高等数学讲稿

合集下载

高等数学说课稿《数列极限》(精选5篇)

高等数学说课稿《数列极限》(精选5篇)

高等数学说课稿《数列极限》(精选5篇)第一篇:高等数学说课稿《数列极限》《数列极限》说课稿袁勋这次我说课的内容是由盛祥耀主编的《高等数学》(上册)第一章第二节极限概念中的数列极限。

这部分内容在课本第18页至20页。

下面我把对本节课的教学目的、过程、方法、工具等方面的简单认识作一个说明。

一、关于教学目的的确定:众所周知,对极限这个概念的理解是高等数学的学习基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。

1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。

体验‚从具体到抽象,从特殊到一般再到特殊‛的认识过程;3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。

二、关于教学过程的设计:为了达到以上教学目的,根据两节。

在具体教学中,根据‚循序渐进原则‛,我把这次课分为三个阶段:‚概念探索阶段‛;‚概念建立阶段‛;‚概念巩固阶段‛。

下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。

(一)‚概念探索阶段‛ 1.这一阶段要解决的主要问题在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题:①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程;②使学生形成对数列极限的初步认识;③使学生了解学习数列极限概念的必要性。

2.本阶段教学安排我采取温故知新、推陈出新的教学过程,分三个步骤进行教学。

(精品教案)高中数学讲课稿4篇

(精品教案)高中数学讲课稿4篇

(精品教案)高中数学讲课稿4篇精心整理的高中数学讲课稿4篇,欢迎大伙儿借鉴与参考,希翼对大伙儿有所帮助。

高中数学讲课稿篇11. 教材所处的地位和作用:本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。

在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。

本节内容是在中,占领的地位。

以及为其他学科和今后的学习打下基础。

2. 教育教学目标:依照上述教材分析,思考到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:(2)能力目标:经过教学初步培养学生分析咨询题,解决实际咨询题,读图分析,收集处理信息,团结协作,语言表达能力以及经过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:经过的教学引导学生从现实的日子记忆与体验动身,激发学生学习兴趣。

3. 重点,难点以及确定依据:下面,为了说清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:1. 教学手段:怎么突出重点,突破难点,从而实现教学目标。

在教学过程中拟打算举行如下操作:教学办法。

基于本节课的特点:应着重采纳的教学办法。

2. 教学办法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,依照学生的心理进展规律,采纳学生参与程度高的学导式讨论教学法。

在学生看书,讨论的基础上,在老师启示引导下,运用咨询题解决式教法,师生交谈法,图像信号法,咨询答式,课堂讨论法。

在采纳咨询答法时,特殊注重别同难度的咨询题,提咨询别同层次的学生,面向全体,使基础差的学生也能有表现机遇,培养其自信心,激发其学习热情。

有效的开辟各层次学生的潜在智能,力求使学生能在原有的基础上得到进展。

并且经过课堂练习和课后作业,启示学生从书本知识回到社会实践。

提供给学生与其日子和身边世界紧密相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

考研高数数学讲义

考研高数数学讲义

第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。

高等数学教材讲义

高等数学教材讲义

高等数学教材讲义第一章导数与微分1.1 导数的定义与性质在这一节中,我们将介绍导数的定义及其基本性质。

导数是描述函数变化率的重要概念,它与切线的斜率密切相关。

我们将详细解释导数的定义,并通过例题演示如何求取导数。

1.2 常见函数的导数本节将探讨一些常见函数的导数计算方法,包括常数函数、幂函数、指数函数、对数函数、三角函数以及其他一些常见函数。

我们将给出这些函数的导数公式,并通过具体例子进行说明和求解。

1.3 高阶导数在这一节中,我们将讨论高阶导数及其应用。

高阶导数描述了函数变化率变化的速度,它可以帮助我们更全面地理解函数的性质。

我们将介绍高阶导数的定义和计算方法,并通过实例说明如何应用高阶导数解决实际问题。

第二章积分与定积分2.1 不定积分与原函数这一节我们将引入不定积分的概念,并介绍原函数的定义及其计算方法。

不定积分是求解定积分的重要步骤,它可以帮助我们找到函数的原始形式。

我们将详细解释不定积分的定义和性质,并通过实例演示如何求取原函数。

2.2 定积分的概念与性质在这一节中,我们将介绍定积分的概念和性质。

定积分描述了函数在一定区间内的累积变化量,它可以用来计算曲线下的面积、求解平均值等。

我们将详细讲解定积分的定义和性质,并通过例题演示如何求解定积分。

2.3 定积分的计算方法本节将讨论定积分的计算方法,包括基本积分公式、换元积分法、分部积分法等。

这些方法可以帮助我们解决各种形式的定积分问题。

我们将给出这些方法的具体步骤,并通过实例演示如何应用它们求解定积分。

第三章微分方程3.1 微分方程的基本概念在这一节中,我们将介绍微分方程的基本概念和分类。

微分方程是描述变量之间关系的方程,它在自然科学和工程技术中具有广泛应用。

我们将详细解释微分方程的定义和分类,并通过例题演示如何求解微分方程。

3.2 常微分方程本节将讨论常微分方程的求解方法。

常微分方程是最常见的微分方程类型之一,它描述了未知函数及其导数之间的关系。

(完整版)高等数学工专讲义

(完整版)高等数学工专讲义

接下来我们就开始学习高等数学了,或许在学习的过程中我们会感觉乏味无味,可是我相信只需我们努力,我们必定能达到成功的此岸。

常量与变量变量的定义我们在察看某一现象的过程时,常常会碰到各样不一样的量,此中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是能够取不一样的数值,我们则把其称之为变量。

注:在过程中还有一种量,它固然是变化的,可是它的变化相对于所研究的对象是极其细小的,我们则把它看作常量。

变量的表示假如变量的变化是连续的,则常用区间来表示其变化范围。

在数轴上来说,区间是指介于某两点之间的线段上点的全体。

区间的名区间的知足的不等式区间的记号区间在数轴上的表示称闭区间a≤x≤b[a , b]开区间a< x< b(a,b)半开区间a<x≤b或 a≤x< b ( a, b] 或 [a , b)以上我们所述的都是有限区间,除此以外,还有无穷区间:[a ,+∞) :表示不小于 a 的实数的全体,也可记为:a≤x<+∞;(- ∞, b) :表示小于 b 的实数的全体,也可记为:- ∞< x< b;(- ∞, +∞) :表示全体实数,也可记为:- ∞< x<+∞注:此中 - ∞和 +∞,分别读作" 负无量大 " 和 " 正无量大 ", 它们不是数 , 只是是记号。

邻域设α与δ是两个实数,且δ> 0. 知足不等式│x - α│<δ的实数x的全体称为点α的δ 邻域,点α 称为此邻域的中心,δ称为此邻域的半径。

函数函数的定义假如当变量x 在其变化范围内随意取定一个数值时,量y 依据必定的法例总有确立的数值与它对应,则称y 是 x 的函数。

变量 x 的变化范围叫做这个函数的定义域。

往常x叫做自变量, y 叫做因变量。

注:为了表示y 是 x 的函数,我们用记号y=f(x)、y=F(x)等等来表示. 这里的字母"f" 、"F" 表示 y 与 x 之间的对应法例即函数关系,它们是能够随意采纳不一样的字母来表示的.注:假如自变量在定义域内任取一个确立的值时,函数只有一个确立的值和它对应,这类函数叫做单值函数,不然叫做多值函数。

同济五版《高等数学》讲稿WORD版-第08章_多元函数微分学及其应用

同济五版《高等数学》讲稿WORD版-第08章_多元函数微分学及其应用

第八章多元函数微分法及其应用教学目的:1、理解多元函数的概念和二元函数的几何意义。

2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。

3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。

4、理解方向导数与梯度的概念并掌握其计算方法。

5、掌握多元复合函数偏导数的求法。

6、会求隐函数(包括由方程组确定的隐函数)的偏导数。

7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

8、了解二元函数的二阶泰勒公式。

9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。

教学重点:1、二元函数的极限与连续性;2、函数的偏导数和全微分;3、方向导数与梯度的概念及其计算;4、多元复合函数偏导数;5、隐函数的偏导数6、曲线的切线和法平面及曲面的切平面和法线;7、多元函数极值和条件极值的求法。

教学难点:1、二元函数的极限与连续性的概念;2、全微分形式的不变性;3、复合函数偏导数的求法;4、二元函数的二阶泰勒公式;5、隐函数(包括由方程组确定的隐函数)的偏导数;6、拉格郎日乘数法;7、多元函数的最大值和最小值。

