激光原理复习自整理资料
激光原理复习知识点
激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。
下面将详细介绍激光原理的相关知识点。
1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。
与常规的自然光不同,激光是一种具有相同频率和相位的光波。
2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。
3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。
-具有一个能够增加原子或分子跃迁概率的辐射源。
-有一种方法可以让过多的激发态原子或分子跃迁到基态。
4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。
-激活介质是产生激励能量的介质,如气体、液体或固体。
-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。
-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。
5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。
通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。
6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。
这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。
7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。
-激光二极管:使用半导体材料制成的二极管来产生激光。
-激光腔:使用自激振荡的原理来产生激光。
8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。
-激光打印:激光打印用于打印机和复印机等办公设备中。
激光原理背诵版(整理)
32.激光器三要素:工作物质、泵浦源、光学谐振腔
33.工作物质:提供受激辐射的能级结构
34.泵浦源:将低能级粒子抽运到高能级,实现粒子数反转
激光原理重点汇整
第1章 电磁场和物质的共振相互作用
1.电磁场和物质的共振相互作用:自发辐射、受激辐射、受激吸收。在热平衡条件下,自发辐射为主,使受激辐射占优的前提是实现粒子数的反转分布。
2.自发辐射和受激辐射的区别:自发辐射是随机的,各光子之间无关联性,受激辐射是相干光(频率、相位、波失、偏振均相同);自发辐射是非相干光,受激辐射是相干光;
30.共焦腔与稳定球面镜腔的等价性:任何一个共焦腔可以与无穷多个稳定球面腔等价,任何一个稳定球面镜腔只能有一个等价共焦腔。
31.已知球面镜腔的的R1、R2、L,求z1、z2、和f,z1=负的L(L-R2)除以[(L-R1)+(L-R2)],z1=L(L-R1)除以[(L-R1)+(L-R2)],f平方=负的L(L-R1)(L-R2)(L-R1-R2)除以[(L-R1)+(L-R2)]平方
11.气体激光物质:碰撞加宽+多普勒加宽,气压低时以多普勒加宽为主(非均匀加宽),气压高时以碰撞为主(均匀加宽)。
12.固体激光物质:晶格振动加宽+晶格陷阱加宽,参杂及缺陷少时以晶格振动加宽为主(均匀加宽),低温下为非均匀加宽。
13.液体激光物质:碰撞加宽
14.常见均匀加宽激光工作物质:红宝石、YAG、二氧化碳(>1330帕)、砷化镓
32.非稳腔:高功率即大能量输出的激光器常为非稳腔,非稳腔内存在一对共轭像点,从共轭像点发出的球面波是腔内的自再现模。
激光原理复习自整理资料
第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。
含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。
谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。
个人归纳大学激光原理复习要点
1. 通常三能级激光器的泵浦阈值比四能级激光器泵浦阈值高。
2. Nd:Y AG激光器可发射以下三条激光谱线1064 nm、1319 nm、946 nm。
其中哪两条谱线属于四能级结构1319 nm、1064 nm。
3. 红宝石激光器属于三能级激光器。
He-Ne激光器属于四能级激光器。
4. 激光具有四大特性,即高相干性、高单色性、高亮度和高的方向性5. 激光器的基本组成部分增益介质、泵浦原、谐振腔。
6. 激光器稳态运转时,腔内增益系数为阈值增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率相等.7. 调Q技术产生激光脉冲主要有调Q 、锁模两种方法。
6. 激光器稳态运转时,腔内增益系数为增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率.7. 写出两种产生高峰值功率激光脉冲的方法、。
简答:三能级方程及图四能级方程及图增益饱和模式竞争空间烧孔效应自由光谱区1.光与物质存在那三种相互作用?激光放大主要利用其中那种相互作用?说明在激光产生过程中,最初的激光信号来源是什么?(10分)答:光与物质间相互作用为:自发辐射、受激发射和受激吸收。
(3分)激光放大主要利用其中的受激发射(3分)。
激光产生过程中,最初的激光信号是激光介质自发辐射所产生的荧光。
激光介质自发辐射所产生的沿轴向传播的荧光反复通过激光介质,当增益大于损耗时,这些荧光不断被放大,最后形成了激光发射。
(4分)2.说明均匀增宽和非均匀增宽的区别?说明为什么均匀增宽介质内存在模式竞争?(10分)答:均匀增宽介质内每一个原子对谱线内任一频率光波都有相同的贡献,所有原子对发射谱线上每一频率的光波都有相同贡献,所有原子的作用相同;非均匀增宽介质发射的不同的光谱频率对应于不同的原子,不同的原子对中谱线中的不同频率有贡献,不同原子的作用不同的(5分)。
