极坐标和参数方程知识点典型例题及其详解(供参考)

合集下载

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题在数学中,极坐标和参数方程是研究平面曲线的重要工具。

极坐标是一种用极径和极角来表示平面上点位置的坐标系统,而参数方程则是用一个或多个参数来表示曲线上的点的坐标。

在本文中,我们将通过一些典型例题来探讨如何使用极坐标和参数方程解决问题。

例题一:极坐标下的圆首先让我们考虑一个非常简单的例子,即极坐标下的圆。

圆的极坐标方程为:$$ \\begin{cases} r = a \\\\ \\theta \\in [0, 2\\pi) \\end{cases} $$其中,r表示极径,a表示圆的半径,$\\theta$表示极角。

这个方程说明了圆上的每个点都满足极径等于半径a,并且极角可以在0到$2\\pi$之间取值。

例题二:参数方程下的抛物线接下来,我们考虑一个使用参数方程描述的曲线:抛物线。

抛物线的参数方程为:$$ \\begin{cases} x = at^2 \\\\ y = 2at \\end{cases} $$其中,a为常数,t为参数。

根据这个参数方程,我们可以看到x和y都是t的二次函数。

这个参数方程给出了抛物线上的每个点的坐标。

例题三:极坐标和参数方程的转换有时候,我们需要在极坐标和参数方程之间进行转换。

下面的例题将展示如何将一个极坐标方程转换为参数方程。

考虑极坐标方程:$$ \\begin{cases} r = 2\\cos\\theta \\\\ \\theta \\in [0, \\pi] \\end{cases} $$我们可以使用三角恒等式来将这个极坐标方程转换为参数方程。

首先,我们注意到r是$\\theta$的函数,而x和y是r的函数。

根据极坐标和直角坐标之间的关系,我们有下面的关系式:$$ \\begin{cases} x = r\\cos\\theta \\\\ y = r\\sin\\theta \\end{cases} $$将极坐标方程中的r代入上述关系式,我们得到参数方程:$$ \\begin{cases} x = 2\\cos(\\theta)\\cos(\\theta) = 2\\cos^2(\\theta) \\\\y = 2\\cos(\\theta)\\sin(\\theta) = \\sin(2\\theta) \\end{cases} $$ 通过这个转换,我们将极坐标方程转换为了参数方程。

高中数学选修44极坐标与全参数方程知识点与题型

高中数学选修44极坐标与全参数方程知识点与题型

选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1) 极坐标系: 如图 4-4-1 所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位, 一个角度单位 ( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向 ) ,这样就成立了一个极坐标系.(2) 极坐标: 平面上任一点 M 的地点能够由线段 OM 的长度 ρ 和从 Ox 到 OM 的角度 θ 来刻画,这两个数构成的有序数对 ( ρ ,θ) 称为点M 的极坐标.此中 ρ 称为点 M 的极径, θ 称为点 M 的极角. 2.极坐标与直角坐标的互化点 M直角坐标 (x , y)极坐标 (ρ, θ)互化 公式题型一 极坐标与直角坐标的互化1、已知点 P 的极坐标为 ( 2,) ,则点 P 的直角坐标为 ( )4A.( 1,1)B. (1,-1 )C. (-1 ,1)D.(-1 ,-1)2、设点 P 的直角坐标为 ( 3,3) ,以原点为极点,实轴正半轴为极轴成立极坐标系(02 ) ,则点 P 的极坐标为( )A . (32,3 )B .(32,5)C .(3,5)D .(3,3)44 4 43.若曲线的极坐标方程为 ρ = 2sin θ +4cos θ ,以极点为原点,极轴为 x 轴正半轴 成立直角坐标系,则该曲线的直角坐标方程为 ________.4.在极坐标系中,过点 (1,0) 而且与极轴垂直的直线方程是 ( )A .ρ =cos θB . ρ = sin θC . ρcos θ= 1D.ρ sin θ= 15.曲线 C 的直角坐标方程为 x 2+y 2- 2x =0,以原点为极点, x 轴的正半轴为极轴成立极坐标系,则曲线 C 的极坐标方程为 ________.π6. 在极坐标系中,求圆ρ=2cos θ与直线 θ= 4( ρ>0) 所表示的图形的交点的极坐标.题型二极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,假如不可以直接用极坐标解决,可先转变成直角坐标方程,而后求解.ππ3与极1. 在极坐标系中,已知圆 C经过点 P(2,4 ) ,圆心为直线ρsinθ-3=-2轴的交点,求圆 C 的直角坐标方程.π2.圆的极坐标方程为ρ=4cos θ,圆心为 C,点 P 的极坐标为 4,3,则|CP| =________.π3.在极坐标系中,已知直线 l 的极坐标方程为ρ sin θ+4=1,圆 C的圆心的极坐标π是 C 1,4,圆的半径为 1.(i)则圆 C的极坐标方程是 ________; (ii) 直线 l 被圆 C所截得的弦长等于 ________.π4. 在极坐标系中,已知圆C:ρ= 4cos θ被直线 l :ρsinθ-6=a截得的弦长为2 3,则实数 a 的值是 ________.二、参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不一样形式.一般地,能够经过消去参数而从参数方程获得一般方程.(2)假如知道变数 x, y 中的一个与参数t 的关系,比如x=f(t),把它代入一般方程,求出另一个变数与参数的关系y=g(t),那么,x= f t ,就是曲线的参数方程.y= g t2.常有曲线的参数方程和一般方程点的轨迹一般方程直线y- y0= tan α(x-x0 )圆x2+ y2=r 2椭圆x2y2a2+b2= 1(a>b>0)参数方程x=x0+ tcos α(t 为参数 )y=y0+ tsin αx= rcos θ( θ为参数 )y= rsin θx= acos φ(φ为参数 )y= bsin φ题型一参数方程与一般方程的互化【例 1】把以下参数方程化为一般方程:1 x=3+cos θ,x=1+2t ,(1)(2)3 y=2-sin θ;y=5+t.2题型二直线与圆的参数方程的应用1、已知直线 l 的参数方程为x= 1+ t,x= 2cos θ+ 2,(参数 t∈R),圆 C 的参数方程为(参y= 4- 2t y= 2sin θ数θ∈ [0,2π,])求直线 l 被圆 C 所截得的弦长.2、曲线 C的极坐标方程为:ρ =acosθ(a>0),直线l的参数方程为:(1)求曲线 C与直线 l 的一般方程;(2)若直线 l 与曲线 C相切,求 a 值.3、在直角坐标系xoy 中,曲线 C1的参数方程为,(α 为参数),以原点O为极点, x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的一般方程与曲线C2的直角坐标方程;(Ⅱ)设 P 为曲线 C1上的动点,求点P 到 C2上点的距离最小值.综合应用1、曲线x25t(t为参数 ) 与坐标轴的交点是()y12tA(0,2、1B1、1,0)C(0,4)、(8,0)D(0,5 、) (,0)(0,) () (8,0) 52529x2sin2(为参数)化为一般方程为()3、参数方程sin2yA.y x2B. y x2C.y x2(2x3)D. y x2(0y 1)3.判断以下结论的正误.(1)平面直角坐标系内的点与坐标能成立一一对应关系,在极坐标系中点与坐标也是一一对应关系 ()π(2)若点 P 的直角坐标为 (1 ,- 3) ,则点 P的一个极坐标是(2,-3)()(3)在极坐标系中,曲线的极坐标方程不是独一的()(4)极坐标方程θ=π ( ρ≥0) 表示的曲线是一条直线 ()x t1)4.参数方程为t (t为参数 ) 表示的曲线是(y2A.一条直线B.两条直线C.一条射线D.两条射线5.与参数方程为A .x2y24C.x2y24x t(t为参数 ) 等价的一般方程为()y 2 1 t1 B .x2y21(0x1)41(0 y 2) D .x2y21(0x1,0 y 2)415.参数方程x2为参数所表示的曲线是()y tan cotA.直线B.两条射线 C .线段D.圆16.以下参数方程(t 是参数)与一般方程y2x 表示同一曲线的方程是:()x tB.x2x tD .x1cos2tA.t 2sin t C.y t1cos2ty y sin ty tant3. 由参数方程x 2 sec 21 为参数,给出曲线在直角坐标系下的方程y 2tan22是。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。

例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。

解析:将x和y用极坐标表示,得到ρ=2cosθ。

例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。

解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

求曲线C的极坐标方程和直线l被曲线C截得的弦长。

解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。

2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。

为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。

极坐标与参数方程例题示范(分题型)

极坐标与参数方程例题示范(分题型)

