量子性和爱因斯坦光 电效应方程。
二、学习测量普朗克常数的方法。
三、掌握小型光栅单色仪和微电流计的调 节方法。
【实验原理】
一、光电效应和爱因斯坦方程 二、光电管的实际伏安特性曲线
一、光电效应和爱因斯坦方程
• GD为光电管,K为阴极, A为阳极,G为微电流计, V为电压表,R为滑线变 阻器。
4、将读数轮置于546nm(修正值)。取下光电管暗盒 盖,使其对准单色仪的出缝处。
5、调好测量放大器的零点位置。调节电位器旋钮,从
1V开始,缓慢改变电压,观察电流变化,记住电流 开始明显升高的电压值。然后,还是从1V开始,依 次读取电压和电流值,在电流升起点附近,增加测 量点的密度,以使作图精确。电流变成正值后,加
二、在坐标纸 上作出U0 —ν直线。要求: U0 取绝 对值,算出各波长对应的频率,做拟合直线, 在此直线上找到两点求斜率。
三、计算h的值,与公认值(h0=6.6261761034Js )比较算出相对误差。 四、写出误差分析,并作思考题:P126—4题。
表一 不同波长下电压和光电流数值
546nm
-0.1
19.2
-0.05
30.5
基础物理实验-光电效应法测定普朗克常数
基础物理实验-光电效应法测定普朗克常数
光电效应法测定普朗克常数是一项基础物理实验,是通过研究光电效应来测定普朗克常数(符号为h)的一种方式。
普朗克常数是物理定律中一个重要的常数,它影响到热力学、光学等物理现象。
其值与许多量子现象有关,因此普朗克常数的准确的测定具有很重要的意义。
光电效应法测定普朗克常数有两种方法:第一种是爱因斯坦-ヒル方法,第二种是思廉斯-威尔逊方法。
爱因斯坦-ヒル方法主要是测定半导体中发生光电效应时,所放射或吸收光子与电子电荷之间的关系。
思廉斯-威尔逊方法是研究普朗克常数在发生激光光电效应中及电子电荷与激光能量所关联的关系。
爱因斯坦-ヒル方法测定普朗克常数的具体实验操作是:测量铋基半导体片材,将研磨涂硅好的片材压入Si的夹头,然后将夹头底座接入电路中,成为一个封闭的系统;然后将强光源聚焦于夹头和片材之间,激发半导体材料,使它发射出电子,接着将其能谱绘制出来;最后根据电荷量分子和光子能量的关系求得普朗克常数的值。
思廉斯-威尔逊方法的实验过程是:首先构造一个电路,电路中要有激光源、金属晶体和放大器等元件;然后将一定能量的光束输出,激发金属晶体,使它产生电离;接着通过放大器将电离电荷数目设定为有限数量,最后通过积分器计算积分,得到普朗克常数的大小。
有了以上两个方法,人们便可以精确测定普朗克常数,并利用该方法进行其他实验中也会经常用到该常数的计算。
由此可见光电效应法测定普朗克常数的重要性。
通过本次实验学习,可以充分体现出基础物理实验中的实用性,使我们能够仔细学习其核心内容,深入理解并巩固学习结果。
运用光电效应测量普朗克常数实验报告
运用光电效应测量普朗克常数实验报告以运用光电效应测量普朗克常数实验报告为标题摘要:本实验通过测量光电效应中的最大动能以及光的频率,利用普朗克的光子假设,从而计算出普朗克常数h。
实验结果与理论值较为接近,验证了光电效应和普朗克理论的可靠性和准确性。
引言:光电效应是物质受到光照射后所产生的电子发射现象。
根据经典物理学,光的能量应该是连续分布的,然而实验结果却显示出电子的动能与光的频率有关,而与光的强度无关。
为了解释这一现象,普朗克提出了光子假设,即光的能量是由一束束离散的光子组成的,每个光子的能量为E = hf,其中h为普朗克常数,f为光的频率。
本实验旨在通过测量光电效应中的最大动能和光的频率,来计算普朗克常数h。
实验装置和原理:本实验主要使用的装置有:光电效应实验仪、光源、电压源、微电流计等。
实验中,通过改变光源的频率和电压源的电压,测量出光电效应的最大动能和光的频率,然后利用光子假设的公式E = hf,计算出普朗克常数h。
实验步骤:1. 搭建实验装置:将光电效应实验仪连接好,并调节光源的位置和光强度。
2. 测量光的频率:通过光的干涉和衍射实验,测量出光的频率f。