均匀增宽激光介质发射谱线为洛仑兹线型,中心频率处谱线增益最大,该频率处附近纵模优先起振,由于均匀增宽介质内每一个原子对谱线内任一频率光波都有相同的贡献,中心频率处纵模振荡发射激光将引起激光上能级原子数下降,激光增益曲线形状不变,但整体下降,当中心频率处纵模增益降低为激光振荡阈值时,该处纵模稳定输出,其它频率的纵模增益都小于阈值,无法振荡。
激光原理复习知识点[整理]
一 名词解释1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。
α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。
按上式定义的v ∆称为谱线宽度。
3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。
4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。
5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。
定义p v P w Q ξπξ2==。
ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。
v 为腔内电磁场的振荡频率。
6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。
这种使激光器获得更窄得脉冲技术称为锁模。
8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。
9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。
(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。
激光原理期末知识点总复习材料
激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。
1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。
其与常规光的最大区别在于具有相干性和能量集中性。
2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。
受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。
自发辐射是指原子或分子自发地从激发态返回基态所发射的光。
3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。
光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。
电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。
4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。
5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。
相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。
方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。
单色性是指激光具有非常狭窄的波长,具有很高的色纯度。
高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。
6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。
激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。
7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。
激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。
8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。
激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。
激光知识点总结
激光知识点总结一、激光的工作原理激光是由激光管或半导体激光器等激光器件产生的一种特殊的光,其产生过程涉及到激发、放大和辐射三个过程。
激发过程是激光器内部能级的粒子被外部能量激发,处于高能级,即被激发态。
放大过程是被激发态的粒子受到反射膜的作用,在激光谐振腔内不断来回运动,使得光子通过受激辐射不断放大,形成激光能量。
辐射过程是形成激光光束的过程,激光能量通过谐振腔的光学放大产生足够的光强,经过半透过膜射出。
二、激光的分类根据激光器产生的机理、工作波长和应用领域不同,激光可以分为不同的类型。
常见的激光器包括气体激光器、固体激光器、半导体激光器等。
气体激光器主要包括CO2激光器、氩离子激光器等,工作波长主要在10.6微米和0.5微米左右。
固体激光器主要包括Nd:YAG激光器、Nd:YVO4激光器等,工作波长主要在1微米左右。
半导体激光器主要包括GaAs激光器、InGaN激光器等,工作波长主要在可见光和红外光区域。
三、激光的应用激光在各个领域都有着广泛的应用,包括医学、通信、材料加工等。
在医学领域,激光可以用于手术、治疗、检测等,例如激光近视手术、激光溶脂手术等。
在通信领域,激光可以用于光纤通信、激光雷达等,实现了信息的高速传输和大容量存储。
在材料加工领域,激光可以用于切割、焊接、打标等,高精度、高效率、非接触等优点,深受制造业的青睐。
四、激光的安全问题激光的应用虽然带来了很多便利,但同时也伴随着一些安全问题。
激光具有高能量密度、强聚焦性和直线传播性,如果被不当使用,可能会导致眼睛、皮肤等组织的损伤。
因此,在激光使用过程中,需要采取一系列的安全措施,包括佩戴防护眼镜、设置相应的警示标识、限制激光输出功率等,确保激光的安全使用。
总之,激光作为一种重要的光学技术,在科研和工程实践中有着广泛的应用,具有很高的经济和社会效益。
通过深入理解其工作原理、分类和应用等,可以更好地把握激光的特点和优势,更好地应用于实际工作中。