.极坐标与参数方程例题示范(分题型)极坐标与参数方程是选修内容的必考题型,这里按照课本及高考考试说明,归纳总结为四类题型。

题型一。

极坐标与直角坐标的互化。

互化原理(三角函数定义)、数形结合。

1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+-=t y t x 13(t 为参数),以O 为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ.(1)把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 的交点的极坐标(πθρ20,0<≤≥).试题解析:(1)由0cos 2=+θρ得θρcos 2-=,两边同乘以ρ,得x y x 222-=+;(2)由直线l 的参数方程为⎩⎨⎧-=+-=ty tx 13(t 为参数),得直线的普通方程为02=++y x ,联立曲线C 与直线l 的方程得,⎩⎨⎧-=-=11y x 或⎩⎨⎧=-=02y x ,化为极坐标为或),2(π.考点:极坐标方程与直角坐标方程的互化,直线参数方程与普通方程的互化.考点:cos ,sin x y ρθρθ==,222x y ρ=+.2.在极坐标系中,设圆C 经过点轴的交点,求圆C 的极坐标方程. 试题解析:它与x 轴的交点也就是圆心为()1,0所以圆的方程为()2211x y -+=,得2220x y x +-=所以,圆的极坐标方程为:2cos ρθ=法二:与极轴的交点,所以令0θ=,得1ρ=,即圆心是()1,0 又圆C 经过点,∴圆的半径∴圆过原点,∴圆C 的极坐标方程是2cos ρθ=.考点:(1)转化为直角坐标,求出所求方程,再转化为极坐标;(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标方程.题型二。

曲线(圆与椭圆)的参数方程。

(1)普通方程互化和最值问题。

“1”的代换(22cos sin 1θθ+=)、三角解决。

3.已知曲线C 的参数方程是)(sin ,cos 2为参数θθθ⎩⎨⎧==y x ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,B A ,的极坐标分别为(Ⅰ)求直线AB 的直角坐标方程;(Ⅱ)设M 为曲线C 上的点,求点M 到直线AB 距离的最大值..试题解析:(Ⅰ)将A 、B 化为直角坐标为∴直线AB 的方程为(Ⅱ)设(2cos ,sin )M θθ,它到直线AB 的距离为,考点:1.椭圆的参数方程;2.点到直线的距离公式;3.三角函数求最值.4.已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是(t 为参数).设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. 试题解析:曲线C的极坐标方程可化为22sin ρρθ=. 又222,cos ,sin x y x y ρρθρθ+===,所以曲线C 的直角坐标方程为2220x y y +-=. 将直线l 的参数方程化为直角坐标方程,得令0y =,得2x =,即M 点的坐标为(2,0). 又曲线C 的圆心坐标为(1,0), 半径1r =,则法二:设N 的坐标为()cos ,1sin θθ+.1==≤=考点:极坐标化为直角坐标,参数方程化为普通方程,直线与圆位置关系5.已知在平面直角坐标系xOy 中,直线l 的参数方程是 ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为(1)判断直线l 与曲线C 的位置关系;(2)设M 为曲线C 上任意一点,求x y +的取值范围. 试题解析:(1)直线l 的普通方程为 曲线C 的直角坐标系下的方程为. (2.考点:直线与圆的参数方程和圆的极坐标方程.6.已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点,曲线C 的参数方程为(θ为参数). (1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线:cos 2sin 10l ρθρθ++=的距离的最小值.试题解析:(1)点P 的直角坐标所以曲线C 的直角坐标方程为(2)曲线C 的参数方θ为参数),直线l 的普通方程为210x y ++=,,那么点M 到直线l 的距离所以点M 到直线l 的最小距离为考点:1、极坐标和直角坐标的互化;2、参数方程和普通方程的互化;3、点到直线的距离.(2)公共点问题。

高中数学极坐标与参数方程大题(详解)

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。

(完整版)极坐标与参数方程知识点总结大全

(完整版)极坐标与参数方程知识点总结大全

极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。

应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。

这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。

圆心为,半径为的圆的普通方程是,它的参数方程为:。

4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。

(完整word版)高中数学极坐标与参数方程大题(详解)

