高中数学选修4-4-极坐标与参数方程-知识点与题型
人教B版 高中数学 选修4-4 极坐标与参数方程 知识点归纳、题型归纳(含答案)
选修4—4 极坐标与参数方程一、伸缩变换设),(y x P 是平面直角坐标系中任意一点,在变换⎩⎨⎧='='yy x x μλϕ: )0()0(>>μλ的作用下,点),(y x P 对应),(y x P ''',称ϕ为平面直角坐标系中的伸缩变换。
练习1.将1422=+y x 的横坐标压缩为原来的2,纵坐标伸长为原来的21倍,则曲线的方程变为 。
2.在平面直角坐标系中,方程122=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='yy x x 32,后的图形所对应的方程是 .二、极坐标(一)极坐标系与极坐标1、极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox 一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 点称为极点,Ox 称为极轴.2、极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对),(θρ称为点M 的极坐标.ρ称为极径,θ称为极角.注:①在通常情况下,总认为0≥ρ,只在事先说明的情况下,才允许取0<ρ; ①极点O 的坐标为:),0(θ)(R ∈θ①点),(θρ与),(θπρ+关于极点O 对称;点),(θρ与),(θρ-关于极轴对称①点),(θρ,)2,(θπρ+k ,)2.(ππρ+-k (允许ρ小于0时)表示同一点.(二)极坐标与直角坐标的关系设M 为平面上的点,它的直角坐标为),(y x ,极坐标为),(θρ,关系如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+===x y y x y x θρθρθρtan sin cos 222)0(≠x 注:在极坐标系中,αθ=)0(≥ρ表示以极点为起点的一条射线;αθ=)(R ∈ρ表示以极点为起点的一条直线.练习1、点M 的直角坐标为)1,3(--化为极坐标为 .2、极坐标为(1,π)的点M 的直角坐标为 .3、将以下极坐标方程化为对应的直角坐标方程(1)ρ=2cosθ﹣4sinθ (2)ρsin 2θ=4cosθ(3)ρ=4cosθ (4)1)3cos(=-πρx(5)ααρ222cos 3sin 42+=(6)34πθ= )(R ∈ρ(7)2=ρ4、在直角坐标系xOy 中,圆C 的直角坐标方程为1)1(22=+-y x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是33)3sin(2=+πθρ,射线OM :3πθ=与圆C 的交点为P O ,,与直线l 的交点为Q ,求线段PQ 的长.5、在直角坐标系xOy 中,直线1C :2-=x ,圆2C :1)2()1(22=-+-y x ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 、2C 的极坐标方程;(2)若直线3C 的极坐标方程为4πθ=)(R ∈ρ,设2C 与3C 的交点为N M ,,求MN C 2∆的面积.三、参数方程(一)参数方程:在平面上取定了一个直角坐标系xOy ,把坐标y x ,表示为第三个变量t 的函数⎩⎨⎧==)()(t g y t f x b t a ≤≤,如果对于t 的每一个值(b t a ≤≤),由方程组所确定的点),(y x M 都在一条曲线上;而这条曲线上的任一点),(y x M 都可由t 的某个值通过方程组得到,称方程组就叫做这条曲线的参数方程,其中,变量t 称为参数.(二)直线的参数方程1、直线的标准参数方程:直线l 过点),(00y x M ,倾斜角为α的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x 推导如下:设直线的点斜式方程为:)(00x x k y y -=-,其中αtan =k )2(πα≠代入得)(tan 00x x y y -=-α )(cos sin 00x x y y -=-αα 即ααsin cos 00y y x x -=-,令上式的比值为t ,整理得⎩⎨⎧+=+=ααsin cos 00t y y t x x 2、t 的几何意义:表示直线上任一点A 到定点0M 的距离.①当点A 在0M 的上方时,0>t ;①当点A 在0M 的下方时,0<t ;①当点A 与0M 重合时,0=t ;3、结论:直线l 的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x )(为参数t ,其中),(00y x M ,B A ,为直线l 上的任一 点,且B A ,对应的参数分别为21,t t①A 到0M 的距离为1t ,B 到0M 的距离为2t①B A ,两点之间的距离为:21t t AB -=①点B A ,中点对应的参数为:221t t + ①0M 为B A ,中点时:021=+t t ①⎪⎩⎪⎨⎧+⋅-+=-=+=+21212212121004)(t t t t t t t t t t B M A M )0()0(2121>⋅<⋅t t t t 2100t t B M A M ⋅=⋅4、运用直线l 的标准参数方程求弦长和弦的中点坐标(直线l 与曲线相交于不同的两点时): 将直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 代入圆锥曲线方程,得到关于t 的二次方程,得到⎪⎩⎪⎨⎧⋅+>∆21210t t t t ,所以弦长=21221214)(t t t t t t ⋅-+=-,弦的中点对应的参数为221t t +代入直线直线l 的标准参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x 中,得到弦的中点坐标.5、直线l 的一般参数方程: 过点),(00y x M ,斜率a b k =的直线参数方程为:⎩⎨⎧+=+=bt y y at x x 00 )(为参数t。
人教高中数学选修 4-4 极坐标与参数方程 知识点
极坐标与参数方程面面观1、极坐标极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。
在平面上取定一点O,称为极点。
从O出发引一条射线Ox,称为极轴。
再取定一个长度单位,通常规定角度取逆时针方向为正。
这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