激光原理复习自整理详解
激光原理复习自整理详解激光(Laser)是指将电能、化学能、光能等不同形式的能量转化为相干单色光束的一种装置。
激光器可精密控制光的时间、空间强度分布,因此被广泛应用于科学研究、医疗、通信、制造等领域。
激光的产生是基于光放大原理和光产生原理。
光放大原理即光在经过光学放大介质时,通过受激辐射过程放大而得到激光。
光产生原理则是指在光学放大介质中,通过受激辐射过程得到的初级激光,再经过多次光放大过程最终得到激光。
下面就详细介绍激光的产生原理。
1.激光器的组成激光器主要由光学谐振腔、激光介质和泵浦源三部分组成。
-光学谐振腔:用于延长光在激光器中的传播距离,增强激光的反射和放大效应。
-激光介质:负责将入射光转化为激光的介质,常见的激光介质有气体、固体和液体等。
-泵浦源:为激光介质提供能量,使其处于各能级的适当分布。
2.可逆过程和受激辐射受激辐射是产生激光的基本原理之一、当激光介质从低能级跃迁到高能级时,如果有一束与该过程产生的光子完全匹配的入射光通过,该过程将被增强。
这是一种受激辐射过程,其与自发辐射(即自发跃迁)形成了对称关系。
3.反射和放大过程激光器中的光线会在光学谐振腔内被多次反射,导致光线的衰减和放大。
谐振腔中有两个镜子,其中一个镜子是半透明的,称为输出镜,另一个镜子是全反射的,称为输入镜。
-当光线经过输出镜时,一部分光经过透射,成为激光器的输出光。
经过透射的光具有激光的特性,即单色、相干和定向等。
-另一部分光线经过反射,回到激光介质中,形成了反射光。
反射光在激光介质中被吸收、放大,然后再次被反射。
这个过程中,入射光不断放大,最终形成激光。
激光产生的过程可以概括为:泵浦源提供能量给激光介质,使其处于激发态;谐振腔内的光经过多次的反射和放大,形成激光。
总之,激光产生的原理是基于光放大和受激辐射过程,通过泵浦源提供能量给激光介质,经过光学谐振腔的多次反射和放大,最终形成相干单色激光。
激光具有独特的光学特性,广泛应用于各个领域。
激光知识点归纳总结
激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。
2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。
3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。
4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。
二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。
2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。
3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。
4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。
三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。
2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。
3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。
4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。
5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。
6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。
四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。
2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。
3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。
4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。
激光原理复习
激光原理第一章1. 激光器的组成部分及作用(1)工作物质(激活物质):用来实现粒子数反转和产生光的受激发射作用的 物质体系。
(2)泵浦源:提供能量,实现工作物质的粒子数反转。
(3)谐振腔:①提供轴向光波模的正反馈②模式选择,保证激光器单模振荡,从而提高激光器的相干性。
2. 模式数的计算单色模密度:计算例:封闭腔在5000 Å处单色模密度。
3. 光谱宽度的计算其中,为波列长度。
4. 本征状态的定义给定空间内任一点处光的运动情况,在初始条件和边界条件确定后,原则上就可求解麦克斯韦方程组,一般可得到很多解,而且这些解的任何一种线性组合都可满足麦克斯韦方程,每一个特解,代表一种光的分布,即代表光的一种本振振动状态。
5. 光子简并度的定义光子简并度对应于线度光源λ,在单位时间单位立体角内发出单位频宽的光子数(处于同一个相格中的光子数,处于一个模式中的光子数,处于相干体积内的光子数,处于同一量子态内的光子数,都有相同的含义,均定义为光子简并度)。
并用表示:V c V c g 322824νπννλπ∆=⨯⨯∆=328c n πνν=Hz c14108106105000103⨯=⨯⨯==-λυ353821432s 1035.310310614.388-⋅⨯=⨯⨯⨯⨯==m c n )()(πυυc l c t //1=∆≈δνc l δνλνδ∆∆Ω∆==∆ΩS h Pg n )/2(26. 光子简并度与单色亮度之间的关系光源的光子简并度,从微观上反映出光源的单色亮度。
单色亮度:。
光子简并度与单色亮度之间的关系为:7. 光子平均能量的表达同一种光子运动状态(或同一种光波模式)的光子平均能量:8. 光的自发辐射、受激吸收、受激辐射自发辐射:处于的原子在无外来光子情况下自发地向能级跃迁,发射能量以光辐射形式放出即自发辐射。
特点:自发辐射是仅与原子自身性质有关的随机过程,自发辐射的光在方向、偏振、相位方面都没有确定的关系,因此是不相干的。