(完整word版)高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线 l:(t为参数)(Ⅰ)写出曲线 C 的参数方程,直线l 的一般方程.(Ⅱ)过曲线 C 上随意一点P 作与 l 夹角为 30°的直线,交l 于点 A ,求 |PA|的最大值与最小值.考点:参数方程化成一般方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.剖析:(Ⅰ )联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线 C 的参数方程,直接消掉参数t 得直线 l 的一般方程;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).由点到直线的距离公式获得P 到直线 l 的距离,除以sin30°进一步获得 |PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线 C:+=1 ,可令 x=2cos θ、 y=3sin θ,故曲线 C 的参数方程为,(θ为参数).对于直线l:,由① 得: t=x ﹣ 2,代入②并整理得: 2x+y ﹣ 6=0;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).P 到直线 l 的距离为.则,此中α为锐角.当 sin(θ+α)=﹣ 1 时, |PA|获得最大值,最大值为.当 sin(θ+α)=1 时, |PA|获得最小值,最小值为.评论:本题考察一般方程与参数方程的互化,训练了点到直线的距离公式,表现了数学转变思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线 C 的参数方程为:(α为参数).(I)写出直线 l 的直角坐标方程;(Ⅱ)求曲线 C 上的点到直线 l 的距离的最大值.考点:参数方程化成一般方程.专题:坐标系和参数方程.剖析:(1)第一,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)第一,化简曲线 C 的参数方程,而后,依据直线与圆的地点关系进行转变求解.解答:解:( 1)∵直线 l 的极坐标方程为:,∴ρ(sinθ﹣cosθ) =,∴,∴ x ﹣ y+1=0 .(2)依据曲线 C 的参数方程为:( α为参数).得( x ﹣ 2) 2+y 2=4 ,它表示一个以( 2, 0)为圆心,以 2 为半径的圆,圆心到直线的距离为: d= ,∴曲线 C 上的点到直线l 的距离的最大值= .评论: 本题要点考察了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线 C 1:( t 为参数),C 2:( θ为参数).( 1)化 C 1,C 2 的方程为一般方程,并说明它们分别表示什么曲线;( 2)若 C 1 上的点 P 对应的参数为 t=, Q 为 C 2 上的动点,求 P Q 中点 M 到直线 C 3: ( t 为参数)距离的最小值.考点 : 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题 : 计算题;压轴题;转变思想.剖析: (1)分别消去两曲线参数方程中的参数获得两曲线的一般方程,即可获得曲线C 1 表示一个圆;曲线C 2表示 一个椭圆;(2)把 t 的值代入曲线 C 1 的参数方程得点 P 的坐标,而后把直线的参数方程化为一般方程,依据曲线 C 2 的参数方程设出 Q 的坐标, 利用中点坐标公式表示出M 的坐标, 利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可获得距离的最小值. 解答:(t 为参数)化为一般方程得: (x+4 ) 2+( y ﹣ 3) 2=1,解:( 1)把曲线 C 1:所以此曲线表示的曲线为圆心(﹣4, 3),半径 1 的圆;把 C 2:( θ为参数) 化为一般方程得: + =1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在 x 轴上,长半轴为 8,短半轴为 3 的椭圆;(2)把 t=代入到曲线 C 1 的参数方程得: P (﹣ 4, 4),把直线 C 3:(t 为参数)化为一般方程得: x ﹣ 2y ﹣ 7=0,设 Q 的坐标为 Q ( 8cos θ, 3sin θ),故 M (﹣ 2+4cos θ, 2+ sin θ)所以 M 到直线的距离d= =,(此中 sin α= , cos α= )进而当 cos θ= , sin θ=﹣时, d 获得最小值.评论:本题考察学生理解并运用直线和圆的参数方程解决数学识题,灵巧运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立直角坐标系,圆 C 的极坐标方程为,直线 l 的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆 C上不一样于 A , B 的随意一点.(Ⅰ )求圆心的极坐标;(Ⅱ)求△ PAB 面积的最大值.考点:参数方程化成一般方程;简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(Ⅰ )由圆 C 的极坐标方程为2,把,化为ρ=代入即可得出.(II )把直线的参数方程化为一般方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得 |AB|=2,利用三角形的面积计算公式即可得出.解答:C 的极坐标方程为2,解:(Ⅰ )由圆,化为ρ=把代入可得:圆 C 的一般方程为x 2+y2﹣ 2x+2y=0 ,即( x﹣ 1)2+( y+1 )2=2.∴圆心坐标为( 1,﹣ 1),∴圆心极坐标为;(Ⅱ )由直线l 的参数方程(t为参数),把t=x代入y=﹣1+2t 可得直线l 的一般方程:,∴圆心到直线l 的距离,∴|AB|=2==,点 P 直线 AB 距离的最大值为,.评论:本题考察了把直线的参数方程化为一般方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考察了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴成立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.剖析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,而后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为一般方程为( 4 分)点到直线的距离( 6 分)所以椭圆上点到直线距离的最大值为,最小值为.( 10 分)评论:本题考察参数方程、极坐标方程与一般方程的差别和联系,二者要会相互转变,依据实质状况选择不一样的方程进行求解,这也是每年高考必考的热门问题.6.在直角坐标系xoy 中,直线 I 的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为ρ=cos(θ+).(1)求直线 I 被曲线 C 所截得的弦长;(2)若 M ( x, y)是曲线 C 上的动点,求 x+y 的最大值.考点:参数方程化成一般方程.专题:计算题;直线与圆;坐标系和参数方程.剖析:(1)将曲线 C 化为一般方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长知足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可获得最大值.解答:解:( 1)直线 I 的参数方程为(t为参数),消去t,可得, 3x+4y+1=0 ;因为ρ= cos(θ+ ) = (),2 2 2﹣x+y=0 ,其圆心为(,﹣),半径为 r= ,即有ρ=ρcosθ﹣ρsinθ,则有 x +y圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,),则 x+y=因为θ∈R,则x+y 的最大值为=sin (1.),评论:本题考察参数方程化为标准方程,极坐标方程化为直角坐标方程,考察参数的几何意义及运用,考察学生的计算能力,属于中档题.7.选修 4﹣ 4:参数方程选讲已知平面直角坐标系xOy ,以 O 为极点, x 轴的非负半轴为极轴成立极坐标系,P 点的极坐标为,曲线 C 的极坐标方程为.(Ⅰ)写出点 P 的直角坐标及曲线 C 的一般方程;(Ⅱ)若 Q 为 C 上的动点,求PQ 中点 M 到直线 l:(t为参数)距离的最小值.考参数方程化成一般方程;简单曲线的极坐标方程.点:专坐标系和参数方程.题:分( 1)利用 x= ρcosθ, y= ρsinθ即可得出;析:( 2)利用中点坐标公式、点到直线的距离公式及三角函数的单一性即可得出,解解( 1)∵ P 点的极坐标为,答:∴=3,= .∴点 P 的直角坐标2 2 2把ρ=x +y, y= ρsinθ代入可得,即∴曲线 C 的直角坐标方程为.( 2)曲线 C 的参数方程为(θ为参数),直线 l 的一般方程为 x﹣ 2y﹣ 7=0设,则线段 PQ 的中点.那么点 M 到直线 l 的距离. ,∴点 M 到直线 l 的最小距离为.点本题考察了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的评:单一性等基础知识与基本技术方法,考察了计算能力,属于中档题.8.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴成立极坐标系.(Ⅰ)求圆 C 的极坐标方程;(Ⅱ)直线 l 的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O, P,与直线l 的交点为Q,求线段 PQ 的长.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:直线与圆.剖析:(I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣ 1)2+y2=1.把 x= ρcosθ, y= ρsinθ代入化简即可获得此圆的极坐标方程.(II )由直线 l 的极坐标方程是ρ( sinθ+ )=3 ,射线 OM :θ= .可得一般方程:直线 l ,射线 OM .分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:( I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣1)2+y2=1.把 x= ρcosθ,y= ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II )如下图,由直线l 的极坐标方程是ρ( sinθ+ ) =3 ,射线OM :θ= .可得一般方程:直线l ,射线OM .联立,解得,即Q.联立,解得或.∴P.∴|PQ|= =2.评论:本题考察了极坐标化为一般方程、曲线交点与方程联立获得的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系 xoy 中,曲线 C1的参数方程为(α为参数),以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为ρsin(θ+ ) =4 .