阿基米德螺旋线rθ=玫瑰线2sin(4) rθ=双纽线r2=2a2cos2θ心形线极坐标中的直线一般方程a ρcos θ+b ρcos θ+c =0(θ为倾斜角)极坐标中的圆圆心在极点,半径为R :ρ=R (θ任意)半径为R 的圆过(R,0)点:ρ=2Rcos θ.圆心(a ,α)半径为r :r 2=ρ2+a 2−2a ρcos (α−θ)ρ^2-2R ρ(sin θ+cos θ)+R^2=0圆心在(a ,π2)处且过极点:ρ=2asin θ(θ∈[0,π]) 椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep -=.(p 是定点F 到定直线的距离,p >0 ).当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.2、参数方程 定义:一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数't’的函数{x=f(t),y=g(t)}并且对于't‘的每一个允许值,由上述方程组所确定的点M (x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x ,y 的变数't‘叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
(注意:参数是联系变数x ,y 的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数)圆的参数方程它的参数方程为:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径。
选修4-4二轮专题:极坐标与参数方程
A ,当 t =-1 时,曲线 C1 上的点为 B .以原点 O 为 极点,以 x 轴正半轴为极轴建立极坐标系,曲线 6 C2 的极坐标方程为 ρ= 4+5sin 2θ .
(1) 求 A、B 的极坐标; (2) 设 M 是曲线 C2 上的动点,求|MA | 2+ |MB | 2 的最 大值.
x =-1 解:(1)当 t=1 时, , y= 3 即 A 的直角坐标为 A (-1, 3); x =1 当 t=- 1 时, , y=- 3 即 B 的直角坐标为 B (1,- 3).
(2)弦M1M2的中点⇒t1+t2=0;
(3)|M0M1||M0M2|=|t1t2|.
及时练习
5.[2016· 天津卷]
2 x=2pt , 设抛物线 (t 为参数,p>0)的焦点 y=2pt
为 F,准线为 l.过抛物线上一点 A 作 l 的垂线,垂足为 B.设 7 C(2p,0),AF 与 BC 相交于点 E.若|CF|=2|AF|,且△ACE 的 面积为 3 2,则 p 的值为________. 测试要点:抛物线的参数方程化为普通方程
说明: 一、 参数 t 的有关性质
对于上述直线 l 的参数方程,设 l 上两点 A、B 所对应的参数分别为 tA、tB,则 1.A、B 两点之间的距离为 | AB || t A t B | , 特别地,A、B 两点到点 M0 的距离分别为|tA|、|tB|。
t A tB 2.A、B 两点的中点所对应的参数为 , 2
若点 M0 是线段 AB 的中点,则 tA+tB=0,反之亦然。
x r cos ( 为参数) y r sin x a r cos 2 2 2 ( 为参数) 3.圆(x-a) +(y-b) =r 的参数方程: y b r sin
专题:极坐标与参数方程知识点及对应例题
极坐标及参数方程一、极坐标知识点 1.极坐标系的概念:2.有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 3.极坐标与直角坐标的互化: (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合 ③两种坐标系中取相同的长度单位. (2)互化公式二、参数方程知识点(1)圆222)()(r b y a x =-+-的参数方程可表示为 )(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .(2)椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .(3)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.sin ,cos o o ααt y y t x x (t 为参数).三、点到直线的距离公式、直线与圆、圆与圆位置关系 极坐标方程典型例题1.点()22-,的极坐标为 。
2.已知圆C :22(1)(3)1x y ++-=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆6.极点到直线()cos sin 3ρθθ+________ 。
7.在极坐标系中,点3(2,)2π到直线l :3cos 4sin 3ρθρθ-=的距离为 .8.在极坐标系中,点π(1,)2P 到曲线π3:cos()242l ρθ+=上的点的最短距离为 .9.已知直线4sin cos :=-θρθρl ,圆θρcos 4:=C ,则直线l 与圆C 的位置关系是________.(相交或相切或相离?)10.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值。
极坐标与参数方程资料
选修4-4坐标系与参数方程资料极坐标与参数方程知识点(一)伸缩变换设点P (x,y )是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅='),0(,),0(,:μμλλϕy y x x 的作用下,点P(x,y)对应到点),(y x P ''',ϕ为平面直角坐标系中的坐标伸缩变换 (二)极坐标系的建立在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
) (三)极坐标系内一点的极坐标的规定对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。
特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. (四)负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。
M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈(五)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。
(六) 极坐标与直角坐标的互化(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中取相同的长度单位。
(2)互化公式⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ。