(完整版)激光原理期末知识点总复习材料,推荐文档
激光原理期末知识点总复习材料2.激光特性:单色性、方向性、相干性、高亮度3.光和物质的三种相互作用:自发辐射,受激吸收,受激辐射4.处于能级u 的原子在光的激发下以几率 向能级1跃迁,并发射1个与入射光子全同的光子,Bul 为受激辐射系数。
5.自发辐射是非相干的。
受激辐射与入射场具有相同的频率、相位和偏振态,并沿相同方向传播,因而具有良好的相干性。
6.爱因斯坦辐射系数是一些只取决于原子性质而与辐射场无关的量,且三者之间存在一定联系。
7.产生激光的必要条件:工作物质处于粒子数反转分布状态8.产生激光的充分条件:在增益介质的有效长度内光强可以从微小信号增长到饱和光强Is9.谱线加宽特性通常用I 中频率处于ν~ν+d ν的部分为I(ν)d ν,则线型函数定义为线型函数满足归一化条件:10.的简化形式。
11.四能级比三能级好的原因:更容易形成粒子数反转 画出四能级系统的能级简图并写出其速率方程组()()()() Rll l l l N N n f f n dt dN nn n n n A n W n s n dtdn S n S A n N n f f n dt dn A S n W n dtdn τυννσυννσ-⎪⎪⎭⎫ ⎝⎛-==++++-=++-⎪⎪⎭⎫ ⎝⎛--=+-=021112203213030010103232121202111222313230303,,ρul ul B W =1)(=⎰∞∞-ννd g 121212)(-+=S A τ12E 2112.13.14.15.程的本征函数和本征值。
研究方法:①几何光学分析方法②矩阵光学分析方法③波动光学分析方法。
处于运转状态的激光器的谐振腔都是存在增益介质的有源腔。
16.腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场分布称为谐振腔的横模。
17.腔长和折射率越小,纵模间隔越大。
对于给定的光腔,纵模间隔为常数,腔的纵模在频率尺上是等距排列的不同的横模用横模序数m,n 描述。
激光原理复习资料
激光原理复习资料一、选择题1. 在光和原子体系的相互作用中,自发辐射和受激吸收总是(D )存在的。
A.. 都不B. 不同时C. 一种或两种D.同时2. 在共轴球面谐振腔,如果腔体是稳定的,则腔需要满足的是(A )A. 1021<<g gB. 121>g gC. 0g 12121==g g g 或D. 121<g g3. 对称共焦腔的1D A 21-=+)(,就稳定性而言,此对称共焦腔是(A ) A.稳定腔 B.非稳定腔 C.混合腔 D.任意腔4. 半导体发光二极管发出的光是(C )A.自然光B. 激光C. 荧光D.任意光5. 以下那个不是激光武器所具有的优点(B )A.无需进行弹行计算B.有小的后座力C.操作简便,移动灵活,使用范围广D.污染,消费比高6.以下哪个过程能实现激光的光放大(C )A.受激吸收B.自发辐射C.受激辐射D.自发辐射和受激辐射7.四价的本征导体Si ,Ge 等,掺入少量三价的杂志元素(如B ,Ga ,Ze 等)形成空穴为(D )A.绝缘体B.导体C. n 型导体D.P 型半导体8.以下不是激光器的基本组成部分的是(B )A.工作物质B.谐振腔C.泵浦原D.发光二极管二、填空题1.激光器的基本组成包括工作物质、谐振腔、泵浦原.2.激光器按工作物质可以分为固体激光器、气体激光器、染料激光器、半导体激光器。
3.在现代的激光器中,第一台激光器红宝石激光器是三能级系统,钕玻璃激光器是四能级系统。
4.产生激光的必要条件是实现粒子反转。
5.激光的四个特性分别是方向性、单色性、高亮度、相干性。
6.激光的调制技术按调制的物理效应可以分为电光调制、声光调制、磁光调制。
7.激光武器的杀伤机理是烧灼效应、激波效应、辐射效应。
8.调Q技术产生激光脉冲主要有锁模、调Q两种方法,调Q激光器通常可以获得ns量级,锁模有主动锁模和被动锁模两种锁模方式。
9.固体激光器主要的泵浦源有氪灯泵浦、高效脉冲氙灯泵浦等。
激光原理重要知识点总结
激光原理重要知识点总结一、光的增益作用光的增益作用是指当激光器原子、分子或离子受到外界激励时,电子由基态跃迁到激发态的过程,然后通过受激辐射过程,释放出同频的光子,光子与原子、分子或离子碰撞后,再次受激辐射产生的光子数量比刚开始辐射的光子相同,这样逐渐增加,形成激光。
1. 受激辐射当自由的电子和可激发的原子或离子发生碰撞时,后者的电子可以从较低的激发态跃迁到高的激发态,此时发射的辐射光子就与入射的引激光的频率相同。
这种过程称为受激辐射。
2. 反转分布在激光器的工作状态下,使激光材料中原子、分子或离子的激发态的密度大于基态的密度,这种特殊的能级布局称为反转分布。
只有当反转分布具有足够的时间持续性,才能形成激光输出。
二、激光共振腔激光共振腔是由两个反射镜构成的,其中一个为半透反射镜,另一个为全反射镜。
它的主要功能是将光共振在腔内,使得只有与激光器频率一致的光才得以通过反射镜输出,而其它频率的光则在腔内循环反射,形成激光输出。
激光腔外的泵浦装置则通过激发工作物质的原子或离子的跃迁将能量传递给激光材料,使得激光器能够继续工作。
三、激光输出当光共振在激光器内部形成激光,并且通过激光腔的半透反射镜输出激光后,激光通过调制器、色散系统、光阑以及辐射器等设备,再通过光阑进行空间裁剪,在目标面形成所需要的光斑。
激光在输出过程中还需要考虑各种参数的调节和控制,以保证激光输出质量。
总的来说,激光技术以其高亮度、高品质、高能量密度、高单色性、高直线偏振度和相干度等优异的特性,已经在通信、医学、材料加工、军事、精密定位等领域得到了广泛的应用。
同时,激光技术的应用也在不断地拓展中,为各行各业带来更多的机遇和挑战。
激光原理复习资料整理总结
第一章1.1900年,普朗克(M.Planck)提出辐射能量量子化假说,精确的解释了黑体辐射规律。
获得1918年诺贝尔物理学奖。
能量子概念:物质吸收和发射电磁能量是一份一份的进行的。
2.1905年,爱因斯坦(A. Einstein)为解释光电效应定律提出光量子假说。
获得1921年诺贝尔物理学奖。
光量子:简称光子或者photon,即光场本身的能量就是一份一份的。
3.光量子的概念(爱因斯坦):光量子简称光子或者photon,即光场本身的能量就是一份一份的。