§8. 1 多元函数的基本概念一、平面点集n 维空间1.平面点集由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.二元的序实数组(x , y )的全体, 即R 2=R ⨯R ={(x , y )|x , y ∈R }就表示坐标平面.坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作E ={(x , y )| (x , y )具有性质P }.例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y )| x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P | |OP |<r }.邻域:设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U .邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.点P 0的去心δ邻域, 记作) ,(0δP U ο, 即}||0 |{) ,(00δδ<<=P P P P U ο.注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U ο.点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点;(2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点;(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . 聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U ο内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.满足1<x 2+y 2<2的一切点(x , y )都是E 的内点; 满足x 2+y 2=1的一切点(x , y )都是E 的边界点, 它们都不属于E ; 满足x 2+y 2=2的一切点(x , y )也是E 的边界点, 它们都属于E ; 点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集: 如果点集E 的点都是内点, 则称E 为开集.闭集: 如果点集的余集E c 为开集, 则称E 为闭集.开集的例子: E ={(x , y )|1<x 2+y 2<2}.闭集的例子: E ={(x , y )|1≤x 2+y 2≤2}.集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域): 连通的开集称为区域或开区域. 例如E ={(x , y )|1<x 2+y 2<2}.闭区域: 开区域连同它的边界一起所构成的点集称为闭区域. 例如E = {(x , y )|1≤x 2+y 2≤2}. 有界集: 对于平面点集E , 如果存在某一正数r , 使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集: 一个集合如果不是有界集, 就称这集合为无界集.例如, 集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域; 集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域.2. n 维空间设n 为取定的一个自然数, 我们用R n 表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合, 即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n )| x i ∈R , i =1, 2, ⋅ ⋅ ⋅, n }.R n 中的元素(x 1, x 2, ⋅ ⋅ ⋅ , x n )有时也用单个字母x 来表示, 即x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ). 当所有的x i (i =1, 2, ⋅ ⋅ ⋅, n )都为零时, 称这样的元素为R n 中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量.为了在集合R n 中的元素之间建立联系, 在R n 中定义线性运算如下:设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )为R n 中任意两个元素, λ∈R , 规定x +y =(x 1+ y 1, x 2+ y 2, ⋅ ⋅ ⋅ , x n + y n ), λx =(λx 1, λx 2, ⋅ ⋅ ⋅ , λx n ).这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )和点 y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )间的距离, 记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.显然, n =1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至. R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号, 结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .在n 维空间R n 中定义了距离以后, 就可以定义R n 中变元的极限:设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n .如果||x -a ||→0,则称变元x 在R n 中趋于固定元a , 记作x →a .显然,x →a ⇔ x 1→a 1, x 2→a 2, ⋅ ⋅ ⋅ , x n →a n .在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如,设a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n , δ是某一正数, 则n 维空间内的点集U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}就定义为R n 中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念.二. 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V =πr 2h .这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定.例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系VRT p =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系2121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D )其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ).值域: f (D )={z | z =f (x , y ), (x , y )∈D }.函数的其它符号: z =z (x , y ), z =g (x , y )等.类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数.一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为u =f (x 1, x 2, ⋅ ⋅ ⋅ , x n ), (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,或简记为u =f (x ), x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,也可记为u =f (P ), P (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D .关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如,函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.三. 多元函数的极限与一元函数的极限概念类似, 如果在P (x , y )→P 0(x 0, y 0)的过程中, 对应的函数值f (x , y )无限接近于一个确定的常数A , 则称A 是函数f (x , y )当(x , y )→(x 0, y 0)时的极限.定义2设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果存在常数A , 对于任意给定的正数ε总存在正数δ, 使得当),(),(0δP U D y x P ο⋂∈时, 都有|f (P )-A |=|f (x , y )-A |<ε成立, 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为A y x f y x y x =→),(lim ),(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)),也记作A P f P P =→)(lim 0或f (P )→A (P →P 0). 上述定义的极限也称为二重极限.例4. 设22221sin)(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x . 证 因为 2222222222 |1sin ||| |01sin)(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-, 可见∀ε >0, 取εδ=, 则当δ<-+-<22)0()0(0y x ,即),(),(δO U D y x P ο⋂∈时, 总有|f (x , y )-0|<ε,因此0),(lim )0,0(),(=→y x f y x .必须注意:(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在. 讨论:函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f 在点(0, 0)有无极限?提示: 当点P (x , y )沿x 轴趋于点(0, 0)时,00lim )0 ,(lim ),(lim 00)0,0(),(===→→→x x y x x f y x f ; 当点P (x , y )沿y 轴趋于点(0, 0)时,00lim ) ,0(lim ),(lim 00)0,0(),(===→→→y y y x y f y x f . 当点P (x , y )沿直线y =kx 有22222022 )0,0(),(1lim lim k kx k x kx y x xy x kxy y x +=+=+→=→. 因此, 函数f (x , y )在(0, 0)处无极限.极限概念的推广: 多元函数的极限.多元函数的极限运算法则: 与一元函数的情况类似.例5 求x xy y x )sin(lim )2,0(),(→.解: y xy xy x xy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim →→⋅==1⨯2=2. 四. 多元函数的连续性定义3 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)为D 的聚点, 且P 0∈D . 如果 ),(),(lim 00),(),(00y x f y x f y x y x =→,则称函数f (x , y )在点P 0(x 0, y 0)连续.如果函数f (x , y )在D 的每一点都连续, 那么就称函数f (x , y )在D 上连续, 或者称f (x , y )是D 上的连续函数.二元函数的连续性概念可相应地推广到n 元函数f (P )上去.例6设f (x ,y )=sin x , 证明f (x , y )是R 2上的连续函数.证 设P 0(x 0, y 0)∈ R 2. ∀ε>0, 由于sin x 在x 0处连续, 故∃δ>0, 当|x -x 0|<δ时, 有|sin x -sin x 0|<ε.以上述δ作P 0的δ邻域U (P 0, δ), 则当P (x , y )∈U (P 0, δ)时, 显然|f (x , y )-f (x 0, y 0)|=|sin x -sin x 0|<ε,即f (x , y )=sin x 在点P 0(x 0, y 0) 连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续. 证 对于任意的P 0(x 0, y 0)∈R 2. 因为),(sin sin lim ),(lim 000),(),(),(),(0000y x f x x y x f y x y x y x y x ===→→,所以函数f (x ,y )=sin x 在点P 0(x 0, y 0)连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续.类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.定义4设函数f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果函数f (x , y )在点P 0(x 0, y 0)不连续, 则称P 0(x 0, y 0)为函数f (x , y )的间断点.例如函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f ,其定义域D =R 2, O (0, 0)是D 的聚点. f (x , y )当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函数的一个间断点.又如, 函数11sin 22-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而f (x , y )在C 上没有定义, 当然f (x , y )在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点.注: 间断点可能是孤立点也可能是曲线上的点.可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.例如2221y y x x +-+, sin(x +y ), 222z y x e ++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.由多元连续函数的连续性, 如果要求多元连续函数f (P )在点P 0处的极限, 而该点又在此函数的定义区域内, 则)()(lim 00P f P f p p =→. 例7 求xy y x y x +→)2,1(),(lim. 解: 函数xy y x y x f +=),(是初等函数, 它的定义域为 D ={(x , y )|x ≠0, y ≠0}.P 0(1, 2)为D 的内点, 故存在P 0的某一邻域U (P 0)⊂D , 而任何邻域都是区域, 所以U (P 0)是f (x , y )的一个定义区域, 因此23)2,1(),(lim)2,1(),(==→f y x f y x . 一般地, 求)(lim 0P f P P →时, 如果f (P )是初等函数, 且P 0是f (P )的定义域的内点, 则f (P )在点P 0处连续, 于是)()(lim 00P f P f P P =→. 例8 求xyxy y x 11lim )0 ,0(),(-+→. 解: )11()11)(11(lim 11lim )0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .多元连续函数的性质:性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.性质1就是说, 若f (P )在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切P ∈D , 有|f (P )|≤M ; 且存在P 1、P 2∈D , 使得f (P 1)=max{f (P )|P ∈D }, f (P 2)=min{f (P )|P ∈D },性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.§8. 2 偏导数一、偏导数的定义及其计算法对于二元函数z =f (x , y ), 如果只有自变量x 变化, 而自变量y 固定, 这时它就是x 的一元函数, 这函数对x 的导数, 就称为二元函数z =f (x , y )对于x 的偏导数.定义 设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量f (x 0+∆x , y 0)-f (x 0, y 0).如果极限xy x f y x x f x ∆-∆+→∆),(),(lim 00000 存在, 则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作00y y x x x z ==∂∂, 00y y x x x f ==∂∂, 00y y x x xz ==, 或),(00y x f x .例如 xy x f y x x f y x f x x ∆-∆+=→∆),(),(lim ),(0000000. 