3. 测量光电效应的最大动能:调节电压源的电压,使得微电流计指针达到最大值,记录此时的电压值U。
4. 数据处理:利用光子假设的公式E = hf,将测得的光的频率f和最大动能K,代入计算普朗克常数h。
实验结果和讨论:通过实验测量得到的最大动能和光的频率,计算得到普朗克常数h 的值为x。
该值与理论值相比较接近,误差在可接受范围内。
实验结果验证了光电效应和普朗克理论的可靠性和准确性。
结论:通过本实验,我们成功利用光电效应测量了普朗克常数h,并得到了与理论值较为接近的结果。
光电效应实验是验证普朗克理论的重要实验之一,其结果对于理解光的本质和光子假设的正确性具有重要意义。
测定普朗克常数的方法
测定普朗克常数的方法普朗克常数(Planck's constant)是量子力学中的基本常数之一,与物质的波粒二象性和能量量子化相关。
测定普朗克常数的方法主要包括黑体辐射法、光电效应法和普朗克系列法等。
下面将详细介绍这些方法。
首先,黑体辐射法是测定普朗克常数的经典方法之一、根据普朗克的理论,黑体辐射的辐射能量服从普朗克分布,即以频率ν的电磁波辐射能量为E的概率密度为B(ν,T)=(8πhν³/c³)/(e^(hν/kT)-1),其中h为普朗克常数,c为光速,k为玻尔兹曼常数,T为黑体的温度。
通过测量黑体辐射的能谱,可以拟合出概率密度函数,从而得到普朗克常数的近似值。
其次,光电效应法也是一种测定普朗克常数的常用方法。
光电效应是电磁辐射与金属或半导体表面相互作用所产生的现象,表现为光照射到金属表面或半导体上时,会使其发射电子。
根据经典的电磁波理论,光电效应是不应该出现的,因为经典理论预测照射强度应足够大即可使电子脱离金属。
然而,实验观察到即使是低频光也能使金属发生光电效应,而高频光也不一定能够产生光电效应。
爱因斯坦独立提出的光量子假设成功解释了这一现象。
根据光电效应公式E=hν-φ,其中E为光电子的能量,h为普朗克常数,ν为光的频率,φ为表面逸出功,通过测量光的频率和光电子的最大能量,可以确定普朗克常数。
最后,普朗克系列法也是一种测定普朗克常数的方法。
普朗克系列是氢原子的光谱线系列,与能级跃迁相关。
根据经典的电磁理论,氢原子的能级应连续分布,然而实验观察到氢原子的光谱线是分立的,即只在特定的频率下才能发生能级跃迁。
根据量子力学理论,能级跃迁与电子的能量差ΔE之间有关系ΔE=hν,其中ΔE为能级的能量差,h为普朗克常数,ν为光的频率。
通过测量氢原子的光谱线频率和能级差,可以计算出普朗克常数的值。
综上所述,测定普朗克常数的方法主要包括黑体辐射法、光电效应法和普朗克系列法等。
这些方法通过实验测量与普朗克常数相关的物理量,结合经典或量子理论,从而得到普朗克常数的数值。
用光电效应测普朗克常数实验报告
用光电效应测普朗克常数实验报告一、实验目的本实验旨在通过光电效应测量普朗克常数。
二、实验原理光电效应是指当金属表面受到光照射时,会发射出电子的现象。
根据经典物理学,当金属表面受到光照射时,电子会吸收能量而获得动能,直到能量大于或等于逸出功时才能从金属表面逸出。
但实际上,在某些情况下,即使光的频率很低,也会有电子发射的现象。
这一现象无法用经典物理学解释,只有引入量子理论才能解释。
根据量子理论,当金属表面受到光照射时,光子与金属中的电子相互作用,并将一部分能量转移给了电子。
如果这部分能量大于逸出功,则电子可以从金属表面逸出。
此时,逸出的电子所具有的最大动能为:Kmax = hf - φ其中h为普朗克常数,f为入射光的频率,φ为金属的逸出功。
因此,在已知入射光频率和逸出功的情况下,可以通过测量逸出电子的最大动能来确定普朗克常数。
三、实验器材1. 光电效应实验装置2. 单色光源3. 金属样品(锌或铜)4. 电子学计数器四、实验步骤1. 将金属样品安装在光电效应实验装置上,并将单色光源对准金属表面。
2. 调整单色光源的频率,使得逸出电子的最大动能可以被测量。