爱因斯坦假设:光、原子、电子一样具有粒子性,光是一种以光速c运动的光子流,光量子假说成功地解释了光电效应。
光子(电磁场量子)和其他基本粒子一样,具有能量、动量和质量等。
粒子属性:能量、动量、质量;波动属性:频率、波矢、偏振4.光子既是粒子又是波,具有波粒二象性!5.属性:①光子的能量:ε=hv,普朗克常数: h=6.626x10−36J.s②光子的运动质量m:m=εc2=ℎvc2③光子的动量P⃑:P⃑=mcn0⃑⃑⃑⃑ =ℎvc n0⃑⃑⃑⃑ =ℎ2π2πλn0⃑⃑⃑⃑④光子的偏振态:光子具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。
⑤光子的自旋:光子具有自旋,并且自旋量子数为整数,处于同一状态的光子数目是没有限制的。
6.光子相干性的重要结论:①相格空间体积以及一个光波模式或光子状态占有的空间体积都等于相干体积②属于同一状态的光子或同一模式的光波是相干的,不同状态的光子或不同模式的光波是不相干的。
7.光子简并度:处于同一光子态的光子数称为光子简并度。
具有以下几种相同的含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
好的相干光源:高的相干光强,足够大的相干面积,足够长的相干时间(或相干长度)。
8.1913年,玻尔(Niels Bohr)建立氢原子结构模型,成功解释并预测了氢原子的光谱。
获得1922年诺贝尔物理学奖9.1946年,布洛赫(Felix Bloch)提出粒子数反转概念。
激光原理复习知识点
激光原理复习知识点
激光(Laser)是一种特殊的光源,具有高亮度、高单色性和高直线度等特点,广泛应用于医疗、通信、材料加工等领域。
激光的产生是基于激光原理,本文将围绕激光原理展开复习,帮助读者更好地理解激光的工作原理及常见应用。
1. 光的特性:
光是电磁波的一种,具有波粒二象性。
在光学中,我们常常将光看作是一束光线,使得光的传播更易于理解。
光的主要特性包括波长、频率、振幅和相位等。
2. 激射过程:
激光的产生是通过光子在外部受激辐射的作用下,从处于激发态的原子或分子中重新退激而产生。
这个过程需要一种激光介质,如气体、固体或液体,以及与之匹配的能量源,如泵浦光源或电子束。
3. 受激辐射:
在激光介质中,经过泵浦作用,一部分原子或分子被激发到激发态。
当这些处于激发态的粒子受到外界能量刺激时,会从高能级跃迁到较低能级,释放出额外的光子,这就是受激辐射。
这些受激辐射的光子可以与其他激发态粒子进行相互作用,进一步增强受激辐射的效果。
4. 波导结构:
为了通过受激辐射实现激光的放大和反射,激光器通常采用波导结构。
波导结构允许激光光束在其中传播,而不会发生较大的损耗。
波导结构可以是导光纤、半导体器件或光学腔等形式。
5. 消谐:
在激光器中,为了保持单一频率的输出,需要进行消谐。
消谐可以通过调整激光介质的性质或使用消谐元件来实现。
消谐的目的是确保激光器输出的光具有较窄的频谱宽度,以便于在通信和光谱分析等应用中的有效使用。
6. 光的放大:。
激光原理考试复习资料.doc
1•激光原理(概念,产生):激光的意想、是“光的受激辐射放大”或“受激发射光放人”,它包含了激光产生的由来。
刺激、激发,散发、发射,辐射2•激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3•激光雷达:激光雷达,是激光探测及测距系统的简称。
丄作在红外和町见光波段的雷达称为激光雷达。
4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硕目标。
软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硕FI标则是指陆地、地物以及空间飞行物等宏观实体探测对象。
软目标的回波机制:(1)Mie散射是一种散射粒了的氏径与入射激光波长相当或比之更人的一种散射机制。
M ie 散射的散射光波长与入射光波氏相当,散射时光与物质Z间没冇能量交换发生。
因此是一种弹性散射。
(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而散射粒了远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。
(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,英最大特点是散射光的波长和入射光不同,产生了向长波或煎波方向的移动。
而且散射光波长移动的数值与散射分子的种类密切相关。
(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级Z间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。
(5)吸收:吸收是指当入射激光的波长被调整到与原了分了的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。
硬冃标的冋波机制:激光与由宏观实体构成的硕冃标作用机制反射、吸收和透射。
当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一•部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。
硕冃标对激光能量的反射机制最为重耍。
硬目标冋波机制包括:镜面反射、漫反射,方向反射1•机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空I'可姿态参数的高精度惯性导航系统(IMU)、用丁•确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所冇部分Z间的时间同步的同步控制装置、搭载平台等部分纽成。
激光原理内部资料,绝版
9. 求解菲涅耳-基尔霍夫衍射积分方程得到的本征函数
和本征值各代表什么 10、能画出圆形镜、方形镜几个横模的光斑花样吗? 11、如何计算基模高斯光束的主要参量:腰斑的大小、 腰斑的位置、镜面上光斑的大小、任意位置处激光光斑 的大小、等相位面曲率半径、光束的远场发散角、模体 积?
12、高阶高斯光束有哪些?