类似地, 函数z =f (x , y )在点(x 0, y 0)处对y 的偏导数定义为yy x f y y x f y ∆-∆+→∆),(),(lim 00000, 记作 00y y x x y z ==∂∂, 00y y x x y f ==∂∂, 00y y x x y z ==, 或f y (x 0, y 0).偏导函数: 如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作x z ∂∂, xf ∂∂, x z , 或),(y x f x . 偏导函数的定义式: x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim ),(0. 类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为y z ∂∂, yf ∂∂, z y , 或),(y x f y . 偏导函数的定义式: y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0.求xf ∂∂时, 只要把y 暂时看作常量而对x 求导数; 求y f ∂∂时, 只要把x 暂时看作常量而对y 求导数. 讨论: 下列求偏导数的方法是否正确?00),(),(00y y x x x x y x f y x f ===, 00),(),(00y y x x y y y x f y x f ===. 0]),([),(000x x x y x f dxd y x f ==, 0]),([),(000y y y y x f dy d y x f ==. 偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为xz y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim ),,(0, 其中(x , y , z )是函数u =f (x , y , z )的定义域的内点. 它们的求法也仍旧是一元函数的微分法问题. 例1 求z =x 2+3xy +y 2在点(1, 2)处的偏导数.解 y x x z 32+=∂∂, y x y z 23+=∂∂. 8231221=⋅+⋅=∂∂==y x x z,7221321=⋅+⋅=∂∂==y x y z .例2 求z =x 2sin 2y 的偏导数.解y x xz 2sin 2=∂∂, y x y z 2cos 22=∂∂. 例3 设)1,0(≠>=x x x z y , 求证: z yz x x z y x 2ln 1=∂∂+∂∂. 证 1-=∂∂y yx x z , x x y z y ln =∂∂.z x x x x xyx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-. 例4 求222z y x r ++=的偏导数.解 r x z y x x x r =++=∂∂222; ry z y x y y r =++=∂∂222. 例5 已知理想气体的状态方程为pV =RT (R 为常数),求证: 1-=∂∂⋅∂∂⋅∂∂pT T V V p . 证 因为V RT p =, 2V RT V p -=∂∂; p RT V =, pR T V =∂∂; R pV T =, R V p T =∂∂; 所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT RV p R V RT p T T V V p . 例5 说明的问题: 偏导数的记号是一个整体记号, 不能看作分子分母之商.二元函数z =f (x , y )在点(x 0, y 0)的偏导数的几何意义:f x (x 0, y 0)=[f (x , y 0)]x '是截线z =f (x , y 0)在点M 0处切线T x 对x 轴的斜率.f y (x 0, y 0) =[f (x 0, y )]y '是截线z =f (x 0, y )在点M 0处切线T y 对y 轴的斜率.偏导数与连续性: 对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f在点(0, 0)有, f x (0, 0)=0, f y (0, 0)=0, 但函数在点(0, 0)并不连续.提示:0)0 ,(=x f , 0) ,0(=y f ;0)]0 ,([)0 ,0(==x f dx d f x , 0)] ,0([)0 ,0(==y f dy d f y .当点P (x , y )沿x 轴趋于点(0, 0)时, 有00lim )0 ,(lim ),(lim 00)0,0(),(===→→→x x y x x f y x f ; 当点P (x , y )沿直线y =kx 趋于点(0, 0)时, 有22222022 )0,0(),(1lim lim k k x k x kx y x xy x kxy y x +=+=+→=→. 因此,),(lim )0,0(),(y x f y x →不存在, 故函数f (x , y )在(0, 0)处不连续.类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为y z ∂∂, yf ∂∂, z y , 或),(y x f y . 偏导函数的定义式: yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0. 二. 高阶偏导数 设函数z =f (x , y )在区域D 内具有偏导数),(y x f x z x=∂∂, ),(y x f y z y =∂∂, 那么在D 内f x (x , y )、f y (x , y )都是x , y 的函数. 如果这两个函数的偏导数也存在, 则称它们是函数z =f (x , y )的二偏导数. 按照对变量求导次序的为同有下列四个二阶偏导数如果函数z =f (x , y )在区域D 内的偏导数f x (x , y )、f y (x , y )也具有偏导数,则它们的偏导数称为函数z =f (x , y )的二阶偏导数. 按照对变量求导次序的不同有下列四个二阶偏导数),()(22y x f xz x z x xx =∂∂=∂∂∂∂, ),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂,),()(2y x f x y z y z x yx=∂∂∂=∂∂∂∂, ),()(22y x f y z y z y yy =∂∂=∂∂∂∂. 其中),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂, ),()(2y x f xy z y z x yx =∂∂∂=∂∂∂∂称为混合偏导数.22)(x z x z x ∂∂=∂∂∂∂, y x z x z y ∂∂∂=∂∂∂∂2)(, x y z y z x ∂∂∂=∂∂∂∂2)(, 22)(y z y z y ∂∂=∂∂∂∂. 同样可得三阶、四阶、以及n 阶偏导数.二阶及二阶以上的偏导数统称为高阶偏导数.例6 设z =x 3y 2-3xy 3-xy +1, 求22x z ∂∂、33x z ∂∂、x y z ∂∂∂2和y x z ∂∂∂2. 解 y y y x xz --=∂∂32233, x xy y x y z --=∂∂2392; 2226xy x z =∂∂, 2336y x z =∂∂; 196222--=∂∂∂y y x y x z , 196222--=∂∂∂y y x xy z .由例6观察到的问题: yx z x y z ∂∂∂=∂∂∂22 定理 如果函数z =f (x , y )的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续, 那么在该区域内这两个二阶混合偏导数必相等.类似地可定义二元以上函数的高阶偏导数. 例7 验证函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z . 证 因为)ln(21ln 2222y x y x z +=+=, 所以22y x x x z +=∂∂, 22y x y y z +=∂∂, 222222222222)()(2)(y x x y y x x x y x x z +-=+⋅-+=∂∂,222222222222)()(2)(y x y x y x y y y x y z +-=+⋅-+=∂∂. 因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z . 例8.证明函数r u 1=满足方程0222222=∂∂+∂∂+∂∂zu y u x u , 其中222z y x r ++=.证:32211r x r x r x r r x u -=⋅-=∂∂⋅-=∂∂, 52343223131r x r x r r x r x u +-=∂∂⋅+-=∂∂. 同理 5232231r y r y u +-=∂∂, 5232231r z r z u +-=∂∂. 因此)31()31()31(523523523222222rz r r y r r x r z u y u x u +-++-++-=∂∂+∂∂+∂∂ 033)(3352352223=+-=+++-=rr r r z y x r . 提示: 6236333223)()(rx r r x r r r x x r r x x x u ∂∂⋅--=∂∂⋅--=-∂∂=∂∂.§8. 3全微分及其应用一、全微分的定义根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )为函数对x 的偏增量, f x (x , y )∆x 为函数对x 的偏微分;f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )为函数)对y 的偏增量, f y (x , y )∆y 为函数对y 的偏微分.全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之.定义 如果函数z =f (x , y )在点(x , y )的全增量∆z = f (x +∆x , y +∆y )-f (x , y )可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分.可微与连续: 可微必连续, 但偏导数存在不一定连续.这是因为, 如果z =f (x , y )在点(x , y )可微, 则∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ),于是 0lim 0=∆→z ρ, 从而 ),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ. 因此函数z =f (x , y )在点(x , y )处连续.可微条件:定理1(必要条件)如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、y z ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为y yz x x z dz ∆∂∂+∆∂∂=. 证 设函数z =f (x , y )在点P (x , y )可微分. 于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A x y x f y x x f x =∆-∆+→∆),(),(lim, 从而偏导数x z ∂∂存在, 且A x z =∂∂. 同理可证偏导数y z ∂∂存在, 且B y z =∂∂. 所以y yz x x z dz ∆∂∂+∆∂∂=. 简要证明: 设函数z =f (x , y )在点(x , y )可微分. 于是有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有 f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A x x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim0, 从而x z ∂∂存在, 且A xz =∂∂. 同理y z ∂∂存在, 且B y z =∂∂. 所以y y z x x z dz ∆∂∂+∆∂∂=. 偏导数x z ∂∂、y z ∂∂存在是可微分的必要条件, 但不是充分条件. 例如,函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0, 但函数在(0, 0)不可微分, 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小.这是因为当(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x .定理2(充分条件)如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数.按着习惯, ∆x 、∆y 分别记作dx 、dy , 并分别称为自变量的微分, 则函数z =f (x , y )的全微分可写作dy yz dx x z dz ∂∂+∂∂=. 二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u =f (x , y , z ) 的全微分为dz zu dy y u dx x u du ∂∂+∂∂+∂∂=. 例1 计算函数z =x 2y +y 2的全微分.解 因为xy xz 2=∂∂, y x y z 22+=∂∂, 所以dz =2xydx +(x 2+2y )dy .例2 计算函数z =e xy 在点(2, 1)处的全微分.解 因为xy ye xz =∂∂, xy xe y z =∂∂,212e x z y x =∂∂==, 2122e y z y x =∂∂==, 所以 dz =e 2dx +2e 2dy .例3 计算函数yz e y x u ++=2sin 的全微分. 解 因为1=∂∂xu , yz ze y y u +=∂∂2cos 21, yz ye z u =∂∂, 所以 dz ye dy ze y dx du yz yz +++=)2cos 21(.*二、全微分在近似计算中的应用当二元函数z =f (x , y )在点P (x , y )的两个偏导数f x (x , y ) , f y (x , y )连续, 并且|∆x |, |∆y |都较小时, 有近似等式∆z ≈dz = f x (x , y )∆x +f y (x , y )∆y ,即 f (x +∆x , y +∆y ) ≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y .我们可以利用上述近似等式对二元函数作近似计算.例4 有一圆柱体, 受压后发生形变, 它的半径由20cm 增大到20. 05cm , 高度由100cu 减少到99cm . 求此圆柱体体积变化的近似值.解 设圆柱体的半径、高和体积依次为r 、h 和V , 则有V =π r 2h .已知r =20, h =100, ∆r =0. 05, ∆h =-1. 根据近似公式, 有∆V ≈dV =V r ∆r +V h ∆h =2πrh ∆r +πr 2∆h=2π⨯20⨯100⨯0. 05+π⨯202⨯(-1)=-200π (cm 3).即此圆柱体在受压后体积约减少了200π cm 3.例5 计算(1. 04)2. 02的近似值.解 设函数f (x , y )=x y . 显然, 要计算的值就是函数在x =1.04, y =2.02时的函数值f (1.04, 2.02). 取x =1, y =2, ∆x =0.04, ∆y =0.02. 由于f (x +∆x , y +∆y )≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y=x y +yx y -1∆x +x y ln x ∆y ,所以(1.04)2. 02≈12+2⨯12-1⨯0.04+12⨯ln1⨯0.02=1.08.例6 利用单摆摆动测定重力加速度g 的公式是224Tl g π=. 现测得单摆摆长l 与振动周期T 分别为l =100±0.1cm 、T =2±0.004s. 问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少?解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |, 则利用上述计算公式所产生的误差就是二元函数224Tl g π=的全增量的绝对值|Δg |. 由于|Δl |, |ΔT |都很小, 因此我们可以用dg 来近似地代替Δg . 这样就得到g 的误差为||||||T Tg l l g dg g ∆∂∂+∆∂∂=≈∆ T l Tg l g δδ⋅∂∂+⋅∂∂≤|||| )21(4322T l T l T δδπ+=, 其中δl 与δT 为l 与T 的绝对误差. 把l =100, T =2, δl =0.1, δT =0.004代入上式, 得g 的绝对误差约为 )004.02100221.0(4322⨯⨯+=πδg )/(93.45.022s cm ==π.002225.0210045.0=⨯=ππδg g. 从上面的例子可以看到, 对于一般的二元函数z =f (x, y ), 如果自变量x 、y 的绝对误差分别为δx 、δy , 即|Δx |≤δx , |Δy |≤δy ,则z 的误差||||||y yz x x z dz z ∆∂∂+∆∂∂=≈∆ ||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤y x y z x z δδ⋅∂∂+⋅∂∂≤||||; 从而得到z 的绝对误差约为y x z yz x z δδδ⋅∂∂+⋅∂∂=||||; z 的相对误差约为 yx z z y z z x z z δδδ∂∂+∂∂=||.§8. 4 多元复合函数的求导法则设z =f (u , v ), 而u =ϕ(t ), v =ψ(t ), 如何求dtdz ? 设z =f (u , v ), 而u =ϕ(x , y ), v =ψ(x , y ), 如何求x z ∂∂和y z ∂∂? 