( 1)求曲线 C1的一般方程与曲线 C2 的直角坐标方程;( 2)设 P 为曲线 C1上的动点,求点 P 到 C2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、 y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得 d 的最小值,以及此时的α的值,进而求得点P的坐标.解答:解:( 1)由曲线 C1:,可得,两式两边平方相加得:,即曲线 C1 的一般方程为:.由曲线 C2 :得:,即ρsinθ+ρcosθ=8,所以 x+y ﹣ 8=0,即曲线 C2 的直角坐标方程为:x+y ﹣ 8=0 .(2)由( 1)知椭圆 C1与直线 C2无公共点,椭圆上的点到直线 x+y ﹣ 8=0 的距离为,∴当时, d 的最小值为,此时点P 的坐标为.评论:本题主要考察把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l 的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心 C 的直角坐标;(Ⅱ)由直线l 上的点向圆 C 引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.剖析:(I)先利用三角函数的和角公式睁开圆 C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用2 2 2C 的直角坐标.ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得圆 C 的直角坐标方程,进而获得圆心(II )欲求切线长的最小值,转变为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:( I)∵,∴,∴圆 C 的直角坐标方程为,即,∴圆心直角坐标为.( 5 分)(II )∵ 直线 l 的一般方程为,圆心 C 到直线 l 距离是,∴直线 l 上的点向圆 C 引的切线长的最小值是( 10 分)评论:本题考察点的极坐标和直角坐标的互化,能在极坐标系顶用极坐标刻画点的地点,领会在极坐标系和平面直角坐标系中刻画点的地点的差别,能进行极坐标和直角坐标的互化.11.在直角坐标系 xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的参数方程为,( t 为参数),曲线 C 1 的方程为 ρ( ρ﹣ 4sin θ) =12 ,定点 A ( 6, 0),点 P 是曲线 C 1 上的动点, Q 为 AP 的中点.( 1)求点 Q 的轨迹 C 2 的直角坐标方程;( 2)直线 l 与直线 C 2 交于 A ,B 两点,若 |AB| ≥2 ,务实数 a 的取值范围.考点 : 简单曲线的极坐标方程;参数方程化成一般方程. 专题 : 坐标系和参数方程.剖析: (1)第一,将曲线 C 1 化为直角坐标方程,而后,依据中点坐标公式,成立关系,进而确立点Q 的轨迹 C 2 的直角坐标方程;(2)第一,将直线方程化为一般方程,而后,依据距离关系,确立取值范围.解答: 解:( 1)依据题意,得22﹣ 4y=12 ,曲线 C 1 的直角坐标方程为: x +y 设点 P ( x ′, y ′), Q ( x , y ),依据中点坐标公式,得,代入 x 2+y 2﹣ 4y=12 ,得点 Q 的轨迹 C 2 的直角坐标方程为: ( x ﹣3) 2+( y ﹣ 1) 2=4,( 2)直线 l 的一般方程为: y=ax ,依据题意,得,解得实数 a 的取值范围为: [0, ] .评论: 本题要点考察了圆的极坐标方程、 直线的参数方程, 直线与圆的地点关系等知识, 考察比较综合, 属于中档题,解题要点是正确运用直线和圆的特定方程求解.12.在直角坐标系 xoy中以O 为极点,x轴正半轴为极轴成立坐标系.圆 C 1,直线C 2 的极坐标方程分别为ρ=4sin θ,ρcos() =2.( Ⅰ )求C 1 与 C 2 交点的极坐标;( Ⅱ )设 P 为 C 1 的圆心, Q 为 C 1 与 C 2 交点连线的中点, 已知直线 PQ 的参数方程为( t ∈R 为参数),求 a ,b 的值.考点 : 点的极坐标和直角坐标的互化;直线与圆的地点关系;参数方程化成一般方程. 专题 : 压轴题;直线与圆.剖析: (I )先将圆 C 1,直线 C 2 化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3),进而直线 PQ 的直角坐标方程为 x ﹣y+2=0 ,由参数方程可得 y= x ﹣+1,进而结构对于 a , b 的方程组,解得 a , b 的值.解答: 解:( I )圆 C 1,直线 C 2 的直角坐标方程分别为x 2+( y ﹣2) 2=4, x+y ﹣ 4=0 ,解得 或 ,∴C 与 C 交点的极坐标为( 4, ).( 2,).12(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3), 故直线 PQ 的直角坐标方程为 x ﹣ y+2=0 ,由参数方程可得 y= x ﹣ +1,∴,解得 a=﹣ 1,b=2 .评论: 本题主要考察把极坐标方程化为直角坐标方程、把参数方程化为一般方程的方法,方程思想的应用,属于基础题.13.在直角坐标系 xOy 中, l 是过定点 P ( 4, 2)且倾斜角为 α的直线;在极坐标系(以坐标原点 O 为极点,以 x 轴非负半轴为极轴,取同样单位长度)中,曲线 C 的极坐标方程为 ρ=4cos θ( Ⅰ )写出直线 l 的参数方程,并将曲线C 的方程化为直角坐标方程;( Ⅱ )若曲线 C 与直线订交于不一样的两点 M 、 N ,求 |PM|+|PN|的取值范围.解答:解:( I )直线 l 的参数方程为( t 为参数).2曲线 C 的极坐标方程 ρ=4cos θ可化为 ρ=4 ρcos θ.把 x= ρcos θ,y= ρsin θ代入曲线 C 的极坐标方程可得 x 2+y 2=4x ,即( x ﹣ 2) 2+y 2=4.(II )把直线 l 的参数方程为 ( t 为参数)代入圆的方程可得: t 2+4( sin α+cos α) t+4=0 . ∵曲线 C 与直线订交于不一样的两点 M 、 N ,∴△ =16 ( sin α+cos α)2﹣ 16> 0, ∴sin αcos α>0,又 α∈[0,π),∴.又 t 1+t 2=﹣ 4( sin α+cos α), t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵ , ∴,∴.∴|PM|+|PN| 的取值范围是.评论:本题考察了直线的参数方程、圆的极坐标方程、直线与圆订交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,⊙C 的极坐标方程为ρ=2 sinθ.(Ⅰ)写出⊙ C 的直角坐标方程;(Ⅱ)P 为直线 l 上一动点,当P 到圆心 C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.剖析:2,把代入即可得出;.(I)由⊙ C 的极坐标方程为ρ=2 sinθ.化为ρ=2(II )设 P ,又 C .利用两点之间的距离公式可得|PC|= ,再利用二次函数的性质即可得出.解答:解:( I)由⊙ C 的极坐标方程为ρ=2 sin θ.2 2 2,∴ρ=2 ,化为 x +y =配方为=3.(II )设 P ,又 C .∴|PC|= = ≥2 ,所以当 t=0 时, |PC|获得最小值 2 .此时 P( 3,0).评论:本题考察了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考察了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2订交于A,B两点.(Ⅰ)把曲线 C1, C2的极坐标方程转变为直角坐标方程;(Ⅱ)求弦 AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.剖析:(Ⅰ )利用直角坐标与极坐标间的关系,即利用C1的直角坐标方程.(Ⅱ )利用直角坐标方程的形式,先求出圆心(长度.解答:解:(Ⅰ)曲线 C2 :( p∈R)表示直线 y=x,2ρcosθ曲线 C1:ρ=6cosθ,即ρ=62 2 2 2所以 x +y =6x 即( x﹣3) +y =92 2 2C2及曲线ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得曲线3,0)到直线的距离,最后联合点到直线的距离公式弦AB 的(Ⅱ )∵圆心( 3, 0)到直线的距离,r=3 所以弦长 AB==.∴弦 AB 的长度.评论:本小题主要考察圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的极坐标方程为ρsin(θ+)=,圆 C 的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心 C 的极坐标;(Ⅱ)当 r 为什么值时,圆 C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:计算题.剖析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的一般方程;利用同角三角函数的基本关系,消去θ可得曲线 C 的一般方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线 l 的距离的最大值,最后列出对于 r 的方程即可求出r 值.解答:解:( 1)由ρsin(θ+ ) = ,得ρ( cosθ+sin θ) =1,∴直线 l: x+y ﹣ 1=0 .由得 C:圆心(﹣,﹣).∴圆心 C 的极坐标( 1,).(2)在圆 C:的圆心到直线l 的距离为:∵圆 C 上的点到直线l 的最大距离为3,∴.r=2﹣∴当 r=2 ﹣时,圆C上的点到直线l 的最大距离为3.评论:本小题主要考察坐标系与参数方程的有关知识,详细波及到极坐标方程、参数方程与一般方程的互化,点到直线距离公式、三角变换等内容.17.选修 4﹣ 4:坐标系与参数方程在直角坐标 xOy 中,圆 C 1: x 2+y 2=4,圆 C 2:(x ﹣ 2) 2+y 2=4.( Ⅰ )在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1, C 2 的极坐标方程,并求出圆 C 1, C 2的交点坐标(用极坐标表示) ; ( Ⅱ )求圆 C 1 与 C 2 的公共弦的参数方程.考点 : 简单曲线的极坐标方程;直线的参数方程. 专题 : 计算题;压轴题.剖析:(I )利用,以及 x 2 2 2C 1, C 2 的极坐标方程,求出圆 C 1, C 2 的交点极坐标,+y =ρ,直接写出圆 而后求出直角坐标(用坐标表示) ;(II )解法一:求出两个圆的直角坐标,直接写出圆 C 1 与 C 2 的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,而后求出圆 C 1 与 C 2 的公共弦的参数方程.解答:解:( I )由 222, x +y =ρ,可知圆 ,的极坐标方程为 ρ=2,圆 ,即的极坐标方程为 ρ=4cos θ,解得: ρ=2,,故圆 C 1, C 2 的交点坐标( 2,),( 2, ).(II )解法一:由得圆 C 1, C 2 的交点的直角坐标( 1,),(1,).故圆 C 1, C 2 的公共弦的参数方程为(或圆 C 1, C 2 的公共弦的参数方程为)(解法二)将 x=1 代入得 ρcos θ=1进而于是圆 C 1, C 2 的公共弦的参数方程为 .评论: 本题考察简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考察计算能力.。

