极坐标与参数方程经典试题带详细解答
高中数学极坐标与参数方程大题及答案
高中数学极坐标与参数方程大题及答案一、题目1.将直角坐标方程x2+y2=4转化为极坐标方程,并求出对应的参数方程;2.已知曲线的极坐标方程为 $r=2\\cos\\theta$,求对应的直角坐标方程并作图;3.曲线的参数方程为 $x=\\sin\\theta$,$y=\\cos\\theta$,求对应的直角坐标方程并判断曲线形状。
二、解答1. 将直角坐标方程转化为极坐标方程给定直角坐标方程x2+y2=4,我们可以假设 $x=r\\cos\\theta$,$y=r\\sin\\theta$,将其带入方程得:$(r\\cos\\theta)^2+(r\\sin\\theta)^2=4$化简得:$r^2(\\cos^2\\theta+\\sin^2\\theta)=4$由于 $\\cos^2\\theta+\\sin^2\\theta=1$,所以方程可以简化为r2=4,即r=±2。
因此,直角坐标方程x2+y2=4对应的极坐标方程为r=2和r=−2。
对应的参数方程为:当r=2时,$x=2\\cos\\theta$,$y=2\\sin\\theta$;当r=−2时,$x=-2\\cos\\theta$,$y=-2\\sin\\theta$。
2. 求曲线的直角坐标方程并作图已知曲线的极坐标方程为 $r=2\\cos\\theta$,我们将其转化为直角坐标方程。
利用极坐标与直角坐标的关系 $x=r\\cos\\theta$,$y=r\\sin\\theta$,我们将$r=2\\cos\\theta$ 代入得:$x=2\\cos\\theta\\cos\\theta=2\\cos^2\\theta$$y=2\\cos\\theta\\sin\\theta=\\sin2\\theta$所以,曲线的直角坐标方程为 $x=2\\cos^2\\theta$,$y=\\sin2\\theta$。
我们现在来作图,首先确定参数的范围。
极坐标与参数方程-习题及答案
金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。
详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。
考查了推理论证能力,运算求解能力。
2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。
【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。
极坐标与参数方程测试题(有详解答案)
极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标与参数方程经典练习题 带详细解答
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
极坐标与参数方程高考题(含答案)
极坐标与参数方程高考题1。
在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I)求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12。
2。
已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.解:(1)曲线C 的参数方程为(θ为参数)。
直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ—6|, 则|PA|==|5sin(θ+α)—6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,当sin (θ+α)=1时,|PA|取得最小值, 3。
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1)。
极坐标与参数方程练习(含答案)
极坐标与参数方程练习1.把点P 的直角坐标(—6,2)化为极坐标为________.5)6π 2.已知点A 的极坐标为⎝⎛⎭⎫2,2π3,则它的直角坐标是________.(-1,3) 3.极坐标为⎝⎛⎭⎫32,π的点M 的直角坐标是________.⎝⎛⎭⎫-32,0 4.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为________.x 2+(y -2)2=45.极坐标方程ρsin ⎝⎛⎭⎫θ+π3=4化为直角坐标系方程是________80y +-= 6.极坐标系中,曲线ρ=-4sin θ和ρcos θ=1相交于点A ,B ,则||AB =_____________.2 37.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是______,(1,0)8.已知圆的极坐标方程为ρ=2cos θ,则圆心的直角坐标是_____;半径长为________.(1,0) 19.若直线ρsin ⎝⎛⎭⎫θ+π4=22,与直线3x +ky =1垂直,则常数k =____________.-3 10.在极坐标系中,点()1,0到直线ρ()cos θ+sin θ=2的距离为________.2211.极坐标系中,圆ρ2+2ρcos θ-3=0上的动点到直线ρcos θ+ρsin θ-7=0的距离的最大值是________.42+212.已知圆的极坐标方程ρ=2cos θ,直线的极坐标方程为ρcos θ-2ρsin θ+7=0,则圆心到直线距离为__________.85513.