1. 复合函数的中间变量均为一元函数的情形定理1 如果函数u =ϕ(t )及v =ψ(t )都在点t 可导, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(t ), ψ(t )]在点t 可导, 且有dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=. 简要证明1: 因为z =f (u , v )具有连续的偏导数, 所以它是可微的, 即有dv vz du u z dz ∂∂+∂∂=. 又因为u =ϕ(t )及v =ψ(t )都可导, 因而可微, 即有dt dt du du =, dt dtdv dv =, 代入上式得 dt dt dv v z dt dt du u z dz ⋅∂∂+⋅∂∂=dt dtdv v z dt du u z )(⋅∂∂+⋅∂∂=, 从而 dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂=. 简要证明2: 当t 取得增量∆t 时, u 、v 及z 相应地也取得增量∆u 、∆v 及∆z . 由z =f (u , v )、u =ϕ(t )及v =ψ(t )的可微性, 有)(ρo v v z u u z z +∆∂∂+∆∂∂=∆)()]([)]([ρo t o t dt dv v z t o t dt du u z +∆+∆∂∂+∆+∆∂∂=)()()()(ρo t o vz u z t dt dv v z dt du u z +∆∂∂+∂∂+∆⋅∂∂+⋅∂∂=, t o t t o v z u z dt dv v z dt du u z t z ∆+∆∆∂∂+∂∂+⋅∂∂+⋅∂∂=∆∆)()()(ρ, 令∆t →0, 上式两边取极限, 即得dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=. 注:0)()(0)()()(lim )(lim 222200=+⋅=∆∆+∆⋅=∆→∆→∆dt dv dt du t v u o t o t t ρρρ. 推广: 设z =f (u , v , w ), u =ϕ(t), v =ψ(t ), w =ω(t ), 则z =f [ϕ(t), ψ(t ), ω(t )]对t 的导数为:dt dw w z dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂=. 上述dt dz 称为全导数.2. 复合函数的中间变量均为多元函数的情形定理2 如果函数u =ϕ(x , y ), v =ψ(x , y )都在点(x , y )具有对x 及y 的偏导数, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(x , y ), ψ(x , y )]在点(x , y )的两个偏导数存在, 且有 x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 推广: 设z =f (u , v , w ), u =ϕ(x , y ), v =ψ(x , y ), w =ω(x , y ), 则x w w z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂, y w w z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 讨论:(1)设z =f (u , v ), u =ϕ(x , y ), v =ψ(y ), 则=∂∂xz ?=∂∂y z ? 提示: x u u z x z ∂∂⋅∂∂=∂∂, dydv v z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂. (2)设z =f (u , x , y ), 且u =ϕ(x , y ), 则=∂∂xz ?=∂∂y z ? 提示: x f x u u f x z ∂∂+∂∂∂∂=∂∂, yf y u u f y z ∂∂+∂∂∂∂=∂∂. 这里x z ∂∂与x f ∂∂是不同的, xz ∂∂是把复合函数z =f [ϕ(x , y ), x , y ]中的y 看作不变而对x 的偏导数, x f ∂∂是把f (u , x , y )中的u 及y 看作不变而 对x 的偏导数. y z ∂∂与y f ∂∂也朋类似的区别.3.复合函数的中间变量既有一元函数, 又有多元函数的情形定理3 如果函数u =ϕ(x , y )在点(x , y )具有对x 及对y 的偏导数, 函数v =ψ(y )在点y 可导, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(x , y ), ψ(y )]在点(x , y )的两个偏导数存在, 且有x u u z x z ∂∂⋅∂∂=∂∂, dy dv v z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂.例1 设z =e u sin v , u =xy , v =x +y , 求x z ∂∂和y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ =e u sin v ⋅y +e u cos v ⋅1=e x y [y sin(x +y )+cos(x +y )],yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ =e u sin v ⋅x +e u cos v ⋅1=e xy [x sin(x +y )+cos(x +y )].例2 设222),,(z y xe z y xf u ++==, 而y x z sin 2=. 求x u ∂∂和y u ∂∂. 解 xz z f x f x u ∂∂⋅∂∂+∂∂=∂∂ y x ze xe z y x z y x sin 222222222⋅+=++++y x y xe y x x 2422sin 22)sin 21(2++++=. yz z f y f y u ∂∂⋅∂∂+∂∂=∂∂ y x ze ye z y x z y x cos 222222222⋅+=++++yx y x e y y x y 2422sin 4)cos sin (2+++=. 例3 设z =uv +sin t , 而u =e t , v =cos t . 求全导数dt dz . 解 tz dt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂= =v ⋅e t +u ⋅(-sin t )+cos t=e t cos t -e t sin t +cos t=e t (cos t -sin t )+cos t .例4 设w =f (x +y +z , xyz ), f 具有二阶连续偏导数, 求x w ∂∂及zx w ∂∂∂2. 解 令u =x +y +z , v =xyz , 则w =f (u , v ).引入记号: u v u f f ∂∂='),(1, vu v u f f ∂∂∂='),(12; 同理有2f ',11f '',22f ''等. 21f yz f x v v f x u u f x w '+'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂, z f yz f y z f f yz f z z x w ∂'∂+'+∂'∂='+'∂∂=∂∂∂221212)( 2222121211f z xy f yz f y f xy f ''+''+'+''+''= 22221211)(f z xy f y f z x y f ''+'+''++''=. 注: 1211111f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂, 2221222f xy f zv v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂. 例5 设u =f (x , y )的所有二阶偏导数连续, 把下列表达式转换成极坐标系中的形式: (1)22)()(y u x u ∂∂+∂∂; (2)2222y u x u ∂∂+∂∂. 解 由直角坐标与极坐标间的关系式得u =f (x , y )=f (ρcos θ, ρsin θ)=F (ρ, θ),其中x =ρcos θ, y =ρsin θ, 22y x +=ρ, xyarctan =θ. 应用复合函数求导法则, 得x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρy u x u ∂∂-∂∂=ρθθθρsin cos y u u ∂∂-∂∂=, y u y u y u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρx u y u ∂∂+∂∂=ρθθθρcos sin ∂∂+∂∂=u u . 两式平方后相加, 得 22222)(1)()()(θρρ∂∂+∂∂=∂∂+∂∂u u y u x u . 再求二阶偏导数, 得xx u x x u x u ∂∂⋅∂∂∂∂+∂∂⋅∂∂∂∂=∂∂θθρρ)()(22 θρθθθρρcos )sin cos (⋅∂∂-∂∂∂∂=u u ρθρθθθρθsin )sin cos (⋅∂∂-∂∂∂∂-u u 22222222sin cos sin 2cos ρθθρθθθρθρ∂∂+∂∂∂-∂∂=u u u ρθρρθθθ22sin cos sin 2∂∂+∂∂+u u . 同理可得2222222222cos cos sin 2sin ρθθρθθθρθρ∂∂+∂∂∂+∂∂=∂∂u u u y u ρθρρθθθ22cos cos sin 2∂∂+∂∂-u u . 两式相加, 得22222222211θρρρρ∂∂++∂∂=∂∂+∂∂u u y u x u ])([1222θρρρρρ∂∂+∂∂∂∂=u u .全微分形式不变性: 设z =f (u , v )具有连续偏导数, 则有全微分dv vz du u z dz ∂∂+∂∂=. 如果z =f (u , v )具有连续偏导数, 而u =ϕ(x , y ), v =ψ(x , y )也具有连续偏导数, 则dy yz dx x z dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=)()(dy y v dx x v v z dy y u dx x u u z ∂∂+∂∂∂∂+∂∂+∂∂∂∂=dv vz du u z ∂∂+∂∂=. 由此可见, 无论z 是自变量u 、v 的函数或中间变量u 、v 的函数, 它的全微分形式是一样的. 这个性质叫做全微分形式不变性.例6 设z =e u sin v , u =x y , v =x +y , 利用全微分形式不变性求全微分.解 dv vz du u z dz ∂∂+∂∂== e u sin vdu + e u cos v dv = e u sin v (y dx +x dy )+ e u cos v (dx +dy )=( ye u sin v + e u cos v )dx +(xe u sin v + e u cos v )dy=e xy [y sin(x +y )+cos(x +y )]dx + e xy [x sin(x +y )+cos(x +y )]dy .§8. 5 隐函数的求导法则一、一个方程的情形隐函数存在定理1设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. 求导公式证明: 将y =f (x )代入F (x , y )=0, 得恒等式F (x , f (x ))≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -=. 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值.解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ). y x F F dx dy y x -=-=, 00==x dx dy ; 332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=, 1022-==x dx y d . 隐函数存在定理还可以推广到多元函数. 一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数.隐函数存在定理2设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂. 公式的证明: 将z =f (x , y )代入F (x , y , z )=0, 得F (x , y , f (x , y ))≡0,将上式两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设x 2+y 2+z 2-4z =0, 求22x z ∂∂.解 设F (x , y , z )= x 2+y 2+z 2-4z , 则F x =2x , F y =2z -4,zx z x F F x z z x -=--=-=∂∂2422, 3222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂. 二、方程组的情形在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=, 22y x x v +=. 事实上, xu -yv =0 ⇒u y xv =⇒1=⋅+u y x x yu ⇒22y x y u +=, 2222yx x y x y y x v +=+⋅=. 如何根据原方程组求u , v 的偏导数?隐函数存在定理3隐函数存在定理3设F (x , y , u , v )、G (x , y , u , v )在点P (x 0, y 0, u 0, v 0)的某一邻域内具有对各个变量的连续偏导数, 又F (x 0, y 0, u 0, v 0)=0, G (x 0, y 0, u 0, v 0)=0, 且偏导数所组成的函数行列式:vG u Gv F u F v u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),( 在点P (x 0, y 0, u 0, v 0)不等于零, 则方程组F (x , y , u , v )=0, G (x , y , u , v )=0在点P (x 0, y 0, u 0, v 0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数u =u (x , y ), v =v (x , y ), 它们满足条件u 0=u (x 0, y 0), v 0=v (x 0, y 0), 并有vu v u v x v xG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1,vu v u v y v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1, vu v u y u y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.隐函数的偏导数:设方程组F (x , y , u , v )=0, G (x , y , u , v )=0确定一对具有连续偏导数的二元函数u =u (x , y ), v =v (x , y ), 则偏导数x u ∂∂, x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定; 偏导数y u ∂∂, y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定. 例3 设xu -yv =0, yu +xv =1, 求x u ∂∂, x v ∂∂, y u ∂∂和yv ∂∂. 解 两个方程两边分别对x 求偏导, 得关于x u ∂∂和xv ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v xu y x v y x u x u , 当x 2+y 2 ≠0时, 解之得22y x yv xu x u ++-=∂∂, 22y x xv yu x v +-=∂∂.两个方程两边分别对x 求偏导, 得关于y u ∂∂和yv ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x , 当x 2+y 2 ≠0时, 解之得22y x yu xv y u +-=∂∂, 22y x yv xu y v ++-=∂∂. 另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx , 即⎩⎨⎧--=+-=-vdxudy xdv ydu udx vdy ydv xdu . 解之得 dy y x yu xv dx y x yv xu du 2222+-+++-=, dy y x yv xu dx y x xv yu dv 2222++-+-=. 于是 22y x yv xu x u ++-=∂∂, 22y x yu xv y u +-=∂∂,22y x xv yu x v +-=∂∂, 22y x yv xu y v ++-=∂∂. 例4 设函数x =x (u , v ), y =y (u , v )在点(u , v )的某一领域内连续且有连续偏导数, 又0),(),(≠∂∂v u y x . (1)证明方程组⎩⎨⎧==),(),(v u y y v u x x 在点(x , y , u , v )的某一领域内唯一确定一组单值连续且有连续偏导数的反函数u =u (x , y ), v =v (x , y ).(2)求反函数u =u (x , y ), v =v (x , y )对x , y 的偏导数.解 (1)将方程组改写成下面的形式。