极坐标系与参数方程知识点和解题类型最全总结(附详细答案)

极坐标系与参数方程知识点和解题类型最全总结(附详细答案)

第19讲 极坐标系与参数方程(后附详解答案)一、平面直角坐标系中的伸缩变换1.在同一平面直角坐标系中,直线2x -y =4变成x ′-y ′=2的伸缩变换是( )A .⎩⎪⎨⎪⎧x ′=x ,y ′=2y B .⎩⎪⎨⎪⎧x ′=12x ,y ′=yC .⎩⎪⎨⎪⎧ x ′=x ,y ′=12y D .⎩⎪⎨⎪⎧x ′=12x ,y ′=4y2.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程 .二、极坐标与直角坐标的互化1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A .(1,π2)B .(1,-π2) C .(1,0) D .(1,π)2.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程为( )A .ρ=1B .ρ=cos θC .ρ=-1cos θD .ρ=1cos θ3.在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为( )A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)4.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点、x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为5.在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =____.6.已知直线l 的极坐标方程为2ρsin(θ-π4)=2,点A 的极坐标为A (22,7π4),则点A 到直线l 的距离为_____.1θθ=-||AB |21ρρ=7.圆ρ=5cos θ-53sin θ的圆心的极坐标为________.8.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π3(θ∈R )的距离是________.9.在极坐标系中A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3两点间的距离为________.10.曲线C 1:θ=π6与曲线C 2:ρsin ⎝⎛⎭⎫θ+π6=32的交点坐标为________.三、极坐标方程的综合应用1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.2.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π3,直线l 的直角坐标方程为y =33x . (1)求曲线C 1和直线l 的极坐标方程;(2)已知直线l 分别与曲线C 1,曲线C 2相交于异于极点的A ,B 两点,若A ,B 的极径分别为ρ1,ρ2,求|ρ2-ρ1|的值.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线C的极坐标方程为ρ=21-sin θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线C 于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点A ,B ,求△AOB 的面积.5.在直角坐标系xOy 中,已知圆C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),点P 在直线l :x +y -4=0上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求圆C 和直线l 的极坐标方程;(2)射线OP 交圆C 于点R ,点Q 在射线OP 上,且满足|OP |2=|OR |·|OQ |,求点Q 的轨迹的极坐标方程.6.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .7.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ).(1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.8.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.四、直角坐标方程与参数方程的互化1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为________.2.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)的离心率为________.3.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos2θ+1(θ为参数),则曲线C 的普通方程为________.4.求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.条件探究 把举例说明1中“曲线⎩⎪⎨⎪⎧ x =3cos α,y =3sin α(α为参数)”改为“⎩⎪⎨⎪⎧x =1-sin2θ,y =sin θ+cos θ.”其他条件不变,求两条曲线交点的坐标.5.在平面直角坐标系xOy 中,直线l :⎩⎨⎧x =1+35t ,y =45t(t 为参数),与曲线C :⎩⎪⎨⎪⎧x =4k 2,y =4k(k 为参数)交于A ,B 两点,求线段AB 的长.6.已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t 为参数).写出椭圆C 的参数方程及直线l 的普通方程和直线的标准参数方程.五、直线参数方程的应用1.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值.2.在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cosα,y =t sinα(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.3.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t 为参数).在以原点O 为极点,x轴正半轴为极轴的极坐标中,圆C 的方程为ρ=25s inθ.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(3,5),圆C 与直线l 交于A ,B 两点,求|P A|+|P B|的值.4.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,a ∈[0,π)).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围; (2)若直线l 与曲线C 交于不同的两点A ,B ,求|AB |的最小值.5.在平面直角坐标系xOy 中,已知过点P (0,-1)的直线l 的参数方程为⎩⎨⎧x =12t ,y =-1+32t (t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为2a sin θ-ρcos 2θ=0(a >0).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 分别交于点M ,N ,且|PM |,|MN |,|PN |成等比数列,求a 的值.六、极坐标与参数方程的综合应用1.坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =1+sin φ(φ为参数),l 1,l 2为过点O 的两条直线,l 1交M 于A ,B 两点,l 2交M 于C ,D 两点,且l 1的倾斜角为α,∠AOC =π6.(1)求l 1和M 的极坐标方程;(2)当α∈(0,π6]时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.2.已知曲线C 1的参数方程为⎩⎨⎧x =-t ,y =3t(t 为参数),A 为当t =1时曲线C 1上的点;B 为当t =-1时曲线C 1上的点.以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=64+5sin 2θ.(1)求A ,B 的极坐标;(2)设M 是曲线C 2上的动点,求|MA |2+|MB |2的最大值.3.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),曲线C 2的直角坐标方程为x 2+(y -2)2=4.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=α,0<α<π.(1)求曲线C 1,C 2的极坐标方程;(2)设A ,B 分别为射线l 与曲线C 1,C 2除原点之外的交点,求|AB |的最大值.4.在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程;(2)过原点且倾斜角为α⎝⎛⎭⎫π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.5.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4+θ.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于M ,N 两点,求|MN |的值.6.在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cos θ1-cos 2θ.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.7.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.8.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+2cos β,y =2sin β(β为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2和C 3的极坐标方程分别为θ=α(ρ∈R )和θ=π2+α(ρ∈R ),其中0≤α<π2.(1)求曲线C 1的普通方程和曲线C 2的参数方程;(2)设曲线C 2与曲线C 1交于A ,B 两点,曲线C 3与曲线C 1交于C ,D 两点,求四边形ACBD 的面积的最大值和最小值.9.已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)直接写出直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.10.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t si nα,(t 为参数),l 与C 交于A ,B 两点,|AB|=10,求l 的斜率.详解答案极坐标系与参数方程一、平面直角坐标系中的伸缩变换1.[解析] (1)设其伸缩变换为φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则λx -μy =2,2λx -2μy =4,于是⎩⎪⎨⎪⎧2λ=2,-2μ=-1,解得⎩⎪⎨⎪⎧ λ=1,μ=12.所以φ:⎩⎪⎨⎪⎧x ′=x ,y ′=12y .故选C . 2.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.二、极坐标与直角坐标的互化1.[解析] 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π2),故应选B .2.[解析] 如图,设直线l 上任意一点为C (ρ,θ),由图可知OP OC =cos(π-θ)=1ρ,ρ=-1cos θ,故选C .3.[解析] ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1,所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6).故选A .4.[解析] 因为x 2+y 2=ρ2,x =ρcos θ,所以代入直角坐标方程并整理,得ρ2-2ρcos θ=0,所以ρ-2cos θ=0,即极坐标方程为ρ=2cos θ.5.[解析] 本题主要考查极坐标方程与直角坐标方程的互化. 由⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y2可将直线ρcos θ+ρsin θ=a 化为x +y -a =0,将ρ=2cos θ,即ρ2=2ρcos θ化为x 2+y 2=2x ,整理成标准方程为(x -1)2+y 2=1.又∵直线与圆相切,∴圆心(1,0)到直线x +y -a =0的距离d =|1-a |2=1,解得a =1±2,∵a >0,∴a =1+ 2.6.[解析] 由2ρsin(θ-π4)=2⇒y -x =1⇒x -y +1=0,而点A 对应的直角坐标为A (2,-2),故点A (2,-2)到直线x -y +1=0距离为|2+2+1|2=522.7.解析:将方程ρ=5cos θ-53sin θ两边都乘以ρ, 得ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心坐标为⎝⎛⎭⎫52,-532,化成极坐标为⎝⎛⎭⎫5,5π3. 答案:⎝⎛⎭⎫5,5π3(答案不唯一) 8.解析:设圆心到直线θ=π3(θ∈R )的距离为d ,因为圆的半径为2,d =2·sin π6=1.答案:19.答案 6解析 解法一:(数形结合)在极坐标系中,A ,B 两点如图所示, |AB |=|OA |+|OB |=6.解法二:∵A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3的直角坐标为A (1,-3), B (-2,23),∴|AB |=(-2-1)2+(23+3)2=6.10.答案 ⎝⎛⎭⎫1,π6 解析 将θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32,得ρsin π3=32,所以ρ=1,所以曲线C 1与曲线C 2的交点坐标为⎝⎛⎭⎫1,π6.三、极坐标方程的综合应用1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22, 即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.解 (1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),其普通方程为x 2+(y -1)2=1,极坐标方程为ρ=2sin θ.因为直线l 的直角坐标方程为y =33x , 故直线l 的极坐标方程为θ=π6(ρ∈R ).(2)曲线C 1的极坐标方程为ρ=2sin θ, 直线l 的极坐标方程为θ=π6,将θ=π6代入C 1的极坐标方程得ρ1=1,将θ=π6代入C 2的极坐标方程得ρ2=4,∴|ρ2-ρ1|=3. 3.解 (1)∵ρ=x 2+y 2,ρsin θ=y ,∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.[解析] (1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y-1)2=5.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ, ∴曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,曲线C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1. 同理可得|OB |=2+ 3. 又∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534.∴△AOB 的面积为8+534.5.[解析] (1)圆C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的直角坐标方程为x 2+y 2=4,∴圆C 的极坐标方程为ρ=2.直线l 的极坐标方程ρ=4sin θ+cos θ.(2)设点P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ), ∵ρ1=4sin θ+cos θ,ρ2=2,又|OP |2=|OR |·|OQ |,即ρ21=ρ·ρ2, ∴ρ=ρ21ρ2=16(sin θ+cos θ)2×12,∴ρ=81+sin2θ.∴点Q 的轨迹的极坐标方程为ρ=81+sin2θ.6.解:(1)消去参数t 得到C 1的普通方程:x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0, 解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1. 7.解:(1)C 1的普通方程为x 22+y 2=1,C 1的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ-2=0, C 2的极坐标方程为ρ=2sin θ.