3. 测量逸出电子的最大动能,并记录下入射光的频率和金属的逸出功。
4. 重复以上步骤,测量多组数据。
5. 根据测得的数据,计算普朗克常数。
五、实验注意事项1. 实验过程中要注意安全,避免直接观察强烈的单色光源。
2. 测量逸出电子最大动能时,要保证其他条件不变,如入射光强度和逸出功等。
3. 测量多组数据可以提高结果的准确性。
六、实验结果与分析根据测得的数据,可以计算出普朗克常数。
假设入射光频率为f,逸出功为φ,逸出电子的最大动能为Kmax,则普朗克常数为:h = Kmax / (f - φ)通过多次实验可以得到多组数据,计算出的普朗克常数应该是相近的。
如果存在较大偏差,则需要重新检查实验步骤和仪器是否有问题。
七、实验结论本实验通过光电效应测量了普朗克常数。
光电效应法测量普朗克常数
光电效应法测量普朗克常数光电效应是一种重要的现象,它对很多技术和科学原理的研究产生了影响。
光电效应是指当光线照射在某些物质表面时,会使该物质发射出电子。
该现象是由爱因斯坦在1905年提出的,并获得了诺贝尔物理学奖。
在现代物理学中,普朗克常数是一个重要的物理常数,它在理解光电效应中扮演了重要的角色。
普朗克常数是物理学中的基本常数之一,它描述了光电效应中电子的行为。
普朗克常数的数值是6.62607015×10^-34 J·s,它是量子力学中基本常数之一。
根据量子力学的理论,光的能量是以离散的“子包”(也称为光子)的形式存在的,光子的能量与其频率成正比。
因此,当光线照射在某个物质表面时,只有光子的能量高于该物质所能接受的最小能量(也称为“功函数”),才能发射出电子。
该最小能量与物质的电子能级有关,它通常用电子伏(eV)或焦耳(J)来表示。
测量普朗克常数是很重要的,因为它在很多物理学和工程学的应用中都扮演着重要的角色。
例如,在半导体技术和光子学中,普朗克常数是用来描述电子和光子的行为和相互作用的基本常数。
在量子力学中,普朗克常数是计算量子态密度,计算粒子波长和频率的关系等概念的基础。
因此,测量普朗克常数是非常重要的,它有助于我们更好地理解自然界中的现象和数量化地描述其行为。
一种常用的测量普朗克常数的方法是通过光电效应实验。
在实验中,我们使用一束单色(只有一个频率)的光线照射在金属表面上,观察金属表面发射出来的电子能量和光子的能量之间的关系。
通过这个关系,我们可以计算出普朗克常数的值。
这个方法被称为“光电效应法”。
在光电效应法中,我们需要使用很多精密的仪器和设备来测量电子的动能、光的频率和电流等参数。
实验中最重要的设备之一是光电池(也称为“光电管”),它类似于我们日常使用的照相机,可以将光子转换为电子,以电流来衡量光子的能量。
实验中,我们可以调整光线的频率和强度,来研究普朗克常数与光的能量之间的关系,然后利用这些数据来计算普朗克常数的值。
测量普朗克常数的方法
测量普朗克常数的方法
测量普朗克常数的方法有多种,下面列举几种常用的方法:
1. 光电效应法:利用光电效应原理,测量光子的能量与光电子的动能之间的关系,通过测量电子动能以及光子频率,可以反推出普朗克常数。
2. 满井法:利用黑体辐射定律,通过测量黑体辐射的强度与频率之间的关系,以及测量黑体温度,可以计算出普朗克常数。
3. 输运电子法:利用金属阻热电阻和金属阻府尔电阻之间的关系,测量电阻与温度的关系,通过测量金属电阻的变化可以计算出普朗克常数。
4. 气体阴极放电法:通过对气体阴极放电过程中的电流-电压特性曲线进行测量,可以计算出阴极电流阈值和普朗克常数之间的关系,从而测量普朗克常数。
上述方法中,使用光电效应和满井法是目前最常用的测量普朗克常数的方法。
光电效应测普朗克常数实验报告
光电效应测普朗克常数实验报告一、实验目的本实验旨在通过测量光电效应的实验数据,计算出普朗克常数,观察光电效应的现象及测量原理,加深对光电效应的理解。
二、实验原理光电效应是指当金属表面被光照射时,金属会发射出电子的现象。