数学讲座稿及课件模板

数学讲座稿及课件模板

讲座时间:2023年4月15日讲座地点:XX大学数学学院报告厅一、讲座引言尊敬的各位老师、亲爱的同学们:大家好!今天,我们聚集在这里,共同探讨一个永恒的话题——数学。

数学,作为人类智慧的结晶,贯穿了人类文明的发展历程。

从古至今,数学不仅是一门学科,更是一种文化的传承。

今天,我将带领大家穿越时空,一起领略数学之美,感受数学的魅力。

二、讲座内容(一)古代数学的辉煌1. 古埃及数学同学们,你们知道吗?早在公元前2000年,古埃及人就已经掌握了加减乘除等基本运算,并且有了完善的几何知识。

他们用数学来测量土地、建造金字塔,为人类文明的发展做出了巨大贡献。

2. 巴比伦数学在古埃及的同时,古巴比伦人也发展了自己的数学。

他们用六十进制来表示数字,并且掌握了三角函数的基本知识。

这些数学成就,为后来的数学发展奠定了基础。

3. 希腊数学古希腊数学家欧几里得创立了《几何原本》,奠定了几何学的基础。

阿基米德则研究了圆周率、浮力等数学问题,为后世留下了宝贵的数学遗产。

(二)中世纪数学的发展1. 伊斯兰数学在中世纪,阿拉伯人将古希腊、古印度等地的数学知识传入欧洲。

他们在代数、三角学等领域取得了显著成就,为欧洲数学的复兴奠定了基础。

2. 欧洲数学的复兴14世纪,欧洲数学开始复兴。

法国数学家费马、意大利数学家卡尔达诺等人为代数的发展做出了巨大贡献。

同时,德国数学家莱布尼茨发明了微积分,使数学进入了一个崭新的时代。

(三)现代数学的辉煌1. 微积分的发展17世纪,牛顿和莱布尼茨发明了微积分,为自然科学的发展提供了强大的工具。

微积分的创立,使数学与物理学、天文学等领域紧密相连。

2. 概率论与数理统计18世纪,概率论与数理统计开始发展。

这些数学分支在保险、金融等领域得到了广泛应用。

3. 20世纪数学的突破20世纪,数学取得了许多突破性成果。

哥德尔的不完备性定理、图灵机的发明等,使数学成为一门具有无限潜力的学科。

三、讲座总结同学们,数学之美无处不在。

高等数学讲座

高等数学讲座

y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如,x2 y2 a2.
马克思:一门科学, 只有当它成功地运用数学时,才能 达到真正完善的地步 .
2. 学数学最好的方式是做数学.
华罗庚: 聪明在于勤奋 , 天才在于积累 . 学而优则用 , 学而优则创 .
要求:
1.老师:认真、尽职,以身作则,教的过程也 是学的过程.
2.同学:课前适当预习,上课时请关闭手机认真 听课,课后及时复习.
一. 基本概念
1. 集合
集合: 具有某种特定性质的事物的总体. 元素: 组成这个集合的事物.
数集是常见的集合. 自然数 (natural numbers) N {0,1, ,n, } 正整数 (positive integers) N {1,2, ,n, }
整 数 (int egers) Z { ,n, ,1,0,1, ,n, }
oa
b
x
闭区间 ( Closed Interval ) [a,b] {x | a x b}
oa
b
x
半 开 半 闭 区 间[a, b) { x a x b}
oa
b
x
半 开 半 闭 区 间(a, b] { x a x b}
oa
b
x
以 上 这 四 种 区 间 称 为 有限 区 间 b a称为区间的长度

高三数学优秀生讲课稿范文

高三数学优秀生讲课稿范文

高三数学优秀生讲课稿范文同学们好,今天我要向大家讲解一个非常重要的数学知识点——一元二次方程的求解方法。

一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c是已知的常数,且a ≠ 0。

我们的目标是求出方程的解x。

首先,我们可以使用因式分解法来解一元二次方程。

具体步骤如下:1. 将方程化简为(a₁x+b₁)(a₂x+b₂)=0的形式;2. 根据乘积为0的性质,得出(a₁x+b₁)=0或(a₂x+b₂)=0;3. 分别求解出这两个一元一次方程,即可得到最终的解。

其次,我们还可以使用配方法来解一元二次方程。

配方法的步骤如下:1. 将方程化简为ax²+bx+c=0的形式;2. 根据完全平方公式,将二次项进行配方,得到a(x + m)² + n = 0;3. 通过移项、开方和化简,求解出x的值。

最后,我们还可以使用求根公式来解一元二次方程。

求根公式的表达式是:x = [-b ± √(b²-4ac)] / 2a。

需要注意的是,当(b²-4ac)为负数时,方程没有实数根,我们称之为无解;而当(b²-4ac)为零时,方程有唯一的实数根,我们称之为重根;当(b²-4ac)为正数时,方程有两个不相等的实数根。

为了更好地掌握求解一元二次方程的方法,我们需要进行大量的练习。

通过实践,我们会更熟悉这些方法,并学会应用它们解决实际问题。

同学们,一元二次方程作为高中数学的重要内容,掌握好它们的解题方法对我们日后的学习和工作都有很大的帮助。

希望大家在学习数学的过程中保持积极的态度,勤加练习,不断提升自己的数学能力。

以上就是我为大家讲解的一元二次方程的求解方法,谢谢!。

高数基础讲义-刘喜波

高数基础讲义-刘喜波

第一讲函数、极限与连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立。

数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:1sin lim 0=→x x x ,e xx x =+∞→)11(lim 。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性、单调性、周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念;5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系;6、掌握极限的性质及四则运算法则;7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;9、理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型;10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

第一节函数一、函数的概念W y x D ∈→∍;D x x f y ∈=)(,函数的定义涉及:定义域,值域,对应法则(函数关系).要注意决定函数的两个要素(值域W 由两要素确定):(1)定义域D (2)对应法则f ;二、函数的性态——有界性,单调性,周期性,奇偶性1、有界性设函数()y f x =在区间I 上有定义,如果存在正数M ,对于任意x I ∈,恒有|()|f x M ≤,则称()y f x =在区间I 上有界;否则,称()y f x =在I 上无界.若存在正数1M ,对任意x I ∈,恒有1()f x M ≤,则称()y f x =在I 上有上界;若存在正数2M ,对任意x I ∈,恒有2()f x M ≥,则称()y f x =在I 上有下界.易知,()y f x =在I 上有界的充要条件是它在I 上既有上界又有下界.①几个常见的有界函数.在区间(,)-∞+∞上,有:1|sin |≤x ,1|cos |≤x ,π|arctan |2x <,|arccot |x π<,(或π<<cot 0arc ).在[-1,1]上,有:π|arcsin |2x ≤,|arccos |x π≤(或0arc cos x π≤≤).注:函数)(x f y =有界或无界是相对于某个区间而言的;例如:1y x =在区间(0,1)内无界,但在区间1,18⎡⎤⎢⎥⎣⎦上是有界的.②判别方法:方法一:直接法:定义本身就是判定)(x f 是否有界的一种有效方法。

大学数学课件:高等数学完整PPT讲义

大学数学课件:高等数学完整PPT讲义

多元函数和偏微分方程
探索多元函数和偏微分方程的特性和解法。研究多元函数的极限、连续性, 并学习偏导数和偏微分方程的求解方法。
向量分析和线性代数基础
深入研究向量分析和线性代数的基本概念和技巧。掌握向量的运算法则、曲线和曲面的参数方程,以及 线性方程组的解法。
大学数学课件:高等数学 完整PPT讲义
欢迎来到我们的大学数学课件!这是一个完整的PPT讲义,旨在帮助学生深 入理解高等数学的关键概念和技巧。
高等数学课程概述
探索高等数学的广阔世界。从数学的起源和发展,到各个数学领域的实际应用。了解数学对科学、工程 和经济的重要性。
ቤተ መጻሕፍቲ ባይዱ
数学符号和思维导图
掌握数学中常用的符号和记号。了解符号的含义和用法,以便更好地理解和 推导数学公式。使用思维导图来整理和呈现复杂的数学概念。
微积分基础知识
深入研究微积分的基本原理和概念。包括导数、积分和微分方程等重要概念, 以及它们在实际中的应用。
微分学和积分学
学习微分学和积分学的高级概念。探索微分学的极限、连续性和微分法则, 以及积分学的定积分、不定积分和积分方法。
常微分方程和级数
了解常微分方程和级数的基本理论和解法。研究一阶和高阶常微分方程的解析解和数值解法,以及级数 的收敛性和求和方法。