(2)联立θ=α(ρ≥0)与C 1的极坐标方程得|OA |2=21+sin 2α,联立θ=α(ρ≥0)与C 2的极坐标方程得|OB |2=4sin 2α, 则|OA |2+|OB |2=21+sin 2α+4sin 2α =21+sin 2α+4(1+sin 2α)-4. 令t =1+sin 2α,则|OA |2+|OB |2=2t +4t -4,当0<α<π2时,t ∈(1,2).设f (t )=2t +4t -4,易得f (t )在(1,2)上单调递增,∴2<|OA |2+|OB |2<5,故|OA |2+|OB |2的取值范围是(2,5).8.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.四、直角坐标方程与参数方程的互化1.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=02.答案 45解析 将⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ消去参数θ,得椭圆x 225+y 29=1.3.答案 y =2-2x 2(-1≤x ≤1)解析 由⎩⎪⎨⎪⎧x =sin θ,y =cos2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).4.解 将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α,得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.条件探究 解 由(sin θ+cos θ)2=1+sin2θ=2-(1-sin2θ),得 y 2=2-x .又因为x =1-sin2θ∈[0,2],所以所求普通方程为y 2=2-x ,x ∈[0,2].解方程组⎩⎪⎨⎪⎧x +y -1=0,y 2=2-x ,得⎩⎪⎨⎪⎧x =1+52,y =1-52或⎩⎪⎨⎪⎧x =1-52,y =1+52,又因为x ∈[0,2],所以交点坐标为⎝⎛⎭⎪⎫1+52,1-52.5.解 将直线l 的参数方程化为普通方程,得4x -3y =4,将曲线C 的参数方程化为普通方程,得y 2=4x ,联立方程⎩⎪⎨⎪⎧ 4x -3y =4,y 2=4x ,解得⎩⎪⎨⎪⎧x =4,y =4或⎩⎪⎨⎪⎧x =14,y =-1.所以A (4,4),B ⎝⎛⎭⎫14,-1或A ⎝⎛⎭⎫14,-1,B (4,4). 所以AB =⎝⎛⎭⎫4-142+(4+1)2=254. 6.解:(1)椭圆C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0.直线l 的标准参数方程为)(2132233为参数t ty t x ⎪⎪⎩⎪⎪⎨⎧+=+-= 五、直线参数方程的应用1.解:(1)由直线l 过点A 可得2cos ⎝⎛⎭⎫π4-π4=a ,故a = 2. 则易得直线l 的直角坐标方程为x +y -2=0,根据点到直线的距离公式可得曲线C 1上的点到直线l 的距离 d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,其中sin φ=277,cos φ=217,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数),又易知曲线C 1的普通方程为x 24+y 23=1,把直线l 1的参数方程代入曲线C 1的普通方程可得72t 2+72t -5=0,∴t 1t 2=-107,根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 2.[解] (1)由曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=π3时,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝⎛⎭⎫92,332.(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cosαt +8=0, 则|P A |·|PB |=|t 1t 2|=⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪8(1+tan 2α)1-tan 2α,由已知得tanα=2,故|P A |·|PB |=403. 3.[解](1)由⎩⎨⎧x =3-22t ,y =5+22t ,两式相加得直线l 的普通方程为x +y -3-5=0.又由ρ=25s inθ,得ρ2=25ρs inθ,所以圆C 的直角坐标方程为x 2+y 2-25y =0,即x 2+(y -5)2=5.(2)把直线l 的参数方程代入圆C 的直角坐标方程,得⎝⎛⎭⎫3-22t 2+⎝⎛⎭⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实数根,所以t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),A ,B 两点对应的参数分别为t 1,t 2,所以|P A|+|P B|=|t 1|+|t 2|=t 1+t 2=3 2.4.[解析] (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ,化为直角坐标方程,得x 2=4y . ∵M (x ,y )为曲线C 上任意一点,∴x +y =x +14x 2=14(x +2)2-1,∴x +y 的取值范围是[-1,+∞).(2)将⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α代入x 2=4y ,得t 2cos 2α-4t sin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4t sin α-4=0的两个根为t 1,t 2,则t 1+t 2=4sin αcos 2α,t 1t 2=-4cos 2α,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB |取得最小值4.5.解:(1)∵曲线C 的方程为2a sin θ-ρcos 2θ=0(a >0), ∴2aρsin θ-ρ2cos 2θ=0,即x 2=2ay (a >0).(2)将⎩⎨⎧x =12t ,y =-1+32t 代入x 2=2ay ,得t 2-43at +8a =0,得⎩⎨⎧Δ=(-43a )2-4×8a >0,①t 1+t 2=43a ,t 1t 2=8a .∵a >0,∴解①得a >23.∵|PM |,|MN |,|PN |成等比数列, ∴|MN |2=|PM |·|PN |,即|t 1-t 2|2=t 1t 2, ∴(t 1+t 2)2-4t 1t 2=t 1t 2,即(43a )2-40a =0, 解得a =0或a =56.∵a >23,∴a =56.六、极坐标与参数方程的综合应用1.[解析] (1)依题意,直线l 1的极坐标方程为θ=α(ρ∈R ).由⎩⎪⎨⎪⎧x =1+cos φ,y =1+sin φ消去φ,得(x -1)2+(y -1)2=1. 将x =ρcos θ,y =ρsin θ代入上式,得ρ2-2ρcos θ-2ρsin θ+1=0. 故M 的极坐标方程为ρ2-2ρcos θ-2ρsin θ+1=0.(2)依题意可设A (ρ1,α),B (ρ2,α),C (ρ3,α+π6),D (ρ4,α+π6),且ρ1,ρ2,ρ3,ρ4均为正数.将θ=α代入ρ2-2ρcos θ-2ρsin θ+1=0,得ρ2-2(cos α+sin α)ρ+1=0, 所以ρ1+ρ2=2(cos α+sin α),同理可得,ρ3+ρ4=2[cos(α+π6)+sin(α+π6)],所以点O 到A ,B ,C ,D 四点的距离之和为ρ1+ρ2+ρ3+ρ4=2(cos α+sin α)+2[cos(α+π6)+sin(α+π6)]=(1+3)sin α+(3+3)cos α=2(1+3)sin(α+π3).因为α∈(0,π6], 所以当sin(α+π3)=1,即α=π6时,ρ1+ρ2+ρ3+ρ4取得最大值2+2 3. 所以点O 到A ,B ,C ,D 四点距离之和的最大值为2+2 3.2.[解] (1)当t =1时,⎩⎨⎧x =-1,y =3, 即点A 的直角坐标为(-1,3); 当t =-1时,⎩⎨⎧x =1,y =-3,即点B 的直角坐标为(1,-3). ∴点A 的极坐标为⎝⎛⎭⎫2,2π3,点B 的极坐标为⎝⎛⎭⎫2,5π3. (2)由ρ=64+5sin 2θ,得ρ2(4+5sin 2θ)=36, ∴曲线C 2的直角坐标方程为x 29+y 24=1. 设曲线C 2上的动点M 的坐标为(3cosα,2sinα),则|MA |2+|MB |2=10cos 2α+16≤26,当且仅当cosα=±1时等号成立,∴|MA |2+|MB |2的最大值为26.3.解:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),消去参数t 得,x 2+(y -1)2=1,即 x 2+y 2-2y =0,∴曲线C 1的极坐标方程为ρ=2sin θ.由曲线C 2的直角坐标方程x 2+(y -2)2=4,得x 2+y 2-4y =0,∴曲线C 2的极坐标方程为ρ=4sin θ.(2)联立⎩⎪⎨⎪⎧ θ=α,ρ=2sin θ,得A (2sin α,α),∴|OA |=2sin α, 联立⎩⎪⎨⎪⎧θ=α,ρ=4sin θ,得B (4sin α,α),∴|OB |=4sin α, ∴|AB |=|OB |-|OA |=2sin α, ∵0<α<π,∴当α=π2时,|AB |有最大值,最大值为2. 4.解:(1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ,两边同乘以ρ,得ρ2cos 2θ=ρsin θ,故曲线C 2的直角坐标方程为x 2=y .(2)射线l 的极坐标方程为θ=α,π6<α≤π4, 把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, ∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α. ∵π6<α≤π4,∴|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4. 5.解:(1)易得直线l 的普通方程为3x -y -3=0.∵ρ=22cos ⎝⎛⎭⎫π4+θ=2(cos θ-sin θ),∴ρ2=2(ρcos θ-ρsin θ), ∴x 2+y 2=2(x -y ),即(x -1)2+(y +1)2=2,∴曲线C 的直角坐标方程为(x -1)2+(y +1)2=2.(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得t 2+3t -1=0,此方程的两根分别为直线l 与曲线C 的交点M ,N 对应的参数t M ,t N .∵t M +t N =-3,t M t N =-1,∴|MN |=|t M -t N |=(t M +t N )2-4t M t N =7.6.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数). ∵ρ=8cos θ1-cos 2θ,∴ρsin 2θ=8cos θ,∴ρ2sin 2θ=8ρcos θ, 即曲线C 的直角坐标方程为y 2=8x .(2)解法一:当α=π4时,直线l 的参数方程为⎩⎨⎧ x =1+22t ,y =22t(t 为参数),代入y 2=8x , 可得t 2-82t -16=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=82,t 1t 2=-16,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=8 3.又点O 到直线AB 的距离d =1×sin π4=22, ∴S △AOB =12|AB |×d =12×83×22=2 6. 解法二:当α=π4时,直线l :y =x -1, 设A (x 1,y 1),B (x 2,y 2),M (1,0),由⎩⎪⎨⎪⎧y 2=8x ,y =x -1得,y 2-8y -8=0. 由根与系数的关系,得⎩⎪⎨⎪⎧y 1+y 2=8,y 1y 2=-8, 所以S △AOB =12|OM ||y 1-y 2|=12×1×(y 1+y 2)2-4y 1y 2 =12×82-4×(-8) =2 6.7.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t , 得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos ⎝⎛⎭⎫θ+π4=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎫2,π2, 设点P 的坐标为(-5+2cos t,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2= ⎪⎪⎪⎪-6+2cos ⎝⎛⎭⎫t +π42. 所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4. 8.解:(1)曲线C 1的普通方程为(x -1)2+y 2=4,由曲线C 2的极坐标方程为θ=α(ρ∈R )可知,曲线C 2是经过原点且倾斜角为α的直线,所以曲线C 2的参数方程为⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数). (2)解法一 把⎩⎪⎨⎪⎧x =t cos α,y =t sin α代入(x -1)2+y 2=4, 得t 2-2t cos α-3=0,设方程t 2-2t cos α-3=0的两根分别为t 1,t 2,则t 1+t 2=2cos α,t 1t 2=-3,|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=2cos 2α+3,同理,由曲线C 3的极坐标方程为θ=π2+α(ρ∈R ), 可得|CD |=2 cos 2⎝⎛⎭⎫π2+α+3=2 sin 2α+3,又易知AB ⊥CD ,所以四边形ACBD 的面积S =12|AB ||CD |=2cos 2α+3sin 2α+3=212+14sin 22α,∵0≤α<π2, ∴当2α=π2,即α=π4时,四边形ACBD 的面积取得最大值,最大值为7; 当2α=0,即α=0时,四边形ACBD 的面积取得最小值,最小值为4 3.解法二 将x =ρcos θ,y =ρsin θ代入(x -1)2+y 2=4,整理得曲线C 1的极坐标方程为ρ2-2ρcos θ-3=0,把θ=α代入,得ρ2-2ρcos α-3=0,ρ1+ρ2=2cos α,ρ1ρ2=-3,|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=2cos 2α+3,同理,把θ=π2+α代入, 得|CD |=2cos 2⎝⎛⎭⎫π2+α+3=2sin 2α+3, 由曲线C 2和C 3的极坐标方程可知AB ⊥CD , 所以四边形ACBD 的面积S =12|AB ||CD |=2cos 2α+3·sin 2α+3=2 12+14sin 22α, ∵0≤α<π2,∴当2α=π2, 即α=π4时,四边形ACBD 的面积取得最大值,最大值为7; 当2α=0,即α=0时,四边形ACBD 的面积取得最小值,最小值为4 3.9.[解析] (1)由⎩⎪⎨⎪⎧x =2+t y =2-2t(t 为参数),得l 1的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线l 1的极坐标方程为2ρcos θ+ρsin θ-6=0,由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4,所以曲线C的直角坐标方程为x 2+y 24=1. (2)由(1)知直线l 1的普通方程为2x +y -6=0,设曲线C 上任意一点P (cos α,2sin α),点P 到直线l 1的距离d =|2cos α+2sin α-6|5. 由题意得|P A |=d sin60°=415⎪⎪⎪⎪2sin (α+π4)-315, ∴当sin(α+π4)=-1时,|P A |取得最大值,最大值为415(3+2)15. 10.[解] (1)由x =ρcos θ,y =ρs inθ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)解法一:由直线l 的参数方程⎩⎪⎨⎪⎧ x =t cos α,y =t si nα(t 为参数) 可知直线l 的普通方程为y =kx ,其中k 为直线l 的斜率,则点C(-6,0)与直线l 的距离d =|-6k |k 2+1. 因为|AB|=10,所以⎝⎛⎭⎫1022+36k 2k 2+1=25,故直线l 的斜率为153或-153. 解法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0. 于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB|=10得cos 2α=38,t anα=±153. 所以l 的斜率为153或-153.。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