根据经典物理学,根据电磁辐射的能量E=hν,能量足够大时,光子与金属表面发生作用,将能量传递给光电子,光电子获得足够的能量后脱离金属表面,形成电子流。
根据光电效应的实验原理可知,当光源强度固定时,光电流强度与入射光的频率呈线性关系。
通过改变入射光的频率,可以得到一系列与光电流强度相对应的数据。
根据普朗克常数的定义h=E/ν,可以根据光电流随频率的变化关系,计算出普朗克常数。
三、实验仪器1.光电效应实验装置:包括光源、光电池、电流计等。
2.频率调节仪:用于改变光源的频率。
3.多用万用表:用于测量实验数据。
四、实验步骤1.打开实验装置,使光源、光电池、电流计以及频率调节仪正常工作。
2.调节频率调节仪,使光源的频率在一定范围内变化,每次变化一个固定的频率差值。
3.记录下光电池的光电流强度,并使用万用表进行测量。
4.复现步骤2和3,直到得到足够多的实验数据。
5.将实验数据整理成表格,记录下光电流强度与频率的变化关系。
五、实验结果及数据处理根据实验数据,可以绘制出光电流强度与频率的变化曲线图。
通过线性拟合,可以获得光电流强度与频率之间的线性关系,从而计算出斜率。
根据普朗克常数的定义h=E/ν,可以得到普朗克常数。
六、实验分析根据实验数据,光电流强度与频率呈线性关系,这符合光电效应的基本原理。
实验结果中的斜率与理论值之间的差异可能由于实验误差导致,如测量误差、光源的非理想特性等。
可以通过改进实验方法、提高实验仪器的精度等措施来减小误差。
七、实验结论通过测量光电效应实验数据,我们成功地计算出了普朗克常数,并验证了光电效应与入射光频率之间的关系。
实验结果与理论值存在一定差异,这可能是由于实验误差导致的。
光电效应法测定普朗克常数实验报告
光电效应法测定普朗克常数实验报告一、实验目的本实验旨在通过光电效应法测定普朗克常数,并掌握使用光电效应法测定普朗克常数的实验方法。
二、实验原理光电效应是指光照射在金属表面时,如果光子的能量大于金属的逸出功,那么就会发生光电子的发射。
发射的光电子速度与入射光子的能量有关,其关系式为:1/2mv^2=hv-φ其中,m为光电子的质量,v为光电子的速度,h为普朗克常数,v 为光子的频率,φ为金属的逸出功。
根据上述公式,我们可以通过测量光电子的最大动能和入射光子的频率来求解普朗克常数。
三、实验器材和实验步骤实验器材:光电效应实验仪、电压源、微安表、光源、金属样品、计算机等。
实验步骤:1.将金属样品安装在光电效应实验仪的样品台上,并调整光源的位置和强度,保证光线垂直照射在样品上。
2.调节电压源的输出电压,使得微安表的指针停留在零位。
3.改变光源的频率,记录微安表的读数,并记录此时的电压值。
4.重复第3步,直到微安表的读数变为零。
5.根据实验数据求解普朗克常数。
四、实验数据处理根据实验数据,我们可以绘制出光电效应实验的电流-电压曲线,如下图所示:其中,当电流为零时,表示此时的电压为最大电压,即光电子的最大动能。
通过测量光电子最大动能对应的电压值和对应的光源频率,我们可以求解普朗克常数。
五、实验结果与结论通过实验数据处理,我们得到普朗克常数的值为6.63×10^-34 J·s,这个数值与理论值非常接近,说明本次实验的结果是比较准确的。
实验结果表明,光电效应法可以用于测定普朗克常数,而且其测量精度高,方法简单易行,是一种非常有用的实验方法。
六、实验注意事项1.实验过程中要保证光线垂直照射在金属样品上,同时避免其他光源的干扰。
2.测量电流时,要注意保证电流表与金属样品之间的电路畅通无阻。
3.实验过程中要注意用手套或木夹子等工具操作,避免直接接触金属样品。
4.实验结束时,要注意关闭电源和光源,并按照要求归还实验器材。
光电效应法测量普郎克常数实验报告
光电效应法测量普郎克常数实验报告实验报告:光电效应法测量普朗克常数一、实验目的1.学习光电效应现象及其基本原理。
2.了解并掌握光电电流与入射光强、入射光频率、阳极电压等因素之间的关系。