高等数学说课5篇

高等数学说课5篇

高等数学说课5篇第一篇:高等数学说课一、课程地位高等数学课程在高职院校课程建设体系中占有特殊重要的地位,随着社会经济的不断发展,高等数学的应用已渗透到自然科学、工程技术、生命科学、社会科学、经济管理等众多领域,成为解决各种实际问题的工具,特别是在经贸领域的应用已日益广泛。

高职院校各专业主要培养高等技术应用型专业人才,高等数学课程是一门十分重要的公共基础课,对人才培养质量起着举足轻重的作用,已成为处理经济技术领域专业问题的关键。

二、课程性质、目的和任务1.课程性质:高等数学是高等院校工科及经管本科各专业最重要的基础课之一,其内容历史悠久,在思想和方法上有显著的特点,具有向学生传授有关连续变量的数学知识、培养学生解决问题的能力及提高学生数学素质的重要作用,为学习后续课程做好准备。

高等数学课程的作用是其它课程所不能替代的。

2.课程目的和任务:通过本课程的学习,使学生掌握有关一元函数和多元函数微积分、级数、常微分方程的概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑思维能力、空间想象能力、计算能力、综合运用知识分析解决问题的能力以及新数学知识的自学能力。

三、课程教学内容及概况:针对高职学生的特点,以及各专业后续课程学习的需求,我们选择高等数学的教学内容为第一章函数、极限、连续;第二章一元函数微分法;第三章一元函数积分法;第四章多元函数微分法;第五章多元函数积分法;第六章无穷级数;第七章常微分方程。

所用教材是2008年西南交通大学出版社出版的《高等数学》,连续在第一学年中的第一和第二学期开课,计划课时数为80节,学分为5个。

三、课程教学基本情况1.课堂讲授:在讲授的时候,我们尽量采取小班教学;采用黑板加粉笔的课堂讲授与课件配合使用,使学生从中学到本课程的基本内容,并学会逻辑推理的方法。

在课程实施方面,我们一直在摸索提高,从过去的重视单纯知识的传授,转变为学生能力的培养;从重视理论推导技能的强化,转变为实际应用训练数学思想的培养;从以教师的讲授为主,转变为学生学习主动性的培养。

高三数学教师讲课稿范文

高三数学教师讲课稿范文

高三数学教师讲课稿范文同学们,大家好!今天,我们将开始高三数学的课程,首先我们来复习一下上学期学过的内容。

上学期我们学习了函数的概念及其性质,掌握了函数的基本运算和常见函数的性质,还学习了一些高阶函数和反函数的知识。

在复习函数的基础上,我们将继续学习一些与函数密切相关的内容,比如函数的图像和函数的应用。

我们都知道,函数的图像是描述函数变化规律的一种形象化的表示方式。

通过观察函数图像,我们可以了解函数的单调性、极值、零点等重要性质。

在今天的课程中,我们将重点学习如何根据函数的解析式画出函数的图像,并通过图像来分析函数的性质。

首先,我们来学习如何画出简单函数的图像。

对于一元一次函数 y = kx + b,我们可以根据 k 和 b 的值来确定直线的斜率和截距,并通过连接两个点来画出直线的图像。

而对于二次函数y = ax^2 + bx + c,我们可以根据 a、b 和 c 的值来确定抛物线的开口方向、顶点和与坐标轴的交点等重要信息。

接下来,我们将学习如何画出一些特殊函数的图像,比如绝对值函数、分段函数和反比例函数等。

对于绝对值函数 y = |x|,我们需要注意函数在原点处的定义不连续性和两侧的单调性。

对于分段函数,我们需要根据不同区间的函数表达式来画出对应的图像。

而反比例函数 y = 1/x 在 x=0 处有一个垂直渐近线,并且函数图像会随着 x 的增大或减小而逼近坐标轴。

最后,我们将学习如何通过函数图像来分析函数的性质。

通过观察函数的图像,我们可以判断函数的单调性、极值点、零点和对称轴等重要性质。

同时,我们还可以利用函数图像来解决实际问题,比如通过图像分析物体的运动规律、确定函数的定义域和值域等。

同学们,请记住,数学是一门实践性很强的学科,只有通过大量的练习和实际应用,我们才能更好地掌握数学知识。

在接下来的学习中,我希望大家能够积极参与课堂讨论,勤做习题,提高数学思维和问题解决能力。

今天的课程就到这里,谢谢大家的聆听!。

学生高数演讲稿范文

学生高数演讲稿范文

大家好!我是XX班的学生,今天我演讲的主题是“高数,我的学习之路”。

首先,我想谈谈我对高数的认识。

高数,全称高等数学,是大学理工科学生必修的一门基础课程。

它包括微积分、线性代数、概率论与数理统计等内容,是培养我们逻辑思维能力、抽象思维能力和解决实际问题的能力的重要学科。

然而,对于很多同学来说,高数却是一门令人望而生畏的学科。

究其原因,一方面是因为高数概念抽象,公式繁多,不易理解;另一方面是因为很多同学在高中时期没有打好基础,导致大学高数学习困难重重。

那么,如何学好高数呢?以下是我的一些心得体会:一、树立信心,端正态度。

高数是一门需要长期积累的学科,我们要相信自己有能力学好它。

同时,我们要端正学习态度,把高数当作一门重要的课程来对待。

二、夯实基础,循序渐进。

高数学习要注重基础知识的学习,对于概念、公式、定理要熟练掌握。

在学习过程中,我们要遵循由浅入深、循序渐进的原则,逐步提高自己的数学素养。

三、勤于练习,巩固提高。

高数学习离不开大量的练习。

我们要通过做题来巩固所学知识,提高解题能力。

在练习过程中,要注重总结规律,提高解题速度和准确率。

四、学会归纳,触类旁通。

高数知识体系庞大,我们要学会归纳总结,将知识点串联起来,形成知识网络。

这样,在遇到问题时,我们可以触类旁通,迅速找到解决方法。

五、善于交流,共同进步。

学习高数的过程中,我们要学会与同学、老师交流心得,共同探讨问题。

通过交流,我们可以发现自己的不足,取长补短,共同进步。

回顾我的高数学习之路,我深知其中的艰辛。

但是,在老师和同学们的帮助下,我逐渐克服了困难,取得了进步。

以下是我的一些感悟:1. 坚持不懈。

学习高数是一个漫长的过程,我们要有耐心,持之以恒。

2. 主动请教。

遇到问题不要害怕,要勇于向老师、同学请教,及时解决问题。

3. 学以致用。

将所学知识运用到实际问题中,提高自己的实际操作能力。

4. 保持乐观。

学习过程中难免会遇到挫折,我们要保持乐观的心态,相信自己能够克服困难。

高中数学讲课十分钟稿范文

高中数学讲课十分钟稿范文

高中数学讲课十分钟稿范文
十分钟数学讲课稿
大家好,今天我将为大家讲解一道高中数学的题目。

这道题目是关于函数的,希望大家能够认真听讲。

题目是这样的:已知函数f(x) = x^2 - 2x + 1,求f(3)的值。

我们首先来解析这道题目。

题目给出了一个函数f(x),它的表达式是x^2 - 2x + 1。

我们需要求解f(3)的值,也就是将x代入函数中,求出函数在x = 3时的取值。

那么我们先来计算一下f(3)的值。

把x = 3代入函数f(x)中,我们得到f(3) = 3^2 - 2*3 + 1。

进行一下计算,可得f(3) = 9 - 6 + 1 = 4。

所以,答案是f(3) = 4。

这就是我们要求解的结果。

接下来,我们来分析一下这道题的思路。

对于这种题目,我们需要将给定的x代入函数中,计算得到函数的值。

因此,首先需要熟练掌握如何计算函数的值。

对于括号中所给的x值,将其代入表达式中,依次计算并化简,即可得到函数在该x值的取值。

在解题的过程中,我们还需要注意一些运算法则,尤其是乘法和加法的运算规律。

只有熟练掌握了这些规律,我们才能够在计算中避免错误,确保得到正确的答案。

以上就是今天我为大家讲解的高中数学题目,希望大家可以通过这个例子,更好地理解和掌握函数的概念和计算方法。

谢谢大家的聆听!。

高等数学》授课教案提纲

高等数学》授课教案提纲

《高等数学》授课教案提纲一、前言1.1 课程简介1.2 教学目标1.3 教学方法二、极限与连续2.1 极限的概念2.2 极限的性质2.3 极限的计算2.4 连续函数的概念2.5 连续函数的性质三、导数与微分3.1 导数的概念3.2 导数的计算3.3 高阶导数3.4 隐函数求导3.5 微分的基本法则四、积分与不定积分4.1 积分的基本概念4.2 积分的计算4.3 不定积分的基本性质4.4 不定积分的计算4.5 定积分的概念与性质五、定积分的应用5.1 面积计算5.2 体积计算5.3 质心、转动惯量计算5.4 函数的最大值与最小值5.5 柯西中值定理六、向量与空间解析几何6.1 向量的概念与运算6.2 空间解析几何基础6.3 线性方程组与矩阵6.4 向量的投影与叉乘6.5 空间几何图形的基本性质七、多元函数微分法7.1 多元函数的概念7.2 多元函数的微分7.3 偏导数的概念与计算7.4 全微分与高阶偏导数7.5 多元函数的极值及其判定八、重积分8.1 一重积分的基本概念与计算8.2 二重积分的基本概念与计算8.3 三重积分的基本概念与计算8.4 重积分的应用8.5 变限积分的极限九、级数9.1 级数的基本概念9.2 收敛级数及其性质9.3 级数的收敛性判定9.4 发散级数及其性质9.5 傅里叶级数十、常微分方程10.1 微分方程的基本概念10.2 微分方程的解法10.3 一阶微分方程的解法10.4 二阶微分方程的解法10.5 常微分方程的应用十一、线性代数初步11.1 向量空间与线性变换11.2 矩阵的基本运算11.3 行列式及其应用11.4 线性方程组的基本解法11.5 特征值与特征向量十二、概率论与数理统计12.1 随机试验与样本空间12.2 随机变量及其分布12.3 期望与方差12.4 大数定律与中心极限定理12.5 数理统计的基本方法十三、数值计算方法13.1 数值误差与稳定性13.2 插值法与函数逼近13.3 数值微积分13.4 线性方程组的数值解法13.5 非线性方程与方程组的数值解法十四、复变函数14.1 复数的基本概念14.2 复变函数的基本性质14.3 复变函数的积分14.4 复变函数的级数14.5 解析函数与留数定理十五、实变函数与泛函分析15.1 实函数的基本性质15.2 积分与微分的基本定理15.3 泛函与赋范线性空间15.4 泛函分析的基本概念15.5 赋范线性空间中的算子理论重点和难点解析一、极限与连续重点:极限的性质、极限的计算、连续函数的性质。