(ρ≥0,0≤θ≤π2)(七) 常见的曲线极坐标方程(1)圆心在C(a ,0),半径为a 的圆的方程:ρ=2acos θ (2)圆心在(a,π/2),半径为a 的圆的方程;ρ=2asin θ(3)圆心在C(a ,θ0),半径为a 的圆的方程;0cos()a ρθθ-=2(4)圆心在极点,半径为r 的圆的方程:ρ=r(5)过点(a ,0)且垂直于极轴的直线方程:ρcos θ=a (6)过点(a , π/2)且平行于极轴的直线方程:ρsin θ=a (7)过极点且倾斜角为ϕ的直线方程:θ=ϕ(八)曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程.联系x 、y 之间关系的变数叫做参变数,简称参数. (九) 求曲线的参数方程 求曲线参数方程一般程序:(1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数;(3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 (十) 曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. (十一) 参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程.(十二) 几种常见曲线的参数方程 1. 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααs i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为a bk =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00 (t 为参数)(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角”(ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角” (3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)(ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00b y y a x x (ϕ为参数)ϕ的几何意义为“离心角” (4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数)(ⅱ)双曲线1)()(220220=---b y y a x x 的参数方程是⎩⎨⎧+=+=ϕϕbtg y y a x x 00sec (ϕ为参数)ϕ的几何意义为“离心角”(5) 抛物线的参数方程px y 22= (p>0) 的参数方程为⎩⎨⎧==pty pt x 222(t 为参数) 其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).极坐标与参数方程练习题一.选择题[C]A .(2,-7)B .(1,0)A .20°B .70°C .110°D .160°[C]A .相切B .相离C .直线过圆心D .相交但直线不过圆心A .椭圆B .双曲线C .抛物线D .圆B[A ]C.5 D.66.设椭圆的参数方程为()πθθθ≤≤⎩⎨⎧==sincosbyax,()11,yxM,()22,yxN是椭圆上两点,M,N对应的参数为21,θθ且21xx<,则 [B]A.21θθ< B.21θθ> C.21θθ≥ D.21θθ≤7.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin2cos2yx,(θ为参数)的位置关系是[ D ]A.相切B.相离C.直线过圆心D.相交但直线不过圆心8.经过点M(1,5)且倾斜角为3π的直线,以定点M到动点P的位移t为参数的参数方程是[ A ]A.⎪⎪⎩⎪⎪⎨⎧-=+=tytx235211B.⎪⎪⎩⎪⎪⎨⎧+=-=tytx235211C.⎪⎪⎩⎪⎪⎨⎧-=-=tytx235211D.⎪⎪⎩⎪⎪⎨⎧+=+=tytx2352119.参数方程⎪⎩⎪⎨⎧-=+=21yttx (t为参数)所表示的曲线是[ B ]A.一条射线B.两条射线C.一条直线D.两条直线10.已知曲线C的参数方程为)(1232为参数ttytx⎩⎨⎧+==则点)4,5(),1,0(21MM与曲线C的位置关系是[ A ]A.1M在曲线C上,但2M不在。
高中数学选修4-4参数方程与极坐标小结与复习
参数方程与极坐标小结与复习一. 重点、难点:显然,参数方程与普通方程的最明显的区别是其方程形式上的区别,更大的区别是普通方程反映了曲线上任一点坐标x ,y 的直接关系,而参数方程那么反映了x ,y 的间接关系。
实质上,参数的思想方法就是在运动变化的哲学思想指导下的函数的思想方法,因此也可认为引入参数就是引入函数的自变量。
参数法在求曲线的轨迹方程,以及研究某些最值问题时是一种常用的甚至是简捷的解题方法。
2. 化参数方程为普通方程的根本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式〔三角的或代数的〕消去法。
3. 化普通方程为参数方程的根本思路是引入参数,即选定适宜的参数t ,先确定一个关系x=f(t)〔或y=(t)〕,再代入普通方程F 〔x ,y 〕=0,求得另一关系y=(t)〔或x=f(t)〕。
一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标〔或纵坐标〕。
4. 常见曲线的参数方程的一般形式:〔1〕经过点P 0〔x 0,y 0〕,倾斜角为α的直线的参数方程为 00cos sin x x t t y y t αα=+⎧⎨=+⎩(为参数)0P t P P 设是直线上的任一点,则表示有向线段的数量利用直线的参数方程,研究直线与圆锥曲线的位置关系以及弦长计算,有时比拟方便。
方法是: 把:代入圆锥曲线:(,),即可消去,;l x x t y y t C F x y x y =+=+⎧⎨⎩=000cos sin αα200t at bt c a ++=≠而得到关于的一元二次方程:()那么〔1〕当△<0时,l 与C 无交点;〔2〕当△=0时,l 与C 有一公共点;〔3〕当△>0时,l 与C 有两个公共点;此时方程at 2+bt+c=0有两个不同的实根t 1、t 2,把参数t 1、t 2代入l 的参数方程,即可求得l 与C 的两个交点M 1、M 2的坐标;另外,由参数t 的几何((((()2121212124M M t t t t t t =-=+-意义,可知弦长。
高中数学选修4-4-极坐标