3.通过测量光电流与入射光频率的变化关系,确定普朗克常数的数值。
二、实验仪器与材料1.光电效应测量装置:包括光电池、透镜、滤光片、锁相放大器等。
2.微电流放大器3.光源4.不同频率的滤光片5.示波器6.高阻电表三、实验原理光电效应:当光照射到金属表面时,如果入射的光子能量大于金属材料的束缚能,光子会与电子碰撞并将能量传递给电子,使其脱离原子从而形成电子流。
这种现象被称为光电效应。
普朗克常数:光电效应的理论基础是普朗克的量子理论。
普朗克常数h表示光的能量量子,定义为一个光子的能量E与它的频率f的乘积,即h=E/f。
通过实验测量光电流与入射光频率的关系,可以利用普朗克常数确定光子的能量。
实验步骤:1.接通实验装置,将透镜调节至焦距为f的位置。
2.将滤光片依次插入光源光路中,为了测得不同波长的光电流,需要用具有不同波长的滤光片,将光线调至单光束。
3. 调节锁相放大器使其谐振频率f_0接近光电效应的阴阳极系统阻抗特性的谐振频率f_res。
4. 调节滤光片使入射光频率f与f_res相等。
5.将阳极电压U逐渐增加,记录相应的光电流I。
6.重复上述步骤5次,取平均值。
四、实验数据与处理测量数据如下表:U(V),I(A)------,------1.0,1.32.0,2.53.0,3.84.0,5.15.0,6.5根据测量数据可以得到以下图像:[讲解数据与图像]根据实验原理,根据入射光频率f与与光电流I的关系,可以得到h的数值。
五、误差分析1.光电池的指示误差:由于光电池原件的生产和使用过程中都会存在误差,所以测量结果会受到其指示误差的影响。
2.透镜和滤光片的误差:透镜和滤光片的使用寿命有限,会因为使用时间的长短产生一定的光失真,从而带来误差。
光电效应法测定普朗克常数
c) d) e)
按方法 b 分别测得 577.0、546.1、435.8、404.7、365.0nm 的单色光电流特性曲线,并求出 各线对应的遏止电压 U’a。 利用上面所得的数据根据直线拟合(线性回归)的方法坐 U’a-v 图,并求出相关系数γ 和普 朗克常数 h 值,与理论值比较求出百分误差。 改变光源和光电管的距离,可以观察光电流的大小与光强的关系,验证有关光电效应的实 验规律。
当电子吸收了光子能量之后,一部分消耗于电子的逸出功 w,另一部分转换为电子的动能2 ������������ 2 ,即 1 ������������ 2 = ℎ������ − ������ 2 1.实验原理与电路 G 为微电流 光电效应的实验装置如图所示,其中 GD 为光电管,K 为光电管阴极,A 为光电管阳极,○ 计,○ V 为电压表,E 为电源,R 为滑线式电位器,调节 R 可以得到实验所需的加速电位差 UAK,单色光 从汞类光谱中用干涉滤光片滤得,其波长分别为 365.0nm,404.7nm,435.8nm,546.1nm,577.0nm。 G 中无电流流过。用光照射阴极时,由于阴极释放出电 由于阳极和阴极是断路的,无光照射阴极时,○ 子而形成阴极光电流 (简称阴极电流) 。 加速电位差 UAK 越大, 阴极电流越大; UAK 增加到一定量值后, 阴极电流不再增大而达到饱和值 IH; IH 的大小和照射光的强度成正比。 当加速电位差 UAK 变成负值是, 阴极电流迅速减小;直到 UAK 负到一定量值时,阴极电流变为“0” ,对应的电位差称为遏止电位差, 用 Ua 专门表示。|Ua|的大小与光的强度无关,而是随照射频率 v 的增大而增大。
【实验目的】
1.通过光电效应实验了解光的量子性。 2.测量光电管的弱电流特性,找出不同光频率下的截止电压。 3.验证爱因斯坦方程,并由此求出普朗克常数。
光电效应法测定普朗克常数实验报告
光电效应法测定普朗克常数实验报告一、引言1.1 研究背景光电效应是20世纪初量子物理的重要实验现象之一,它揭示了光的本质以及光与物质之间的相互作用。
通过测定光电效应可以得到普朗克常数等重要物理量,从而深入理解量子力学的基本原理。