21
把n 1.52, n0 1, R1 1, R2 2代入上式,化简。 提取矩阵元A和D,计算得
1 L 1 A D 0.914 1.342 2 L L 0.171 2 2 2 1 1.171 L 2.171 2 A D 1 注意,实际上,此题只需计算划线部分的矩阵积即可。
L
0.56 0.54 0.25 1.21
作图
R1
R2
O
稳定球面腔
等价共焦腔
24
11.今有一平面镜和一R 1m的凹面镜,问:应如何构成 一平-凹稳定腔以获得最小的基模远场角;画出光束发 散角与腔长L的关系曲线。
解:根据题意,平面镜可放在高斯光束的束腰处,凹面镜 放在曲率半径为R z = 1m的等相位面上,显然它们能构成 稳定球面腔。如下图所示。
2
14、如何定义激光增益?什么是小信号增益?什么是增
益饱和?(可结合第三章内容)
15、什么是自激振荡?产生激光振荡的条件是什么?
16、如何理解激光的空间相干性与方向性?如何理解激
光的时间相干性?如何理解激光的相干光强?
3
第二章
开放式光腔与高斯光束
1. 什么是谐振腔的谐振条件?
2. 如何计算纵模的频率、纵模间隔和纵模的数目?
令其为大平移矩阵Tb , 得
激光原理整理
第一章:辐射理论概要与激光产生条件6.试证单色能量密度公式,用波长λ来表示应为5811hc kThc eλλπρλ=-证明: 11811852322-⨯=⋅-⨯=⋅=⋅==kT h kT h e hc c e h c c dVd dw dVd dw νννλλπλλπλρλνλρ 7. 试证明,黑体辐射能量密度()ρν为极大值的频率m ν由关系112.82m T kh ν--=给出,并求出辐射能量密度为极大值的波长m λ与m ν的关系。
答:33811hv kTh c eνπνρ=-可得:0))1(113(82323=⋅⋅--⋅+-=∂∂kT h e e e c h kT h kT h kT h ννννννπνρ令kTh x ν=,则上式可简化为:xx xe e =-)1(3 解可得:82.2≈x 即:1182.282.2--=⇒≈kh T kTh m mνν(2)辐射能量密度为极大值的波长m λ与m ν的关系仍为:m m cλν=11.静止氖原子的3S 2→2P 4谱线的中心波长为0.6328μm ,设氖原子分别以±0.1c ,±0.5c 的速度向着接收器运动,问接收到的频率各为多少? 答:Hz c c c c 146801.010241.5106328.01039.01.19.01.111⨯=⨯⨯⋅=⋅=-+=-+λυυνν 同理可求:Hz c 141.010288.4⨯=-ν;Hz c 145.010211.8⨯=+ν;Hz c 145.010737.2⨯=-ν 12.设氖原子静止时发出0.6328μm 红光的中心频率为4.74×1014Hz ,室温下氖原子的平均速率设为560m/s 。
求此时接收器接收频率与中心频率相差若干?答:Hzc 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν第二章:激光器的工作原理2. He-Ne 激光器中,Ne 原子数密度n 0=n 1+n 2=l012 cm -3,1/f (ν)=15×109 s -1,λ=0.6328μm ,t 自发=211A -=10-17s ,g 3=3,g 2=5,11μ≈,又知E 2、E 1能级数密度之比为4,求此介质的增益系数G 值。
激光原理复习总结
激光原理复习总结一、填空1、处于同一光子态的光子数叫做光子简并度,它具有以下四种含义为:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、光和物质共振相互作用的三个过程是自发辐射跃迁、受激吸收跃迁、受激辐射跃迁。
其中,跃迁几率只与原子系统性质相关的是自发辐射跃迁,既与原子系统性质相关又与周围辐射场相关的是受激吸收跃迁和受激辐射跃迁。
3、激光的四性包括高的单色性、高的方向性、高的相干性、高的亮度;总结起来,即激光具有高的光子简并度。
4、光学开腔的损耗大致可分为以下四类:几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗。
其中,与光模式相关的损耗包括几何偏折损耗、衍射损耗,称为选择性损耗,而与光模式关系不大的损耗有腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗,称为非选择性损耗。
5、三能级系统所需的阈值能量比四能级所需的要大,损耗对小。
三能级系统的影响要比对四能级的影响。
6、激光调Q的目的是获得脉宽窄、峰值功率高的激光脉冲。
7、典型的稳频方法有兰姆凹陷稳频、可饱和吸收稳频(或反兰姆凹陷稳频 )、塞曼效应稳频、无源腔稳频(F-P标准具稳频)8、激光的频率稳定特性包含频率稳定性和频率复现性。
9、常用的激光调Q方法有机械转镜调Q、电光调Q、声光调Q、可饱和吸收调Q(被动调Q)、脉冲透射式调Q(腔倒空)。
10、为了实现单横模输出,常用的模式选择方法主要有光阑法选横模、谐振腔参数g、N选择法选横模、非稳腔选横模、微调谐振腔法选横模。
11、常用的单纵模选择法有短腔法、行波腔法、F-P标准具法(选择性损耗法)。