极坐标知识集结知识元极坐标知识讲解1.极坐标系【知识点的认识】极坐标系与点的极坐标在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.2.简单曲线的极坐标方程【知识点的认识】一、曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.则曲线C的方程是f(ρ,θ)=0.二、求曲线的极坐标方程的步骤:与直角坐标系里的情况一样①建系(适当的极坐标系)②设点(设M(ρ,θ)为要求方程的曲线上任意一点)③列等式(构造△,利用三角形边角关系的定理列关于M的等式)④将等式坐标化⑤化简(此方程f(ρ,θ)=0即为曲线的方程)三、圆的极坐标方程(1)圆心在极点,半径为r,ρ=r.(2)中心在C(ρ0,θ0),半径为r.ρ2+ρ02﹣2ρρ0cos(θ﹣θ0)=r2.四、直线的极坐标方程(1)过极点,θ=θ0(ρ∈R)(2)过某个定点垂直于极轴,ρcosθ=a(3)过某个定点平行于极轴,r sinθ=a(4)过某个定点(ρ1,θ1),且与极轴成的角度α,ρsin(α﹣θ)=ρ1sin(α﹣θ1)五、直线的极坐标方程步骤1、据题意画出草图;2、设点M(ρ,θ)是直线上任意一点;3、连接MO;4、根据几何条件建立关于ρ,θ的方程,并化简;5、检验并确认所得的方程即为所求.3.点的极坐标和直角坐标的互化【知识点的认识】坐标之间的互化(1)点的极坐标和直角坐标的互化以直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图).平面内任意一点P的直角坐标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可以得到如下两组公式:,.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为:.(3)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为:.例题精讲极坐标例1.在极坐标系中,已知M(1,),N,则|MN|=()A.B.C.1+D.2例2.在极坐标系中,已知A(3,),B(4,),O为极点,则△AOB的面积为()A.3B.C.D.2例3.已知直线l:(t为参数)与曲线ρ2=的相交弦中点坐标为(1,1),则a等于()A.-B.C.-D.当堂练习单选题练习1.已知曲线C的极坐标方程为:ρ=2cosθ-4sinθ,P为曲线C上的动点,O为极点,则|PO|的最大值为()A.2B.4C.D.2练习2.在极坐标中,O为极点,曲线C:ρ=2cosθ上两点A、B对应的极角分别为,则△AOB 的面积为()A.B.C.D.练习3.已知直线l过点P(-2,0),且倾斜角为150°,以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ=15.若直线l交曲线C于A,B两点,则|PA|∙|PB|的值为()A.5B.7C.15D.20练习4.在平面直角坐标系中,记曲线C为点P(2cosθ-1,2sinθ+1)的轨迹,直线x-ty+2=0与曲线C 交于A,B两点,则|AB|的最小值为()A.2B.C.D.4练习5.在极坐标系中,直线ρcosθ=2与圆ρ=4cosθ交于A,B两点,则|AB|=()A.4B.C.2D.练习6.在同一平面直角坐标系中,将直线x-2y=2按φ:变换后得到的直线l,若以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,则直线l的极坐标方程为()A.4ρcosθ-ρsinθ=4B.ρcosθ-16ρsinθ=4C.ρcosθ-4ρsinθ=4D.ρcosθ-8ρsinθ=4填空题练习1.在极坐标系中,圆ρ=1上的点到直线的距离的最大值是___.练习2.在极坐标系中,点(2,)到直线ρsinθ-ρcosθ-6=0的距离为___.练习3.在极坐标系下,已知圆,则圆O的直角坐标方程是_________________练习4.在极坐标系中,若点A(3,),B(3,),则△AOB的面积为___解答题练习1.'在平面直角坐标系xOy中,以原点为极点,x轴为极轴建立极坐标系,曲线C的方程是,直线l的参数方程为(t为参数,0≤α<π),设P (1,2),直线l与曲线C交于A,B两点.(1)当α=0时,求|AB|的长度;(2)求|PA|2+|PB|2的取值范围.'练习2.'在直角坐标xOy中,直线l的参数方程为{(t为参数)在以O为极点.x轴正半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=4sinθ-2cosθ.(I)求直线l的普通方程与曲线C的直角坐标方程:(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.'。
选修4-4坐标系与参数方程_知识点总结
选修4-4坐标系与参数方程_知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN坐标系与参数方程 知识点(一)坐标系1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 5.圆与直线一般极坐标方程 (1)圆的极坐标方程若圆的圆心为 00(,)M ρθ,半径为r ,求圆的极坐标方程。
高三数学专题复习--极坐标与参数方程
五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求
A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1
,
它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为
,
曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
(完整)高中数学选修4-4-极坐标与参数方程-知识点与题型,推荐文档
选做题部分极坐标系与参数方程一、极坐标系1. 极坐标系与点的极坐标(1) 极坐标系:如图4 —4—1所示,在平面内取一个』点0,叫做极点,自极点0引一条射线Ox叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2) 极坐标:平面上任一点M的位置可以由线段0M的长度p和从Ox到0M的角度9来刻画,这两个数组成的有序数对M的极坐标.其中p称为点M的极径,9称为点M的极角.2.极坐标与直角坐标的互化点M直角坐标(x,y)极坐标(p, 9互化公式题型一极坐标与直角坐标的互化1、已知点P的极坐标为(..2,—),则点P的直角坐标为 ()4A. (1, 1)B. (1, -1 )C. (-1,1)D. (-1,-1 )2、设点P的直角坐标为(3,3),以原点为极点,实轴正半轴为极轴建立极坐标系(0 2 ),则点P的极坐标为( )A. (3.2, —) B . ( 3 2, —) C . (3, — ) D . ( 3, — )4 4 4 43•若曲线的极坐标方程为p= 2sin 0+ 4cos 9,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为___________ .4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )A.p= cos 0B.p= sin 9 C . p cos 0= 1 D . p sin 0= 15. __________________________________________ 曲线C的直角坐标方程为x2+ y2—2x = 0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_________________________________________ .n6.