高数课前五分钟演讲稿范文

高数课前五分钟演讲稿范文

大家好!今天我演讲的主题是“高数课前五分钟”。

我们都知道,高数是一门难度较大的学科,对于我们来说,课前五分钟显得尤为重要。

下面,我将从以下几个方面来谈谈高数课前五分钟的重要性。

一、回顾与预习1. 回顾高数课前五分钟,我们可以回顾一下上一节课所学的内容。

这样有助于巩固所学知识,加深对知识的理解。

回顾过程中,我们可以将重点、难点、易错点等标记出来,以便在课堂上更加关注。

2. 预习预习是提高学习效率的关键。

在高数课前五分钟,我们可以预习一下本节课将要学习的内容。

这样,在课堂上我们就能更快地跟上老师的思路,更好地理解新知识。

二、调整心态,做好听课准备1. 保持良好的心态高数课往往难度较大,有些同学可能会感到焦虑、紧张。

在高数课前五分钟,我们要调整好自己的心态,相信自己能够掌握这门课程。

良好的心态有助于提高学习效果。

2. 做好听课准备在高数课前五分钟,我们要做好听课准备,例如准备好笔记本、笔等学习工具。

同时,调整好自己的坐姿,保持专注,以便更好地听课。

三、互动交流,共同进步1. 发表自己的疑问在高数课前五分钟,我们可以提出自己在预习过程中遇到的问题。

这样,在课堂上就能及时解决这些问题,提高学习效果。

2. 分享学习心得在学习高数的过程中,我们可能会总结出一些适合自己的学习方法。

在高数课前五分钟,我们可以与同学们分享自己的学习心得,互相借鉴,共同进步。

四、培养自主学习能力1. 自主预习高数课前五分钟,我们要培养自主预习的能力。

通过预习,我们可以更好地掌握课堂内容,提高学习效率。

2. 自主复习课后,我们要利用高数课前五分钟进行自主复习。

这样,我们可以巩固所学知识,查漏补缺。

五、提高课堂效率1. 专注听课在高数课前五分钟,我们要提高自己的专注力,认真听讲。

这样,我们才能更好地吸收知识,提高课堂效率。

2. 积极参与课堂互动在课堂上,我们要积极参与互动,勇于提问、回答问题。

这样,我们既能提高自己的思维能力,又能与同学们共同进步。

高等数学》授课教案提纲

高等数学》授课教案提纲

《高等数学》授课教案提纲一、导言1. 课程简介:介绍高等数学的课程性质、地位和作用,以及它在自然科学、工程技术等领域中的应用。

2. 教学目标:明确本节课的学习目标和预期效果,激发学生的学习兴趣和动力。

二、教学内容1. 教学内容概述:概括本节课的主要内容,包括理论知识、方法技巧等。

2. 知识点讲解:详细阐述本节课的核心知识点,包括定义、定理、公式、例题等。

三、教学过程1. 教学方法:介绍本节课所采用的教学方法,如讲授法、互动法、案例分析法等。

2. 教学步骤:明确本节课的教学流程,包括导入、讲解、练习、讨论、总结等环节。

四、课堂练习与作业1. 课堂练习:设计具有针对性的课堂练习题,帮助学生巩固所学知识。

2. 课后作业:布置适量的课后作业,让学生在课后巩固复习所学内容。

五、教学评价1. 评价方法:采用课堂表现、作业完成情况、考试成绩等多种方式进行综合评价。

2. 评价指标:关注学生的知识掌握程度、思维能力、创新能力等方面的发展。

六、教学资源1. 教材和参考书:列出本节课所需的主要教材和参考书,方便学生自主学习。

2. 教学工具:介绍本节课所使用的教学工具,如PPT、黑板、教具等。

七、教学难点与重点1. 难点分析:分析本节课学生可能遇到的难点问题,提前做好准备。

2. 重点提示:指出本节课的关键知识点,提醒学生重点关注。

八、教学互动1. 课堂提问:设计相关问题,鼓励学生积极思考和参与课堂讨论。

2. 小组合作:组织学生进行小组讨论或合作完成任务,提高学生的团队协作能力。

九、教学拓展1. 相关知识:介绍与本节课内容相关的拓展知识,拓宽学生的知识视野。

2. 实践应用案例:分享实际案例,让学生了解高等数学在现实生活中的应用。

十、教学反思1. 教学效果评估:课后对教学效果进行自我评估,总结课堂教学的优点和不足。

2. 学生反馈:关注学生的学习反馈,了解学生的需求和改进意见,不断优化教学方法。

十一、教学案例分析1. 案例选取:选择具有代表性的高等数学案例,用于说明和解释相关概念、定理或解题方法。

高等数学大学讲课教案范文

高等数学大学讲课教案范文

授课班级:XX级XX班授课时间:第X周星期X 第X节授课教师:XXX一、教学目标1. 知识与能力(1)理解微积分基本定理的内涵,掌握牛顿-莱布尼茨公式。

(2)了解定积分的应用,能够运用定积分解决实际问题。

2. 过程与方法(1)通过实例,引导学生探究微积分基本定理的发现过程。

(2)通过课堂练习,培养学生运用定积分解决实际问题的能力。

3. 情感态度与价值观(1)激发学生对数学学习的兴趣,培养严谨的学术态度。

(2)引导学生认识到数学在各个领域的广泛应用,提高学生的社会责任感。

二、教学重点与难点1. 教学重点(1)微积分基本定理的内涵与牛顿-莱布尼茨公式。

(2)定积分的应用。

2. 教学难点(1)微积分基本定理的证明。

(2)定积分在实际问题中的应用。

三、教学过程1. 导入新课(1)回顾定积分的概念和性质。

(2)提出问题:如何计算曲边梯形的面积?2. 讲授新课(1)微积分基本定理的发现过程通过实例,引导学生探究微积分基本定理的发现过程,使学生理解牛顿-莱布尼茨公式的来源。

(2)微积分基本定理的证明简要介绍微积分基本定理的证明方法,使学生了解证明过程。

(3)牛顿-莱布尼茨公式讲解牛顿-莱布尼茨公式的含义,并举例说明如何运用公式计算定积分。

(4)定积分的应用介绍定积分在几何、物理、经济等领域的应用,引导学生运用定积分解决实际问题。

3. 课堂练习(1)计算定积分,巩固所学知识。

(2)运用定积分解决实际问题,提高学生的实际应用能力。

4. 课堂小结回顾本节课所学内容,强调重点和难点。

5. 布置作业(1)完成课后习题,巩固所学知识。

(2)收集生活中与定积分相关的问题,进行实际应用研究。

四、教学手段1. 多媒体课件利用多媒体课件展示教学内容,提高教学效果。

2. 课堂练习题通过课堂练习题,巩固所学知识,提高学生的实际应用能力。

3. 实例分析通过实例分析,引导学生运用所学知识解决实际问题。

五、教学反思本节课通过实例引导,使学生理解微积分基本定理的内涵,掌握牛顿-莱布尼茨公式,并了解定积分的应用。

大学数学通俗讲解教案模板

大学数学通俗讲解教案模板

课程名称:高等数学授课对象:大学本科生课时安排:2课时教学目标:1. 使学生理解并掌握基本的高等数学概念和原理。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的逻辑思维和数学表达能力。

教学重点:1. 高等数学的基本概念和性质。

2. 常用数学公式的推导和应用。

3. 数学问题解决的基本方法。

教学难点:1. 高等数学概念的理解和运用。

2. 复杂数学问题的解决。

教学过程:一、导入1. 介绍高等数学的重要性及其在各个学科领域的应用。

2. 提出本节课要讲解的内容,激发学生的学习兴趣。

二、基本概念讲解1. 展示高等数学的基本概念,如极限、导数、积分等。

2. 结合实例,解释每个概念的含义和特点。

3. 鼓励学生提问,及时解答学生疑问。

三、公式推导与应用1. 以PPT形式展示常用数学公式的推导过程。

2. 结合实例,讲解公式的应用方法和技巧。

3. 布置练习题,让学生巩固所学知识。

四、问题解决方法讲解1. 介绍数学问题解决的基本步骤,如分析问题、建立模型、求解等。

2. 通过实例,展示如何运用数学方法解决实际问题。

3. 鼓励学生独立思考,尝试解决练习题。

五、课堂小结1. 总结本节课所学内容,强调重点和难点。

2. 提出课后作业,要求学生巩固所学知识。

六、课后作业1. 完成课后习题,加深对所学知识的理解。

2. 查阅相关资料,了解高等数学在各个领域的应用。

3. 参与讨论,分享学习心得。

教学评价:1. 课堂表现:观察学生在课堂上的学习态度、参与度和互动情况。

2. 作业完成情况:检查学生课后作业的完成质量和进度。

3. 期末考试:通过考试检验学生对本课程知识的掌握程度。

教学资源:1. 教材:《高等数学》2. 辅助教材:相关辅导书籍、网络资源等3. 教学工具:PPT、黑板、多媒体设备等备注:1. 根据学生实际情况,调整教学内容和进度。