(完整版)高中数学极坐标与参数方程知识点

(完整版)高中数学极坐标与参数方程知识点

极坐标与参数方程知识点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数)(或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标及参数方程知识点及高考题汇编DOC.doc

极坐标及参数方程知识点及高考题汇编DOC.doc

极坐标及参数方程知识点及例题一、极坐标知识点1.极坐标系的概念:在平面内取一个定点 O,从 O 引一条射线 Ox,选定一个单位长度以及计算角度的正方向 (通常取逆时针方向为正方向 ),这样就建立了一个极坐标系, O 点叫做极点,射线 Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .2.点 M 的极坐标:设 M 是平面内一点,极点 O 与点 M 的距离| OM |叫做点 M 的极径,记为;以极轴Ox 为始边,射线OM 为终边的xOM 叫做点M 的极角,记为。

有序数对(,) 叫做点M 的极坐标,记为M ( ,) .极坐标( , )与( , 2k )(k Z) 表示同一个点。

极点O 的坐标为(0, )( R ) .3.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式2 x2 y 2 , x cos ,y sin , tan y( x 0) x4.曲线的极坐标方程:1.直线的极坐标方程:若直线过点M ( 0 , 0 ) ,且极轴到此直线的角为,则它的方程为:sin()0 sin(0)几个特殊位置的直线的极坐标方程( 1)直线过极点(2)直线过点M(a,0)且垂直于极轴(3)直线过M (b,) 且平2 行于极轴方程:( 1)(R )或写成及(2)cos a(3)ρsinθ=b2.圆的极坐标方程: 若圆心为 M ( 0 , 0 ) ,半径为 r 的圆方程为:22 0 cos()2 r 2几个特殊位置的圆的极坐标方程( 1)当圆心位于极点, r 为半径 (2)当圆心位于 C (a,0) (a>0),a 为半径 ( 3) 当圆心位于 C(a,) (a 0) , a 为半径2 方程: (1) r (2)2acos (3)2asin5.在极坐标系中, (0) 表示以极点为起点的一条射线;(R)表示过极点的一条直线 .极坐标方程典型例题考点一 极坐标与直角坐标的互化1.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为( )A . (2,)B . (2,)C .(2,2)D . (2, 2k),( k Z) 33332.点 2, 2 的极坐标为。

(完整版)极坐标与参数方程知识点、题型总结

(完整版)极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。

,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。

(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结知识点和题型总结:一、伸缩变换伸缩变换是指点P(x,y)在变换作用下对应到点P'(x',y'),其中x' = λx (λ。

0),y' = μy (μ。

0)。

这个变换称为伸缩变换。

二、极坐标和直角坐标的转换1、极坐标定义在平面上,点M的极坐标表示为(ρ,θ),其中ρ表示OM 的长度,θ表示∠MOx的角度,且θ∈[0,2π),ρ≥0.点P的直角坐标为(x,y),极坐标为(ρ,θ)。

2、直角坐标转换为极坐标x = ρcosθ,y = ρsinθ。

3、极坐标转换为直角坐标ρ = √(x²+y²),tanθ = y/x (x≠0),x = ρcosθ,y = ρsinθ。

4、直线和圆的极坐标方程方法一:先求出直角坐标方程,再把它化为极坐标方程。

方法二:1)若直线过点M(ρ,θ),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α) = ρsin(θ-α)。

2)若圆心为M(ρ,θ),半径为r的圆方程为ρ²-2ρrcos(θ-θ)+ρ²-r² = 0.三、参数方程1、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2、常见曲线的参数方程1)直线的标准参数方程过定点(x,y),倾角为α的直线:x = x+tcosα,y = y+tsinα (t为参数)。

其中参数t的几何意义是点P(x,y),点M对应的参数为t,则PM = |t|。

直线上P1,P2对应的参数是t1,t2.|P1P2| = |t1-t2| = √((x1-x2)²+(y1-y2)²)。

参数方程与极坐标方程例题和知识点总结

参数方程与极坐标方程例题和知识点总结

参数方程与极坐标方程例题和知识点总结一、参数方程参数方程是在数学中常用的一种表示曲线的方式,它通过引入一个参数来描述曲线上点的坐标。

(一)参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标$x$、$y$都是某个变数$t$的函数:\\begin{cases}x = f(t) \\y = g(t)\end{cases}\并且对于$t$的每一个允许的取值,由方程组所确定的点$(x,y)$都在这条曲线上,那么这个方程组就叫做曲线的参数方程,联系变数$x$、$y$的变数$t$叫做参变数,简称参数。

(二)参数方程的常见形式1、直线的参数方程若直线经过点$M(x_0,y_0)$,倾斜角为$\alpha$,则直线的参数方程为:\\begin{cases}x = x_0 + t\cos\alpha \\y = y_0 + t\sin\alpha\end{cases}\($t$为参数)2、圆的参数方程圆心在点$(a,b)$,半径为$r$的圆的参数方程为:\\begin{cases}x = a + r\cos\theta \\y = b + r\sin\theta\end{cases}\($\theta$为参数)3、椭圆的参数方程焦点在$x$轴上的椭圆:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$ ($a > b > 0$)的参数方程为:\\begin{cases}x = a\cos\varphi \\y = b\sin\varphi\end{cases}\($\varphi$为参数)(三)参数方程的应用1、求曲线的轨迹方程例:已知点$M(x,y)$在圆$x^2 + y^2 = 4$上运动,求点$N(2x 3, 2y + 4)$的轨迹方程。

设点$M(2\cos\theta, 2\sin\theta)$,则点$N(4\cos\theta 3, 4\sin\theta + 4)$所以$x = 4\cos\theta 3$,$y = 4\sin\theta + 4$消去参数$\theta$可得:$(x + 3)^2 +(y 4)^2 = 16$2、参数方程在物理中的应用在研究物体的运动时,常常使用参数方程来描述物体的位置、速度等随时间的变化关系。

专题 极坐标与参数方程 知识点及典例

专题  极坐标与参数方程  知识点及典例

专题十四------极坐标与参数方程一、极坐标系的概念1、极坐标系如图所示,在平面内取一个定点O ,点O 叫做_________,自极点O 引一条射线ox ,叫做________;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.2、极坐标设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的__________,记为ρ;以极轴ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的________,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.【一般地,不作特殊说明时,我们认为可取任意实数.】①特别地,当点M 在极点时,它的极坐标为(0,θ)()R θ∈.和直角坐标不同,平面内一个点的极坐标有无数种表示.②如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)(0)ρθρ≥,于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)xy 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ⎧+=⎪⎨=≠⎪⎩在一般情况下,由tan θ确定角时,要根据点M 所在的直角坐标象限来确定角的大小.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆圆心为(,0)r ,半径为r 的圆圆心为(,)2r π,半径为r 的圆过极点,倾斜角为α的直线过点(,0)a ,与极轴垂直的直线过点(,)2a π,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,)ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.典型例题:1、点A 的极坐标是⎪⎭⎫⎝⎛65,2π,则点A 的直角坐标是_______________.2、点A 的极坐标是⎪⎭⎫ ⎝⎛3,2π,则点A 的直角坐标是_______________.3、点M 的直角坐标是()3,1-,则点M 的极坐标是_______________.4、点M 的直角坐标是()2,32-,则点M 的极坐标是_______________.5、在极坐标系中,将下列曲线的极坐标化为直角坐标①:1C θρsin =②:2C 2=ρ③:3C 4cos(22π+=θρ6、圆半径为1,圆心的极坐标是()π,1,则这个圆的极坐标方程是_________________7、在直角坐标系中,将下列曲线的直角坐标化为极坐标①:1C 4=-y x ②:2C 5)2()1(22=++-y x ③:3C 191622=+y x 8、极坐标中ρ的应用(1)在直角坐标系xoy 中,曲线:1C 4)2(22=-+y x ,曲线:2C 16)4(22=-+y x ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.①求曲线21,C C 的极坐标方程;②射线3π=θ与1C 交于点A ,与2C 交于点B ,且A,B 点异于原点O ,求||AB 的长.(2)在直角坐标系xoy 中,曲线C 的直角坐标方程为25)4()3(22=-+-y x ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.①求曲线C 的极坐标方程;②设:1l 6π=θ,:2l 3π=θ,若21,l l 与曲线C 分别交于异于原点O 的A ,B 两点,求AOB S ∆.二、平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y y λλϕμμ'=>⎧⎨'=>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在直角坐标系中,求下列方程所对应的图形经过伸缩变换2:3x xy y ϕ'=⎧⎨'=⎩后的方程?(1)230x y +=22(2)1x y +=例2:在同一平面坐标系中,经过伸缩变换3:x xy yϕ'=⎧⎨'=⎩后,曲线C 变为了曲线22:99C x y '''+=,求变换前的曲线C 的方程?练习1、在直角坐标系xoy 中,曲线1C 的直角坐标方程为122=+y x ,曲线1C 经过坐标变换⎩⎨⎧='='yy xx 2后得到的轨迹为曲线2C .①求曲线2C 的极坐标方程;②以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.射线6π=θ与1C 交于点A ,与2C 交于点B ,且A,B 点异于原点O ,求||AB 的长.三、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