在极坐标系中,求圆p= 2cos 9与直线9= 4(p>0)所表示的图形的交点的极坐标.题型二极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1. 在极坐标系中,已知圆C经过点PC 2,专),圆心为直线P sin B—n J与极轴的交点,求圆C的直角坐标方程.n2. 圆的极坐标方程为p= 4cos B,圆心为C,点P的极坐标为4,-3,则|CP| = _________ .n3. 在极坐标系中,已知直线I的极坐标方程为p sin 0 +石=1,圆C的圆心的极坐标n是C1,4,圆的半径为1.(i)则圆C的极坐标方程是 __________ ;(ii)直线I被圆C所截得的弦长等于 _____________n4. 在极坐标系中,已知圆C:p= 4cos 0被直线I : p sin 0—"6 = a截得的弦长为2念,则实数a的值是__________ .、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式•一般地,可以通过消去参数而 从参数方程得到普通方程.⑵如果知道变数x , y 中的一个与参数t 的关系,例如x = f(t),把它代入普通方程,求x = f t ,出另一个变数与参数的关系 y = g(t),那么,就是曲线的参数方程.y = g t2.题型一参数方程与普通方程的互化【例1】把下列参数方程化为普通方程:,1x = 1 + ,⑵y = 5 +题型二直线与圆的参数方程的应用x = 1 + t ,x = 2cos 0+ 2,1、已知直线I 的参数方程为(参数t € R),圆C 的参数方程为(参y = 4— 2ty = 2sin 0数0€ [0,2 n ])求直线I 被圆C 所截得的弦长.卜1+导2、曲线C 的极坐标方程为:p =acos 0( a > 0),直线I 的参数方程为:i _If(1)求曲线C 与直线I 的普通方程;(2)若直线I 与曲线C 相切,求a 值.x = 3+ cos 0, ⑴ y = 2-sin 03、在直角坐标系xoy中,曲线C的参数方程为「些曲",(a为参数),以原点OI y=sinCT为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为P sin (日+号)二吋(I)求曲线C的普通方程与曲线C2的直角坐标方程;(□)设P为曲线C上的动点,求点P到C2上点的距离最小值.综合应用1、曲线2 5t 1 2t(t 为参数)与坐标轴的交点是(2 1 1 1 5A (0,—)、(一,0)B (0, —)、(一,0)C (0, 4)、(8,0)D (0, —)、(8,0)5 2 5 2 9/ 2 si n 23、参数万程(为参数)化为普通方程为y sin 2A . y x 2 B.y x 2C. y x 2(2 x 3)D. y x 2(0 y 1)3.判断下列结论的正误.(2)若点P 的直角坐标为(1, 3),则点P 的一个极坐标是(2,—石)((3)在极坐标系中,曲线的极坐标方程不是唯一的 ( )(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是 一对应关系(4.参数方1t (t为参数)表示的曲线是(A.一条直5•与参数方程为B.两条直线C. 一条射线(t为参数)等价的普通方程为(D •两条射线A. x22y_4B . x22y1(0 x 1)4C. x21(0 2) D . x22y1(0 x 1,0 y 2)4x15.参数方程y tan为参数所表示的曲线是cotA.直线B.两条射线C .线段 D.圆16.下列参数方程t是参数)与普通方程 2y x表示同一曲线的方程是:x tA. rB.y t x si n21 ysintC.1 cos2t x1 cos2ty tant8、已知曲线C 的极坐标方程是2cos 2sin 0,以极点为平面直角坐标系的原8. 在极坐标系有点 M(3, 3),若规定极径 V 0,极角 [0,2],则M 的极坐标为 ________ ;若规定极径 V 0,极角 (-,),贝U M 的极坐标为 __________________ . _________39. ORF 2的一个顶点在极点 0,其它两个顶点分别为R 5,— , P 2 4 —,则 ORP 24 12的面积为 ______________ 。
高中数学选修4-4知识点(最全版)
数学选修4-4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:两点间的距离公式中点P的坐标公式2+〔y |P1P2|=〔x1-x2〕1-y2〕2x1+x2x=y=2y1+y222.平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:x′=λx〔λ>0〕y′=μy〔μ>0〕的作用下,点P(x,y)对应到点P′x(′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),假设点M的极坐标是M(ρ,θ),那么点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).假设规定ρ>0,0≤θ<2π,那么除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如下图,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位一样,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).(1)极坐标化直角坐标x=ρcosθ,y=ρsinθW.(2)直角坐标化极坐标ρ2=x2+y2,tanθ=y〔x≠0〕. x三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)ρ=2rcos_θ 圆心在点(r ,0)(- π 2π ≤θ< 2 )π 圆心在点(r ,2)ρ=2rsin_θ (0≤θ<π) ρ=-2rcos_θ 圆心在点(r ,π)π ( 2 3π ≤θ< )23π 圆心在点(r , 2) ρ=-2rsin_θ (-π<θ≤0)(2)一般情形:设圆心C(ρ0,θ0),半径为r ,M(ρ,θ)为圆上任意一点,那么|CM|=r , ∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即r22220cos(0)3.