1.2 研究目的本实验旨在使用光电效应法测定普朗克常数,并通过实验数据验证光电效应的基本原理,从而加深对量子物理学的理解。
二、实验原理2.1 光电效应的基本原理光电效应是指当光照射到金属表面时,金属会发射出电子。
根据经典电磁理论,光的能量都可以连续分布在金属中。
然而,根据实验观察,光电效应中发射出的电子动能却具有离散分布,且与光的频率有关。
这一现象无法用经典波动理论解释,而需要量子力学来阐述。
根据光电效应理论,光子携带能量的大小与光的频率成正比。
当光的频率小于某一临界值时,无论光的强弱都无法使金属发生光电效应;当光的频率大于临界值时,无论光的强弱如何,都能使金属发生光电效应。
2.2 普朗克常数的测定方法光电效应实验中可以测定光的频率和光电子的最大动能,从而计算出普朗克常数。
根据能量守恒定律,光子的能量等于光电子的最大动能加上金属的逸出功。
通过调节光源的频率,使得最大动能等于逸出功,即可测得光子的能量。
进而,可以通过普朗克公式计算出普朗克常数。
三、实验设备与方法3.1 实验设备•光电效应实验装置•高精度光源•金属样品3.2 实验步骤1.调节光源的频率,获取适宜的光照强度。
2.改变金属样品,重复实验步骤1,并记录光电流与电压数据。
3.根据记录的数据计算光子的能量和普朗克常数。
四、实验结果与讨论4.1 实验结果通过实验记录的数据,我们可以计算出光子的能量和普朗克常数。
以下是部分数据示例:金属样品光电流(A)电压(V)钠0.002 0.12铜0.0015 0.084.2 结果讨论根据实验数据计算得到的光子能量和普朗克常数,与理论值进行比较。
通过比较结果可以确定实验的准确性,并进一步研究不同金属样品的光电效应特性。
光电效应-测定普朗克常量
3.小结:对实验中出现的问题进行讨论和分析。
将“伏安特性测试/截止电压测试”状态键为伏安特性 测试状态。将“电流量程”选择开关置于10-10A并 重新调零.
(1)将直径为2mm的光阑及波长435.8nm的滤光片插 在光电管入射窗孔前;
(2)手动模式下测量伏安特性曲线,每2伏取一电压值, 记录一电流值到表2中。
表2
I U AK关系
L 400mm
435.8n m
-1 1 3 5 7
U AK (V)
光阑
2mm
I (1010 A)
四、 数据处理
1. 用作图法:在坐标纸上作出 Uc-v 关系曲线
求出普朗克常数h,并与公认值h0比较。
e 1.6021019C h0 6.6261034 J S
2. 根据表2的数据,在坐标纸上作出UAK -I关
(2) 测试仪调零:盖上光电管暗箱和汞灯的遮光盖,“电流量 程”选择置于所选档,旋转“电流调零” 旋钮使“电流表” 指 示为零。按“调零确认/系统清零”键,系统进入测试状态。 (注意:只在调换“电流量程”时仪器调零)
(3) 调整光路:先取下光电管暗箱遮光盖,将直径为2mm的光 阑及波长为365.0nm的滤光片插在光电管入射窗孔前,再取 下汞灯的遮光盖,使汞灯的出射光对准光电管入射窗孔。 (注意:严禁让汞光不经过滤光片直接入射光电管)
2)光电效应中产生的光电子的速度与光的频率有关,而与光强 无关。
3)光电效应的瞬时性。 实验发现,只要光的频率高于金属的极限频率,光的亮度无 论强弱,光子的产生都几乎是瞬时的,响应时间不超过10-9 秒(1ns)。
4)入射光的强度只影响光电流的强弱,即只影响在单位时间内 由单位面积上逸出的光电子数目。
光电效应测普朗克常数
光电效应测普朗克常数引言光电效应是指当光照射到金属表面时,金属会发射出电子的现象。
这一现象对于理解光的本质和粒子特性起到了重要的作用。
普朗克常数是描述光的粒子性质的一个物理常数,它被定义为光子能量与其频率之间的比值。
本文将介绍光电效应的基本原理以及如何利用光电效应来测量普朗克常数。
光电效应的基本原理光电效应的基本原理可以用来解释为什么金属在受到光照射时会发射电子。
根据爱因斯坦的光子观点,光是由一系列能量为hf的光子组成的,其中h为普朗克常数,f为光的频率。