在极坐标系中,点A ⎝⎛⎭⎫1,π4到直线ρsin θ=-2的距离是________..2+2214.在极坐标系中,过点A ⎝⎛⎭⎫4,-π2引圆ρ=4sin θ的一条切线,则切线长为______. 15.参数方程:⎩⎪⎨⎪⎧ x =3cos φy =2sin φ (φ为参数)化为 普通方程为________ 22194x y +=16.在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θy =2+2sin θ(θ为参数),则圆C 的普通方程为________,x 2+(y -2)2=417.已知圆C 的参数方程为⎩⎪⎨⎪⎧ x =cos θ+1y =sin θ,(θ为参数),则点P ()4,4与圆C 上的点的最远距离是_________.618.直线⎩⎪⎨⎪⎧x =-2+t y =1-t (t 为参数)被圆(x -3)2+(y +1)2=25所截得的弦长为________..82 19.若直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧ x =s ,y =1-2s (s 为参数)垂直,则k =________.-1 20.若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧ x =1+cos θy =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是________________ (-∞,0)∪(10,+∞)。
极坐标与参数方程单元测试卷(含答案)
选修系列4 综合测试卷一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.已知直线l 的参数方程为⎩⎨⎧x =1+t2,y =2+32t (t 为参数),则其直角坐标方程为( )A.3x +y +2-3=0B.3x -y +2-3=0 C .x -3y +2-3=0 D .x +3y +2-3=0答案 B解析 ∵⎩⎨⎧x -1=t 2,y -2=32t , ∴y -2=3(x -1).即3x -y +2-3=0.2.如图,在梯形ABCD 中,AD ∥BC ,AD =5,BC =10,AC 与BD 交于点O ,过O 点作EF ∥AD ,交AB 于E ,交DC 于F ,则EF =( )A.103B.203 C .10 D .20答案 B3.“a =2”是“关于x 的不等式|x +1|+|x +2|<a 的解集非空”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 答案 C解析 因为|x +1|+|x +2|≥|x +1-(x +2)|=1,所以由不等式|x +1|+|x +2|<a 的解集非空,得a >1,所以“a =2”是“关于x 的不等式|x +1|+|x +2|<a 的解集非空”的充分不必要条件,故选C.4.在极坐标系中,点(2,π3)到圆ρ=2cos θ的圆心的距离为( )A .2 B.4+π29C.1+π29D. 3答案 D解析 由⎩⎨⎧x =ρcos θ=2cos π3=1,y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3),圆ρ=2cos θ的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心到点(1,3)的距离为 3.5.设x ,y ∈R ,M =x 2+y 2+1,N =x +y +xy ,则M 与N 的关系是( ) A .M ≥N B .M ≤N C .M =N D .不能确定答案 A解析 x 2+1≥2x ,y 2+1≥2y ,x 2+y 2≥2xy ,三式相加即可.6.如图,E ,C 分别是∠A 两边上的点,以CE 为直径的⊙O 交∠A 的两边于点D ,点B ,若∠A =45°,则△AEC 与△ADB 的面积比为( )A .2∶1B .1∶2 C.2∶1 D.3∶1答案 A解析 连接BE ,求△AEC 与△ABD 的面积比即求AE 2∶AB 2的值,设AB =a ,∵∠A =45°, 又∵CE 为⊙O 的直径,∴∠CBE =∠ABE =90°. ∴BE =AB =a ,∴AE =2a .∴AE 2∶AB 2=2a 2∶a 2. 即AE 2∶AB 2=2∶1,∴S △AEC ∶S △ABD =2∶1.7.直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)被圆x 2+y 2=9截得的弦长为( )A.125 B.125 5 C.95 5 D.9510 答案 B解析 ⎩⎪⎨⎪⎧x =1+2t ,y =2+t ⇒⎩⎨⎧x =1+5t ×25,y =1+5t ×15.把直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入x 2+y 2=9,得(1+2t )2+(2+t )2=9.5t 2+8t -4=0.∴|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(-85)2+165=125,弦长为5|t 1-t 2|=1255. 8.不等式|x +1|-|x -2|≥1的解集是( ) A .[1,+∞)B .[-1,+∞)C .(-∞,-1]D .(-∞,1]答案 A解析 设f (x )=|x +1|-|x -2|,则f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.