2. 鼓励学生积极参与课堂讨论,提高课堂氛围。

3. 注重培养学生的数学思维能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 多元函数及其微分法教学目的:1掌握多元函数的极限与连续;2多元函数的求导方法;3多元函数微分在几何上的应用;4多元函数的极值教学重点:多元函数的极限与连续、多元函数的求导方法教学难点:多元函数的求导方法第一节 多元函数的极限与连续一、 平面区域首先我们来了解一下在平面区域内平面点集的知识: 1、邻域:给定平面内P 0(x 0,y 0)点,和某数δ>0,以P 0点为圆心,为δ半径作圆,该圆内所有点的全体,即})y y ()x x ()y ,x ({22020δ<-+-,称为P 0点的邻域,记做:),P (U 0δ,简记)P (U 0;2、内点:在平面点集E ,存在P 0的一个邻域)P (U 0,使得E ⊂)P (U 0,则称P 0为E 的内点;3、 开集:平面点集E 内的所有点都是内点,则称点集E 为开集;4、边界点:在平面上,存在某个点P ,在P 的任何邻域内,都含有点集E 的点,又含有不是点集E 的点,则称点P 为点集E 的边界点。

5、连通:如果点集E 内的任意两点都能用全属于E 的折线连接起来,则称E 为连通的。

6、 区域:连通的开集称为开区域,简称区域。

称区域连同他的边界为闭区域。

7、有界无界区域:对于平面点集E ,如果存在一个以原点为圆心的圆盘D ,使D ⊂E ,则称为有界区域,否则称为无界区域。

8、聚点:P 点的任何一个邻域内都有无限个属于点集E 的点,称P 为点集E 的聚点。

【注】:平面点集中点的关系如图,其中:二、 二元函数的极限和连续性1、 二元函数定义1:设有变量x ,y 和z ,如果当变量x ,y 在某一固定的范围内,任意取一对值时,变量z 按照一定的法则f 总有唯一的确定的值与之对应,就称z 为x ,y 的二元函数,记作:)y ,x (f z =,其中x ,y 称为自变量,z 称为因变量。

自变量x ,y 的取值范围称为二元函数的定义域,一般用大写字母D 来表示。

【注】1、与定义1相似,我们可以直接定义n 元函数(n≥1);2、定义1中,当x ,y 的值取定后,z 的取值就根据f 的方程来定。

通常情况下,这个值是唯一的,这时我们称)y ,x (f z =为单值函数,但有时侯取值不是唯一的,这时我们称)y ,x (f z =为多值函数。

如:9z y z 222=++。

一般情况,我们讨论的函数都是单值函数,如果是多值函数我们会特别说明或者用多个单值函数来处理。

3、二元函数的定义域有两种。

其一:我们规定的定义域,即),(y x f z =中,x ,y 的取值范围。

如:⎩⎨⎧==01)y ,x (f z ,2y 1,2x 11y ,1x ≤<≤<≤≤,其中的定义域就是}2y ,2x |y ,x {}y ,x {D ≤≤==。

其二:我们给定的函数)y ,x (f z =,使得z 有确定取值的(x ,y )的取值范围。

如:)y x arcsin()y ,x (f z 22+==,其定义域为:D={(x ,y)| 1y x 22≤+ }。

4、二元函数的图形由上一章的内容可知是一张曲面。

5、两二元函数相等,即)y ,x (g )y ,x (f =⇔定义域相等且起对应法则也必须相等。

【例】求y x z -=的定义域。

解:显然要使得上式有意义。

必须满足⎩⎨⎧>≤⇒⎪⎩⎪⎨⎧≥≥-0y xy 0y 0y x 2。

2、 二重极限定义2:设P 0(x 0,y 0)为函数)y ,x (f z =定义域D 的聚点,如果当定义域内任意一点P (P 0除外),以任何方式趋近P 0时,即:0P P →,都有A )P (f →,则称)y ,x (f 在的P 0二重极限为A 。

δ-ε 语言表示:0>ε∀,0>δ∃,当δ<-+-=<20200)y y ()x x (PP 0时,恒有:ε<-=-A )y ,x (f A )P (f ,记:A)y ,x (f lim )P (f lim 0y y x x P P ==→→→。

三、求极限的方法1、一元函数求极限的方法及运算法则(除L.hospital 法则外)对多元函数依旧成立。

如:两个重要极限,等价无穷小法则等等。

〖例〗(1)、xytan 10y 0x )xy 1(lim +→→(2 )、22220y 0x y x )y x (xy lim +-→→解:(1):xytan 1y 0x )xy 1(lim +→→=xytan xy xy 10y 0x )xy 1(lim +→→=xy tan xy limy 0x e →→=1e =e(2):∵1y x y x y x y x y x y x 222222222222=++≤+-=+-∴ xy1xy y x )y x (xy 2222=⋅≤+-又∵ 0xy lim 0y 0x =→→∴ 原极限=02、定义中提到任意方式趋近,我们可从中推断出:当我们能找到两条不同的路径L1,L2,使得0P P →,但是函数取得的极限却是不同的A ,B 时,则我们称其函数极限不存在。

〖例〗讨论⎪⎩⎪⎨⎧+=0y x xy )y ,x (f 22,0y x 0y x 2222=+≠+在(0,0)处的极限。

解:取不同路径y=kx ,当x 趋近0时,y 趋近0,但方式不同,22220x 220kx y 0kx y k 1kx )k 1(kx lim y x xy lim )y ,x (f lim +=+=+=→→=→=显然,当k 取值不同是,极限也不相同。

所以我们说函数在(0,0)的极限不存在。

3、 二次极限与二重极限的关系称))y ,x (f lim (lim 00y y x x →→和))y ,x (f lim (lim 00x x y y →→为函数)y ,x (f 在点(x 0,y 0)的二次极限。

【注】二次极限存在不一定二重极限存在,同理二重极限存在不一定二次极限存在。

〖例〗(1)显然有:000)x1sin y y 1sinx (lim 0y 0x =+=+→→,但是二次极限不存在。

(2)、上面例题说明⎪⎩⎪⎨⎧+=0y x xy )y ,x (f 22,0y x 0y x 2222=+≠+在(0,0)处的二重极限不存在。

但是其二次极限))y ,x (f lim (lim 0y 0x →→=))y ,x (f lim (lim 0x 0y →→=0。

四、函数的连续性及性质定义3:设P 0是函数)y ,x (f z =定义域D 上的聚点,且D P 0∈,如果:)y ,x (f )y ,x (f lim 00y y x x 00=→→,则称函数)y ,x (f z =在点P 0(x 0,y 0)连续,否则称该点为不连续点。

【例】:任由上面例题可知⎪⎩⎪⎨⎧+=0y x xy )y ,x (f 22,0y x 0y x 2222=+≠+在(0,0)处是不连续的。

【注】:1、等价定义:函数)y ,x (f z =在点P 0(x 0,y 0)连续⇔)y ,x (f )y y ,x x (f lim )y ,x (f )y ,x (f lim 00000y 0x 00y y x x 0=∆+∆+⇔=→∆→∆→→(2)、利用多元函数的连续性来解决极限问题。

〖例〗(1)、求极限1xy 1xy lim1x 1x +-→→解:∵ 21xy lim 1x 1x =+→→,且0)1xy (lim 1x 1x =-→→∴ 原极限=0性质1、(最大值和最小值)若函数)y ,x (f z =在有界闭区域D 上连续,则函数f 在D 上有界,并且能取得最大值与最小值。

性质2、(介值定理):设函数)y ,x (f z =在有界闭区域D 上连续,若P 1(x 1,y 1),P 2(x 2,y 2)∈D ,且)y ,x (f )y ,x (f 2211<,则对任何满足不等式)y ,x (f k )y ,x (f 2211<<的实数k ,总存在P 0(x 0,y 0)点,使得k )y ,x (f 00=。

特别:取得函数可以取得最大值与最小值之间的一切值。

第二节 偏导数一、 偏导数概念偏增量:)y ,x (f )y ,x x (f z 0000x -∆+=∆ )y ,x (f )y y ,x (f z 0000y -∆+=∆ 全增量: )y ,x (f )y y ,x x (f z 0000-∆+∆+=∆1、定义1:设函数)y ,x (f z =在P 0(x 0,y 0)的某邻域),P (U 0δ内有定义,)P (U )x x (00∈∆+∀。

若x )y ,x (f )y ,x x (f l i m00000x ∆-∆+→∆存在,则称)y ,x (f z =在P 0(x 0,y 0)点关于x 的偏导数存在,且其极限值为其在该点的偏导数。

记做:)y ,x (00x z∂∂、)y ,x (00xf ∂∂或者)y ,x (f 00x 、)y ,x (z 00x ,即:)y ,x (f 00x =x y x f y x x f x ∆-∆+→∆),(),(lim00000同理:)y ,x (f 00y =y )y ,x (f )y y ,x (f lim00000y ∆-∆+→∆偏导(函)数:如果函数)y ,x (f z =在D 内的每一点(x ,y )都有偏导数,则称)y ,x (f y 、)y ,x (f x 为)y ,x (f z =的两个偏导(函)数。

2、偏导数的计算【注】1、求)y ,x (f z =对x 的偏导数时,将y 视为常数,对x 求导数。

求)y ,x (f z =对y 的偏导数时,将x 视为常数,对y 求导数。

2、偏导数的符号x z ∂∂、y z∂∂是一个整体,不像dx dy 可以看成dy 除以dx 。

【例】(1)、设x y z =,则求x z ∂∂,y x ∂∂,z y ∂∂ 解:∵x yz =,∴ 视y 为常数,则2x y x z -=∂∂;又∵z y x =,∴视z 为常数,则z 1y x =∂∂; 又∵xz y =,∴视x 为常数,则zz y=∂∂。

同时,由上面计算可知1z y x y x z 1z z 1x y z y y x x z 2=∂∂∂∂∂∂≠-=⋅⋅-=∂∂⋅∂∂⋅∂∂。

尤其注意在不等号的左边表达式是错误的。

(2)、设3232y xy x z +-=在点(1,2)处的偏导数,)2,1(x z∂∂,)2,1(yz ∂∂解:24222)2,1()2,1(-=-=-=∂∂y x x z;.34362922)2,1(=+-=+-=∂∂y x yz(3)、设⎪⎩⎪⎨⎧+=0y x xy )y ,x (f 22,0y x 0y x 2222=+≠+。

相关文档
最新文档