直线的极坐标方程 (1)特殊情形如下表:直线位置极坐标方程图形 (1)θ=α(ρ∈R )或θ=α+π(ρ∈R ) 过极点,倾斜角为α (2)θ=α(ρ≥0)和θ=π+α(ρ≥0)ρcos_θ=a过点(a ,0),且与极轴ππ 垂直- 2<θ<2过点a ,π ,且与极轴2 平行ρsin_θ=a (0<θ<π)过点(a ,0)倾斜角为αρsin(α-θ)=asin α (0<θ<π)(2)一般情形,设直线l 过点P(ρ0,θ0),倾斜角为α,M(ρ,θ)为直线l 上的动点,那么 在△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).四柱坐标系与球坐标系简介〔了解〕1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz.设P是空间任意一点,它在Oxy平面上的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q在平面Oxy上的极坐标,这时点P的位置可用有序数组〔ρ,θ,z〕(z∈R)表示.这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,z∈R.x=ρcosθ(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为y=ρsinθ.z=z 2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz.设P是空间任意一点,连接OP,记|OP|=r,OP与Oz轴正向所夹的角为φ,设P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到O Q时所转过的最小正角为θ,这样点P的位置就可以用有序数组(r,φ,θ)表示,这样,空间的点与有序数组(r,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ),叫做点P的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π.x=rsinφcosθ(2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsinφsinθ.z=rcosφ第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f〔t〕y=g〔t〕①,并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x,y的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F(x,y)=0,直接给出了曲线上点的坐标x,y之间的关系,它含有x,y两个变量;参数方程x=f〔t〕y=g〔t〕(t为参数)间接给出了曲线上点的坐标x,y之间的关系,它含有三个变量t,x,y,其中x和y都是参数t的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t的一个值,就可以求出唯一对应的x,y的值.这两种方程之间可以进展互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r的圆的参数方程如图圆O与x轴正半轴交点M0(r,0).(1)设M(x,y)为圆O上任一点,以OM为终边的角设为θ,那么以θ为参数的圆O的参数方程是x=rcosθy=rsinθ(θ为参数).其中参数θ的几何意义是OM0绕O点逆时针旋转到OM的位置时转过的角度.(2)设动点M在圆上从M0点开场逆时针旋转作匀速圆周运动,角速度为ω,那么OM0经过时间t转过的角θ=ωt,那么以t为参数的圆O的参数方程为x=rcosωty=rsinωt(t为参数).其中参数t的物理意义是质点做匀速圆周运动的时间.2.圆心为C(a,b),半径为r的圆的参数方程圆心为(a,b),半径为r的圆的参数方程可以看成将圆心在原点,半径为r的圆通过坐标平移得到,所以其参数方程为x=a+rcosθ,y=b+rsinθ(θ为参数).3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x,y中的一个与参数t的关系,例如x=f(t),x=f〔t〕其次将x=f(t)代入普通方程解出y=g(t),那么(t为参数)就是曲线的参数方程.y=g〔t〕(4)在参数方程与普通方程的互化中,必须使x,y的取值X围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x轴上的椭圆22xy2+2=1(a>b>0)的参数方程是abx=acosφy=bsinφ(φ是参数),规定参数φ的取值X围是[0,2π).(2)中心在原点,焦点在y轴上的椭圆22yx2+2=1(a>b>0)的参数方程是abx=bcosφy=asinφ(φ是参数),规定参数φ的取值X围是[0,2π).(3)中心在(h,k)的椭圆普通方程为2〔x-h〕2+a2〔y-k〕2=1,那么其参数方程为bx=h+acosφy=k+bsinφ(φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x轴上的双曲线22xy2-2=1的参数方程是abx=asecφy=btanφ(φ为参数),规定参数φ的取值X围为φ∈[0,2π)且φ≠π23π,φ≠2.(2)中心在原点,焦点在y轴上的双曲线22yx2-2=1的参数方程是abx=btanφy=asecφ(φ为参数).2.抛物线的参数方程2=2px的参数方程为(1)抛物线y2x=2pt(t为参数).y=2pt(2)参数t的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M0(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsinα(t为参数).2.直线的参数方程中参数t的几何意义(1)参数t的绝对值表示参数t所对应的点M到定点M0的距离.→→与e(直线的单位方向向量)同向时,t取正数.当M0M(2)当M0M与e反向时,t取负数,当M与M0重合时,t=0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M0(x0,y0),倾斜角为α的直线,选取参数t=M0M得到的参数方程x=x0+tcosαy=y0+tsinα(t为参数)称为直线参数方程的标准形式,此时的参数t有明确的几何意义.一般地,过点M0(x0,y0),斜率k=ba(a,b为常数)的直线,参数方程为x=x0+aty=y0+bt(t为参数),称为直线参数方程的一般形式,此时的参数t不具有标准式中参数的几何意义.四渐开线与摆线〔了解〕1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O为原点,直线OA为x轴,建立如下图的平面直角坐标系.设基圆的半径为r,绳子外端M的坐标为(x,y),那么有x=r〔cosφ+φsinφ〕,y=r〔sinφ-φcosφ〕(φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为x=r〔φ-sinφ〕,(φ是参数).y=r〔1-cosφ〕。