极坐标和参数方程知识点+典型例题及其详解(K12教育文档)

极坐标和参数方程知识点+典型例题及其详解(K12教育文档)

极坐标和参数方程知识点+典型例题及其详解(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(极坐标和参数方程知识点+典型例题及其详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为极坐标和参数方程知识点+典型例题及其详解(word版可编辑修改)的全部内容。

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○,1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.错误!.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数)(或θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:ptypt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向).对于平面内的任意一点M,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标。

专题1极坐标与参数方程知识点及典型例题(原卷版)

专题1极坐标与参数方程知识点及典型例题(原卷版)

专题1极坐标与参数方程知识点及典型例题(原卷版)知识点精讲一.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.1.已知曲线通过伸缩变换后得到的曲线方程为( ) A .B .C .D .2.将正弦曲线作如下变换:得到的曲线方程为() A . B .C .D . 3sin?2Y X =3.在同一平面直角坐标系中,将曲线23y sin x =按伸缩变换变换后为( ) A .B .94y sin x =C .4y sinx =D .9y sinx =4.在同一平面直角坐标系中,将直线按:变换后得到的直线为l ,则直线l 的方程( ) A .440x y +-= B .440x y --= C .440x y --=D .440x y ++=二、极坐标系在平面上取一个定点,由点出发的一条射线 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点称为极点,称为极轴.平面上任一点M 的位置可以由线段的长度和从到的角度 (弧度制)来刻画(如图16-31和图16-32所示).这两个实数组成的有序实数对称为点M 的极坐标. 称为极径,称为极角.5.下列点不在曲线上的是( ) A . B . C .D .三、极坐标与直角坐标的互化设为平面上的一点,其直角坐标为,极坐标为,由图16-31和图16-32可知,下面的关系式成立:或 (对也成立).(,)M ρθ图 16-31图 16-327.点的直角坐标为,则点的极坐标可以为( ) A . B . C .D .8.若点P 的直角坐标为(,-),则它的极坐标可表示为( ) A .(2,)B .(2,)C .(2,)D .(2,)9.已知点的极坐标为,则它的直角坐标是( ) A .B .C .D .10.已知点P 的极坐标为,则它的直角坐标为( ) A .B .C .D .四、极坐标的几何意义——表示以为圆心,为半径的圆;——表示过原点(极点)倾斜角为的直线,为射线;2cos a ρθ=表示以为圆心过点的圆.(可化直角坐标: 22cos a ρρθ=.)11.在极坐标系下,已知圆:cos sin ρθθ=+和直线:20x y -+=. (Ⅰ)求圆的直角坐标方程和直线的极坐标方程; (Ⅱ)求圆上的点到直线的最短距离.12.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin =. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.五、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为 ,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即. 记上式的比值为,整理后得,也成立,故直线的参数方程为(为参数,为倾斜角,直线上定点000(,)M x y ,动点 ,为的数量,向上向右为正(如图16-33所示).13.已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的参数方程为(为参数),曲线的极坐标方程为,求曲线被直线截得的弦长.14.在直角坐标系xOy 中,直线l 的参数方程为(t 是参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为4πρθ⎛⎫=-⎪⎝⎭. (Ⅰ)写出直线l 的普通方程、曲线C 的参数方程;(Ⅱ)过曲线C 上任意一点A 作与直线l 的夹角为45°的直线,设该直线与直线l 交于点B ,求的最值.15.以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l 的参数方程为(为参数,),抛物线C 的普通方程为. (1)求抛物线C 的准线的极坐标方程;(2)设直线l 与抛物线C 相交于A ,B 两点,求的最小值及此时的值.16.在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.六、圆的参数方程若圆心为点00(,)M x y ,半径为,则圆的参数方程为.17.已知曲线的参数方程为(为参数),将曲线上所有点的横坐标伸长到原来的2倍,纵坐标伸长到原来的倍,得到曲线. (Ⅰ)求曲线的普通方程;(Ⅱ)已知点()1,1B ,曲线与轴负半轴交于点, 为曲线上任意一点, 求的最大值. 18.(本小题满分10分)已知曲线的参数方程为(为参数),曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由.七、椭圆的参数方程椭圆的参数方程为(为参数,).19.在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,直线的极坐标方程为. (1)写出曲线的极坐标方程并指出它是何种曲线;(2)设与曲线交于、两点,与曲线交于、两点,求四边形ABCD 面积的取值范围.. 20.(本小题满分10分) 选修4-4:坐标系与参数方程已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点. (Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程; (Ⅱ)在(I )的条件下,设直线与圆锥曲线交于两点,求弦的长.八、双曲线的参数方程 双曲线的参数方程为.23.已知双曲线:(为参数),则该双曲线的离心率为______. 24.直线(是参数)与曲线(是参数)的交点个数为________.九、抛物线的参数方程抛物线的参数方程为(为参数,参数的几何意义是抛物线上的点与顶点连线的斜率的倒数). 23.在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为cos 4πρθ⎛⎫-= ⎪⎝⎭若直线交曲线于,两点,求线段的长. 24.在平面直角坐标系中,曲线C 的参数方程为(t 为参数),直线过点且倾斜角为,以坐标原点O 为极点,x 轴正半轴为极轴,取相同的单位长度建立极坐标系. (1)写出曲线C 的极坐标方程和直线的参数方程; (2)若直线l 与曲线C 交于两点,求的值.十.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标。

这样建立的坐标系叫做极坐标系。

2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.3、直线相对于极坐标系的几种不同的位置方程的形式分别为: ⑴0ϕθ= ⑵θρcos a = ⑶θρcos a-= ⑷θρsin a =⑸θρsin a-= ⑹)cos(ϕθρ-=a4、圆相对于极坐标系的几种不同的位置方程的形式分别为)0(>a : ⑴a =ρ ⑵θρcos 2a = ⑶θρcos 2a -= ⑷θρsin 2a = ⑸ θρsin 2a -= ⑹)cos(2ϕθρ-=a5、极坐标与直角坐标互化公式:[基础训练A 组]一、选择题1.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A.1(,2B .31(,)42- C. D.3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y = 5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题 1.直线34()45x tt y t =+⎧⎨=-⎩为参数的斜率为______________________。

2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

3.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。

4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

5.直线cos sin 0x y αα+=的极坐标方程为____________________。

三、解答题1.已知点(,)P x y 是圆222x y y +=上的动点, (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围。

2.求直线11:()5x tl t y =+⎧⎪⎨=-+⎪⎩为参数和直线2:0l x y --=的交点P 的坐标,及点P与(1,5)Q -的距离。

3.在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。

一、选择题1.直线l 的参数方程为()x a tt y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( )A .1tB .12t C1 D1 2.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线3.直线112()2x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3, 4.圆5cos ρθθ=-的圆心坐标是( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 6.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )AB .1404C. D二、填空题1.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为__________________。

2.直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________。

3.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。

4.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________。

5.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。

三、解答题 1.参数方程cos (sin cos )()sin (sin cos )x y θθθθθθθ=+⎧⎨=+⎩为参数表示什么曲线?2.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。

3.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。

(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。

一、选择题1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、3.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 BCD4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则PF 等于( ) A .2 B .3 C .4 D .5 5.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线 6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+ D .4sin()3πρθ=-二、填空题1.已知曲线22()2x pt t p y pt ⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN =_______________。

2.直线2()3x t y ⎧=-⎪⎨=⎪⎩为参数上与点(2,3)A -的点的坐标是_______。

3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为_______________。

4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。

相关文档
最新文档