12、2N+1个纵模锁定后的峰值功率变为未锁模时得(2N+1)2倍,相邻锁模脉冲极大值的间隔为无源腔纵模间隔的倒数,每个锁模脉冲的宽度为无源腔纵模间隔的(2N+1)倍的倒数。
二、判断(错)3、激光的四大特性并非相互独立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章激光的特性: 1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kTE i i ieg n 推论:假设gi=gj 1.当E2-E1很小,且12-E E E << kT 时,112n n ,2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n n ,说明绝大多数粒子为基态普朗克公式:11h 8hv33vkTecv爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A 212121g B g B 光子简并度g :处于同一光子态的光子数。
含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn 自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E ;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:vB t hvn t 212)()(q 激光功率密度比:vvhv h88cq q 333自激增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。
谱线宽度:线型函数在时有最大值,下降至最大值的一半,对应得宽度。
谱线加宽:由于各种因素的影响,自发辐射并不是单色的,而是分布在中心频率附近一个很小的频率范围内。
线性函数:把归一化的自发辐射光功率,描述为单色辐射功率随频率变化的规律,定义为分布在某一频率附近单位频率间隔内的自发辐射功率与整个频率范围内的自发辐射总功率之比。
用于表示谱线的形状多普勒效应:设一发光原子(光源)的中心频率为0,当原子相对于接收器以速度v z 运动时,接收器测得的光波频率变为(略);多普勒加宽:由于作热运动的发光原子(分子)所发出的辐射的多普勒频移引起的加宽均匀加宽:引起加宽的物理因素对每个原子都是等同的,包括自然加宽v 、碰撞加宽c 及晶格振动加宽。
每个发光原子都以整个线型发射,不能把线型函数上的某一特定频率和某些特定原子联系起来,每一发光原子对光谱线内任一频率都有贡献。
洛伦兹形函数:220)2/()(2/)(f H H G v v vv v 非均匀加宽:原子体系中每个原子只对谱线内与它的表现中心频率相应的部分有贡献,因而可以区分谱线上的某一频率范围是由哪一部分原子发射的,包括气体工作物质中的多普勒加宽和固体工作物质中的晶格缺陷加宽。
高斯函数:220221D 2)()2()(f kTv v v mc eTk m v 线宽:212D2ln 2k 2v v )(mcT 激光实现光放大条件:1.激励能源,把介质中粒子不断由低能级抽运到高能级2.增益介质,外界激励下形成粒子数反转激光产生的三个条件:1.增益介质2.粒子数反转,01212n g g n ;3.提高简并度使受激发射光强超过自发发射,2121Af(v)VB 激光器的结构:1.增益介质。
其激活粒子有适合于产生受激辐射的能级结构2.激励源。
能将下能级粒子抽运到上能级,使激光上下能级产生粒子数反转光学谐振腔。
增长激活介质长度,控制传播方向,选择被放大受激辐射光频率提高单色性光学谐振腔作用1提供光学正反馈,使激活介质中产生的辐射能多次通过介质,当受激辐射所提供的增益超过损耗时,在腔内得到放大,建立并维持自激振荡。
2控制腔内振荡光束的特性,使腔内建立的振荡被限制在腔所决定的少数本征模式中,从而提高单个模式内的光子数量,获得单色性好,方向性好的强相干光。
光学谐振腔构成要素1激活介质:用于补偿腔内电磁场在振荡过程中的能量损耗,使之满足阈值条件2两个镀有高反射率膜的反射镜:使得激活介质中产生的辐射能多次通过介质获得增益同时控制光束的输出3腔长:影响谐振腔稳定性、损耗等第二章光腔按几何损耗分类:稳定腔,临界腔,非稳腔定义:111g R L ,212g R L 稳定腔:121g 0g 非稳腔:121021g g g g 或临界腔:121021g g g g 或共焦腔:2,01,21g g L R R 即共心腔:LR R 21光学谐振腔稳定条件:要求腔内傍轴光线不会因腔镜的反射偏折而逃出谐振腔,没有考虑光波的衍射逃逸损失,只考虑几何损失,属于对谐振腔稳定性的最低要求。
稳定谐振腔可能的腔镜组合形式有:双凹型,平凹型,凸凹型。