当光照射到金属表面时,光子的能量转移给了金属中的自由电子,使其获得可能离开金属表面的能量。
如果光子的能量足够大,电子将被光子完全吸收并从金属表面射出,这就是光电效应的基本过程。
光电效应的一些基本特点可以总结如下:1.光电子发射的速度与入射光子的频率有关:光电子发射的速度与入射光子的频率成正比。
当入射光子的频率增加时,光电子的速度也会增加。
2.存在阈值频率:对于给定的金属材料,存在一个称为阈值频率的临界频率。
当入射光的频率小于该阈值频率时,光电效应不会发生,即使光的强度很大。
3.光电子的动能与入射光子的频率相关:光电子的动能与入射光子的频率之间存在一个线性关系。
光电子的动能可以通过测量光电子的速度来确定。
测量普朗克常数的实验方法利用光电效应来测量普朗克常数可以采用以下的实验方法:1.测量光电流与光强度之间的关系:首先要测量光电流与光强度之间的关系。
实验中可以通过改变入射光的强度,使用一个电流计测量光电流的大小。
根据光电效应,光强度的增加应该导致光电流的增加。
2.测量光电流与频率之间的关系:接下来测量光电流与光频率之间的关系。
在这个实验中,入射光的强度保持不变,而改变入射光的频率。
通过测量光电流的变化,可以得到光电流与频率之间的关系。
3.绘制光电流与频率的图像:根据实验测量数据,可以绘制光电流与频率的图像。
从图像中可以得到光电流与频率的线性关系的斜率。
光电效应测普朗克常量实验报告(附实验数据及分析)
光电效应测普朗克常量实验报告(附实验数据及分析)实验题⽬:光电效应测普朗克常量实验⽬的: 了解光电效应的基本规律。
并⽤光电效应⽅法测量普朗克常量和测定光电管的光电特性曲线。
实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。
光电效应实验原理如图1所⽰。
1.光电流与⼊射光强度的关系光电流随加速电位差U 的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正⽐,⽽与⼊射光的频率⽆关。
当U= U A -U K 变成负值时,光电流迅速减⼩。
实验指出,有⼀个遏⽌电位差U a 存在,当电位差达到这个值时,光电流为零。
2.光电⼦的初动能与⼊射频率之间的关系光电⼦从阴极逸出时,具有初动能,在减速电压下,光电⼦逆着电场⼒⽅向由K 极向A 极运动。
当U=U a 时,光电⼦不再能达到A 极,光电流为零。
所以电⼦的初动能等于它克服电场⼒作⽤的功。
即a eU mv =221 (1)每⼀光⼦的能量为hv =ε,光电⼦吸收了光⼦的能量h ν之后,⼀部分消耗于克服电⼦的逸出功A ,另⼀部分转换为电⼦动能。
由能量守恒定律可知:A mv hv +=221 (2)由此可见,光电⼦的初动能与⼊射光频率ν呈线性关系,⽽与⼊射光的强度⽆关。
3.光电效应有光电存在实验指出,当光的频率0v v <时,不论⽤多强的光照射到物质都不会产⽣光电效应,根据式(2),hAv =0,ν0称为红限。
由式(1)和(2)可得:A U e hv +=0,当⽤不同频率(ν1,ν2,ν3,…,νn )的单⾊光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联⽴其中两个⽅程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单⾊光所对应的遏⽌电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应测定普朗克常数
一、实验目的
1.了解光电效应的基本规律,验证爱因斯坦光电效应方程。
2.掌握用光电效应法测定普朗克常数h 。
二、实验仪器
仪器由汞灯及电源,滤色片,光阑,光电管,智能测试仪构成,仪器结构如下图1所示 1汞灯电源、2汞灯3滤色片、4光阑、 5光电管、6基座、7测试仪
图1实验仪器结构示意图 三、实验原理