(完整版)高中数学选修4-4知识点总结
选修4-4数学知识点一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、知识归纳总结:1.伸缩变换:设点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称为平面直角坐标⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''ϕ系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线叫做极O O Ox 轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,M M O M ||OM M 记为;以极轴为始边,射线为终边的叫做点的极角,记为。
有序ρOx OM xOM ∠M θ数对叫做点的极坐标,记为.),(θρM ),(θρM 极坐标与表示同一个点。
极点的坐标为.),(θρ)Z )(2,(∈+k k πθρO )R )(,0(∈θθ4.若,则,规定点与点关于极点对称,即与0<ρ0>-ρ),(θρ-),(θρ),(θρ-表示同一点。
),(θπρ+如果规定,那么除极点外,平面内的点可用唯一的极坐标表πθρ20,0≤≤>),(θρ示;同时,极坐标表示的点也是唯一确定的。
高中数学选修4-4-极坐标与参数方程-知识点与题型
选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化点M 直角坐标(x ,y ) 极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( )A .3)4πB .5()4π-C .5(3,)4πD .3(3,)4π-3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程 点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C所截得的弦长.2、曲线C的极坐标方程为:ρ=acosθ(a>0),直线l的参数方程为:(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相切,求a值.3、在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离最小值.综合应用 1、曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、 B 11(0,)(,0)52、 C (0,4)(8,0)-、 D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( )(3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x15.参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 所表示的曲线是( )A .直线B .两条射线C .线段D .圆16.下列参数方程(t 是参数)与普通方程y x 2=表示同一曲线的方程是: ( )A .x t y t ==⎧⎨⎩2B .x t y t ==⎧⎨⎩sin sin 2C .x t y t ==⎧⎨⎪⎩⎪D .⎪⎩⎪⎨⎧=+-=t y t t x tan 2cos 12cos 13.由参数方程()⎪⎭⎫⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθθ为参数,y x 给出曲线在直角坐标系下的方程是 。
选修4-4坐标系与参数方程
建立联系.
Y=byb>0
(2)已知变换后的曲线方程 f(x,y)=0,一般都要改写为方程 f(X,Y)=0,再利用换元法确定伸缩变换公式.
能力练通
抓应用体验的“得”与“失”
x′=3x,
1,-2
1.在同一平面直角坐标系中,已知伸缩变换φ:
求点 A 3
经过φ变换所得的点 A′的坐标.
2y′=y.
第 1 页 共 22 页
解析:设曲线 C′上任意一点 P′(x′,y′),
x=1x′, 由题意,将 3
y=2y′
代入 x2- y2 =1 64
得x′2-4y′2=1,化简得x′2-y′2=1,
9 64
9 16
即x2- y2 =1 为曲线 C′的方程,可见经变换后的曲线仍是双曲线, 9 16
则所求焦点坐标为 F1(-5,0),F2(5,0).
选修 4-4 坐标系与参数方程
第一节 坐 标 系
本节主要包括 2 个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.
突破点(一) 平面直角坐标系下图形的伸缩变换
基础联通
抓主干知识的“源”与“流”
x′=λ·xλ>0,
设点 P(x,y)是平面直角坐标系中的任意一点,在变换φ:
的作用下,点 P(x,y)对应到点
4.将圆 x2+y2=1 变换为椭圆x2+y2=1 的一个伸缩变换公式为φ: X=axa>0, 求 a,b 的值.
94
Y=byb>0,
X=ax, 解y=1Y, b
代入 x2+y2=1 中得Xa22+Yb22=1,所以 a2=9,b2=4,即 a=3,b=2.
突破点(二) 极坐标系
(2)直线 C3 的极坐标方程为θ=α0,其中α0 满足 tan α0=2,若曲线 C1 与 C2 的公共点都在 C3 上,求 a. 解析:(1)消去参数 t 得到 C1 的普通方程为 x2+(y-1)2=a2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、极坐标系
1.极坐标系与点的极坐标
(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2
题型一 极坐标与直角坐标的互化
1、已知点P 的极坐标为,则点P 的直角坐标为 ( )
A.(1,1)
B.(1,-1)
C.(-1,1)
D.(-1,-1)
2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( )
A .
B .
C .
D .
3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.
4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )
A .ρ=cos θ
B .ρ=sin θ
C .ρcos θ=1
D .ρsin θ=1
5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.