稳定图:粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1实现粒子数反转手段:激励、泵浦、抽运建立多模激光器速率方程组需要做脱耦近似假设:忽略各模式频率和横向模场分布不同所带来的差异,采用如下近似假设1各模式腔损耗、光子寿命、近似相同2各模式光子所引起的受激跃迁速率近似相等速率方程;2212212211122d n w n A n W n W dtn ,22)21(,,21212122112n w n A n n W dtdn W W W g g 稳态下:0d 2dtn ,w A W W n 2112n ,则12n n ,结论,二能级不能实现粒子数反转稳态反转粒子数密度分布:012d 0dtdn dtn dtdn ,抽运=跃迁小信号反转粒子数密度121220)(nR R R 小信号粒子数反转物理条件:1.激光上能级E2的寿命长,例子不能轻易非受激辐射离开2.激光下能级E1的寿命短,粒可很快衰减均匀增宽型介质:反转粒子数密度分布22002200,2/)1(n2/,100)()(1nVV V I I V VV V V V VII nSSSv f v f IIn 粒子数反转分布饱和效应:介质已实现粒子数反转并达到阈值。
入射光频率含h12vE E 时,强烈的受激发射使激光上能级E2粒子数n2迅速减少,出现n 随入射光强I 增大反而下降的现象。
粒子数反转分布饱和原因:入射光引起强烈的受激发射使激光上能级E2粒子数n2迅速减少均匀增益系数:hvv f cnB v G )()(21增益系数饱和:随着I 增大,G 不增反降增益系数饱和原因:入射光引起强烈的受激发射使激光上能级E2粒子数n2迅速减少I 很小时,0n ,0G 均为常数I~Is 时,n 和G 均随I 增大而减小均匀增宽介质饱和:在抽运速率一定时,当入射光很弱时,增益系数是一个常数,当入射光强增强到一定程度后,增益系数随光强的增大而减小。
激光器中不是总存在增益饱和只有当激光振荡模式增益超过损耗,介质中振荡光束才会获得增益,随振荡光束增强才产生增益饱和。
在脉冲激光器中由于光增益时间很短,小于激励时间,所以有可能在工作中不出现增益饱和现象。
或在非均匀加宽中,当与入射光频率相应的增益曲线上频率处的增益系数恰好等于损耗时,不存在增益饱和。
二氧化碳激光器:饱和Is 很大,即使腔内光强I 很大时,I/Is仍远小于1,介质对光波增益仍然很大。
氦氖激光器:饱和Is 很小,即使腔内光强I 不是很大时,I/Is已接近于1,增益饱和激光损耗:内部损耗,镜面损耗内部损耗:增益介质内部由于成分不均匀,粒子数密度不均匀,或有缺陷而使光产生折射,散射等使部分光波偏离传播方向,造成能量损失:z GI Iin)(exp 0,in内部损耗系数镜面损耗:当光强为I 的光波射到镜面上,其中I 1r 反射回腔内继续放大,其他的部分均为损耗,包括I 1t ,镜面反射,吸收以及由于光衍射使光束扩散到反射镜范围以外造成的损耗。
几何损耗主要存在于非稳腔和临界腔。
损耗系数:光通过单位距离后光强衰减的百分数激光器振荡阈值:工作物质自发辐射在光腔内因不断获得受激放大形成振荡所需要的门限条件,可用反转粒子数密度,阈值增益系数,阈值泵浦功率来表示。
阈值条件1.增益系数阈值:满足双程放大系数:12)exp(r r 21L GKin,total21in)(ln 21-r r LG,则totalG 2.增益系数下限:均匀:totalS M DI I G G /10th非均匀totalS M DI I G G 21th)/1(3.粒子数反转分布阈值:)(8n 222v f c hvtotalth,th n n才能产生激光第三章惠更斯-菲涅尔提出子波及子波干涉概念:1.波传到的任意波点都是子波波源2.各子波在空间某点相干叠加:薄面上各点均是相干子波源,惠-非原理提供用干涉解释衍射的基础,菲涅尔发展了惠更斯原理,深入了解衍射现象。
3.衍射基础,开腔模式基础惠更斯-菲涅尔原理:设波面上一点'p 光场复振幅p''u ,任意一点P 光场复振幅'cos 1''4ik pu ds ep u ik光波模:能够存在于腔内,以某一波矢k为标志的驻波称为‘’。
一种模式是电磁波运动的一种类型,不同的模式以不同的k区分。
同一k对应两个具有不同偏振方向的模。
腔的模:将光学谐振腔内肯能存在的电磁场的本征态称为模。
模特征:电磁场理论(横模),简谐频率(纵模),往返一次损耗功率,发散角自再现模:把开腔镜面上经一次往返能再现的稳态场分布称为自再现模或横模。
往返损耗:自再现模往返一次的损耗。
往返位移:自再现模往返一次的相位变化,等于2整数倍横模:腔内垂直于光轴的横截面内的场分布称为横模纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q 决定将这种由整数q 所表征的腔内纵向场分布称为纵模。
q 纵模系数,一个q 一个驻波谐振条件:光波在腔内往返一周总相移等于2整数倍。
2q 2驻波条件:光学腔长等于半波长整数倍。
2q'LL ,cv谐振频率模式的空间竞争:由于空间烧孔效应的存在,不同的纵模可利用空间内不同的粒子反转数获得增益,从而实现多纵模振荡。
称为高斯光束性质:1.高斯光束在其轴线附近可看做是一种非均匀搞死球面波2.传播过程中,曲率中心不断改变3.振幅在横截面内为一高斯光束4.强都集中在轴线及其附近5.等相位面保持球面高斯光束束腰半径:2wL 球形等相面曲率半径:22001z zw R z 处界面内基模有效截面半径:2201w w z w z 腔面基模光斑有效截面半径:2w w s基模远场发散角:w2222L光学谐振腔常用研究方法?几何光学、衍射积分方程方法稳定球面腔的等价共价腔:任何一个共焦腔可以与无穷个稳定球面镜腔等价一般稳定球面镜谐振腔与其等价共焦谐振腔,有什么相同和不同?同:具有相同行波场通过等价共焦腔研究稳定球面谐振腔模式性质。