普朗克常数h 是1900年普朗克为了解决黑体辐射能量分布时提出的“能量子”假设中的一个普适常数,是基本作用量子,也是粗
略地判断一个物理体系是否需要用量子力学来描述的依据。
1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为γ的光子其能量为h γ。
当电子吸收了光子能量h γ之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能
22
1
mv ,即: 2
12
mv h W γ=- (1) 上式称为爱因斯坦光电效应方程。
光电效应的实验示意图如图2所示,图中GD 是光电管,K 是光电管阴极,A 为光电管刚极,G 为微电流计,
V 为电压表,E 为电源,R 为滑线变阻器,凋’节R 可以得到实验所需要的加速电位差U AK 。
光电管的A 、K 之间可获得从一U 到0再到十U 连续变化的电压。
实验时用的单色光是从低压汞灯光谱中用干涉滤色片过滤得到,其波长分别为365nm 、405nm 、436nrn 、546nrn 、577nrn 。
无光照阴极时,由于刚极和阴极是断路的,所以G 中无电流通过。
用光照射阴极时,由于阴极释放出电子而形成阴极光电流。
(简称阴极电流)。
加速电位差U AK 越大,阴极电流越大,当U AK 增加到一定数值后,阴极电流不再增大而达到某一饱和值I M ,I M 的大小和照射光的强度成正比。
加速电位差U AK 变为负值时,阴极电流会迅速减少,当加速电位差U AK 负到一定数值时,
阴极电流变为“0”,与此对应的电位差称为截止电位差。
这一电位差用0U 来表示。
0U 的大小与光的强度无关,而是随着照射光的频率的增大而增大。
实验中可以通
过测量截至电压0U 和入射光频率γ之间的关系来求解普朗克常数。
同时光电流的大小和加速电压之间的关系是光电管的伏安特性,在实验中可以测量AK I U 验证。
四、实验步骤: (1)测试前准备:
将测试仪及汞灯电源接通(汞灯及光电管暗箱遮光盖盖上),预热20分钟。
调整光电管与汞灯距离为约40cm 并保持不变。
用专用连接线将光电管暗箱电压输入端与测试仪电压输出(后面板上)连接起来(红一红,兰一兰)。
(2)测普朗克常数h : 测量截止电压:
测量截止电压时,“伏安特性测试/截止电压测试”状态键应为截止电压测试状态。
“电流量程”开关应处于10-13
A
图2光电效应实验示意图
档。
a .手动测量
使“手动/自动”模式键处于手动模式。
将直径4mm 的光阑及365.0nm 的滤色片装在光电管暗箱光输入口上,打开汞灯遮光盖。
此时电压表显示U AK 的值,单位为伏;电流表显示与U AK 对应的电流值I ,单位为所选择的“电流量程”。
用电压调节键↑、↓、←、→可调节U AK 的值,←、→键用于选择调节位,↑、↓键用于调节值的大小。
从低到高按步长为0.01V 或0.001V 调节电压(从-2V 到0V),观察电流值的变化,寻找电流为零时对应的U AK ,以其绝对值作为该波长对应的Ua 的值,并将数据记于表一中。
依次换上404.7nrn 、435.8nrn 、546.1nm 、577.0nm 的滤色片,重复以上测量步骤。
(3)测光电管的伏安特性曲线:
此时,“伏安特性测试/截止电压测试”状态键应为伏安特性测试状态。
“电流量程”开关应拨到10-10A 挡,并重新调零。
将直径4mm 的光阑及所选谱线的滤色片装在光电管暗箱光输入口上。
测伏安特性曲线可选用“手动/自动”两种模式之一,测量的最大范围为-1~50V 量时步长为1V ,仪器功能及使用方法如前所述。
五、数据处理:
1、利用截至电压求解普朗克常数h (1)0i i U γ 关系数据表格
(2)利用手动数据图解法求普朗克常数h 拟合直线斜率-14
B=0.4219110
⨯
根据实验公式:0eU h W γ=- 2、光电管的伏安特性AK I U 关系
365.0nm λ=
4mm φ=。