6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π
4
(ρ>0)所表示的图形的交点的极坐标.
题型二 极坐标方程的应用
由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.
1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛
⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.
2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则
|CP|=________.
3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛
⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标
是C ⎝ ⎛⎭⎪⎫
1,π4,圆的半径为1.
(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.
4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛
⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.
二、参数方程
1.参数方程和普通方程的互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.
(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,
求出另一个变数与参数的关系y =g (t ),那么,⎩
⎪⎨
⎪⎧
x =f
t ,y =g t
就是曲线的参数方程.
点的轨迹 普通方程 参数方程
直线 y -y 0=tan α(x -x 0)
⎩
⎪⎨
⎪⎧
x =x 0+t cos α
y =y 0+t sin α (t 为参数)
圆 x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θy =r sin θ(θ为参数) 椭圆
x 2a 2+y 2
b 2
=1(a >b >0) ⎩
⎪⎨
⎪⎧
x =a cos φy =b sin φ(φ为参数)
题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎨
⎧
x =3+cos θ,y =2-sin θ;
(2)⎩
⎪⎨
⎪⎧
x =1+1
2t ,y =5+3
2t .
题型二 直线与圆的参数方程的应用
1、已知直线l 的参数方程为⎩⎪⎨
⎪
⎧
x =1+t ,y =4-2t
(参数t ∈R ),圆C 的参数方程为
⎩
⎪⎨
⎪⎧
x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.
2、曲线C 的极坐标方程为:ρ=acos θ(a >0),直线l 的参数方程为: (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相切,求a 值.
3、在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离最小值.
综合应用
1、曲线与坐标轴的交点是()
A B C D
3、参数方程(为参数)化为普通方程为()
A. B.
C. D.
3.判断下列结论的正误.
(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )
(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π
3)( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )
4.参数方程为1()2
x t t t y ⎧=+⎪
⎨⎪=⎩为参数表示的曲线是( )
A .一条直线
B .两条直线
C .一条射线
D .两条射线
5.与参数方程为()21x t
t y t
⎧=⎪⎨
=-⎪⎩为参数等价的普通方程为( ) A .214y +=2
x B .21(01)4
y x +=≤≤2x C .21(02)4y y +=≤≤2
x D .21(01,02)4
y x y +=≤≤≤≤2
x 15.参数方程()为参数θθ
θ⎩⎨⎧+==cot tan 2
y x 所表示的曲线是 ( )
A .直线
B .两条射线
C .线段
D .圆
16.下列参数方程(t 是参数)与普通方程y x 2
=表示同一曲线的方程是: ( )
A .x t y t ==⎧⎨⎩2
B .x t y t ==⎧⎨⎩sin sin 2
C .x t y t ==⎧⎨⎪⎩⎪
D .⎪⎩⎪
⎨⎧=+-=t y t t x tan 2cos 12cos 1
3.由参数方程()⎪⎭⎫
⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθ
θ为参数,
y x 给出曲线在直角坐标系下的方程是。
4.若直线l 的参数方程是x t y t
=+=-+⎧
⎨⎪⎪⎩
⎪⎪345
235(t 是参数),则过点(4,-1)且与l 平行
的直线在y 轴上的截距是 。
5.方程x t y t =+︒
=-+︒⎧⎨
⎩
550350sin cos (t 是参数)表示的是过点 ,倾斜角为 直线。
8.在极坐标系有点M(3,3
π
),若规定极径<0, 极角[0,2],则M 的极坐标为 ;
若规定极径<0,极角(-,),则M 的极坐标为 .
9.∆OP P 12的一个顶点在极点O ,其它两个顶点分别为⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝
⎛
-12443521ππ,,,P P ,则∆OP P 12
的面积为。
6.(2013·北京高考)在极坐标系中,点⎝
⎛
⎭⎪⎫2,π6到直线ρsin θ=2的距离等于
________.
7、平面直角坐标系中,将曲线为参数)上的每一点横坐标不变,纵坐标变为原来的倍得到曲线,以坐标原点为极点,轴的非负半轴为极轴,建立的极坐标系中,曲线的方程为 (Ⅰ)求和的普通方程:(Ⅱ)求和公共弦的垂直平分线的极坐标方程.
8、已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (t 为参数).
(1)求曲线的直角坐标方程和直线的普通方程; (2)若直线与曲线交于两点,求的值.
7、已知圆C :⎩⎨
⎧
x =1+cos θ,
y =sin θ
(θ为参数)和直线l :⎩⎨
⎧
x =2+t cos α,
y =3+t sin α
(其中t 为参数,α为直线l 的倾斜角).
(1)当α=2π
3
时,求圆上的点到直线l 距离的最小值;
(2)当直线l 与圆C 有公共点时,求α的取值范围.
28.参数方程cos (sin cos )
()sin (sin cos )
x y θθθθθθθ=+⎧⎨=+⎩为参数表示什么曲线?
21.点P 在椭圆
22
1169
x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。
22.已知直线l 经过点(1,1)P ,倾斜角6
π
α=,
(1)写出直线l 的参数方程。
(2)设l 与圆42
2
=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。