由f (x )≥1,解得x ≥1,所以解集为[1,+∞).9.如图,AC 切⊙O 于D ,AO 延长线交⊙O 于B ,BC 切⊙O 于B ,若AD ∶AC =1∶2,则AO ∶OB 等于( )A .2∶1B .1∶1C .1∶2D .2∶1.5 答案 A解析 如右图所示,连接OD ,OC .∵AD ∶AC =1∶2, ∴D 为AC 的中点. 又∵AC 切⊙O 于点D , ∴OD ⊥AC .∴OA =OC . ∴△AOD ≌△COD . ∴∠1=∠2.又∵△OBC ≌△ODC ,∴∠2=∠3. ∴∠1=∠2=∠3=60°,∴OC =2OB . ∴OA =2OB .故选A.10.在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.直线l 的参数方程是⎩⎨⎧x =-1+22t ,y =1+22t (t 为参数),曲线C 的极坐标方程是ρ=2,直线l 与曲线C 交于A ,B ,则|AB |=( )A. 2 B .2 2 C .4 D .4 2答案 B解析 依题意得,直线AB 的普通方程是y -1=x +1,即x -y +2=0.曲线C 的标准方程是x 2+y 2=4,圆心C (0,0)到直线AB 的距离等于22=2,|AB |=24-(2)2=22,选B. 11.若不等式|x +a |≤2在x ∈[1,2]时恒成立,则实数a 的取值范围是( ) A .[-3,0] B .[0,3] C .(-3,0) D .(0,3)答案 A解析 由题意得-2≤x +a ≤2,-2-x ≤a ≤2-x ,所以(-2-x )max ≤a ≤(2-x )min .因为x ∈[1,2],所以-3≤a ≤0.12.如图,AB 是半圆的直径,点C ,D 在AB 上,且AD 平分∠CAB ,已知AB =10,AC =6,则AD 等于( )A .8B .10C .210D .4 5答案 D解析 如图,∵AB 是⊙O 的直径,∴∠C =∠D =90°.又∵AC =6,AB =10,∴BC =8. ∴cos ∠BAC =35.又∵AD 平分∠BAC , ∴∠BAD =12∠BAC .∴2cos 2∠BAD =1+cos ∠BAC =85.∴cos ∠BAD =255.又在Rt △ADB 中,AD =AB ·cos ∠BAD =10×255=4 5.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2014·重庆)若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.答案 [-1,12]解析 |2x -1|+|x +2|=|x -12|+(|x -12|+|x +2|)≥0+|(x -12)-(x +2)|=52,当且仅当x =12时取等号,因此函数y =|2x -1|+|x +2|的最小值是52.所以a 2+12a +2≤52,即2a 2+a -1≤0,解得-1≤a ≤12,即实数a的取值范围是[-1,12].14.(2014·湖北)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.答案 (3,1)解析 由题意,得⎩⎪⎨⎪⎧x =t ,y =3t3⇒x 2=3y 2(x ≥0,y ≥0),曲线C 2的普通方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧ x 2+y 2=4,x 2=3y 2得⎩⎨⎧x =3,y =1,即C 1与C 2的交点坐标为(3,1). 15.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G ,给出下列三个结论:①AD +AE =AB +BC +CA ;②AF ·AG =AD ·AE ;③△AFB ∽△ADG .其中正确结论的序号是________. 答案 ①②解析 由题意,根据切线长定理,有BD =BF ,CE =CF ,所以AD +AE =(AB +BD )+(AC +CE )=(AB +BF )+(AC +CF )=AB +AC +(BF +CF )=AB +AC +BC .所以①正确;因为AD ,AE 是圆的切线,根据切线长定理,有AD =AE .又因为AG 是圆的割线,所以根据切割线定理有AD 2=AF ·AG =AD ·AE ,所以②正确;根据弦切角定理,有∠ADF =∠AGD .又因为BD =BF ,所以∠BDF =∠BFD =∠ADF ,在△AFB 中,∠ABF =2∠ADF =2∠AGD ,所以③错误.16.已知正实数x ,y 满足2x +12y +m =xy ,若xy 的最小值是9,则实数m 的值为________.答案 3解析 由基本不等式,得xy ≥2xy +m ,令xy =t ,得不等式t 2-2t -m ≥0.∵xy 的最小值是9,∴t 的最小值是3.∴3是方程t 2-2t -m =0的一个根,∴m =3.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1. 答案 (1)略 (2)略证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ac .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.18.(本小题满分12分)如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED . 答案 (1)略 (2)略证明 (1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA . 又由于∠PGD =∠EGA ,故∠DBA =∠EGA . 所以∠DBA +∠BAD =∠EGA +∠BAD .从而∠BDA =∠PF A .由于AF ⊥EP ,所以∠PF A =90°,于是∠BDA =90°. 故AB 是直径. (2)连接BC ,DC .由于AB 是直径, 故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB . 于是∠DAB =∠CBA . 又因为∠DCB =∠DAB , 所以∠DCB =∠CBA . 故DC ∥AB .由于AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角. 于是ED 为直径,由(1)得ED =AB . 19.(本小题满分12分)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=21+sin 2θ,直线l 的极坐标方程为ρ=42sin θ+cos θ.(1)写出曲线C 1与直线l 的直角坐标方程;(2)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值. 答案 (1)C 1:x 2+2y 2=2,l :2y +x -4=0 (2)233解析 (1)C 1:x 2+2y 2=2,l :2y +x =4. (2)设Q (2cos θ,sin θ),则点Q 到直线l 的距离 d =|2sin θ+2cos θ-4|3=|2sin (θ+π4)-4|3≥23,当且仅当θ+π4=2k π+π2,即θ=2k π+π4(k ∈Z )时取等号.∴点Q 到直线l 距离的最小值为233.20.(本小题满分12分)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:FB =FC ; (2)求证:FB 2=F A ·FD ;(3)若AB 是△ABC 外接圆的直径,∠EAC =120°,BC =6,求AD 的长. 答案 (1)略 (2)略 (3)4 3解析 (1)∵AD 平分∠EAC ,∴∠EAD =∠DAC . ∵四边形AFBC 内接于圆,∴∠DAC =∠FBC . ∵∠EAD =∠F AB =∠FCB ,∴∠FBC =∠FCB . ∴FB =FC .(2)∵∠F AB =∠FCB =∠FBC ,∠AFB =∠BFD , ∴△FBA ∽△FDB ,∴FB FD =F AFB ,∴FB 2=F A ·FD .(3)∵AB 是圆的直径,∴∠ACB =90°.∵∠EAC =120°,∴∠DAC =12∠EAC =60°,∠BAC =60°.∴∠D =30°.∵BC =6,∴AC =23,∴AD =2AC =4 3. 21.(本小题满分12分)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.答案 (1)C 1:ρ=2,C 2:ρ=4cos θ,⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3 (2)⎩⎪⎨⎪⎧x =1,y =tan θ⎝⎛⎭⎫-π3≤θ≤π3或⎩⎪⎨⎪⎧x =1,y =t (-3≤t ≤3) 解析 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3.故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一.(2)方法一:由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t (-3≤t ≤3).⎝ ⎛⎭⎪⎫或参数方程写成⎩⎪⎨⎪⎧x =1,y =y (-3≤y ≤3) 方法二:将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ⎝⎛⎭⎫-π3≤θ≤π3.22.(本小题满分12分)已知函数f (x )=|x -1|+2a (a ∈R ). (1)解关于x 的不等式f (x )<3.(2)若不等式f (x )≥ax ,∀x ∈R 恒成立,求a 的取值范围. 答案 (1)当a ≥32时,x ∈∅;当a <32时,x ∈(2a -2,4-2a ) (2)[0,1]解析 (1)由f (x )<3,即|x -1|+2a <3,得|x -1|<3-2a . 当3-2a ≤0时,即a ≥32,不等式的解集为∅;当3-2a >0时,即a <32,不等式等价于2a -3<x -1<3-2a ,得2a -2<x <4-2a .综上,当a ≥32时,不等式的解集为∅;当a <32时,不等式的解集为{x |2a -2<x <4-2a }.(2)方法一:由f (x )≥ax ,当x <1时,a ≥1-x x -2=(-1-1x -2)∈(-1,0).∴a ≥0.当1≤x ≤2时,a (x -2)≤x -1恒成立⇔a ≥x -1x -2恒成立,∵x -1x -2=(1+1x -2)∈(-∞,0],∴a ≥0. 当x =2时,1+2a ≥2a 恒成立,a ∈R . 当x >2时,a ≤x -1x -2恒成立,∵x -1x -2∈(1,+∞),∴a ≤1. 综上,∀x ∈R 使得不等式f (x )≥ax 恒成立的a 的取值范围是[0,1]. 方法二:由f (x )≥ax ,即|x -1|+2a ≥ax ,∴|x-1|≥a(x-2).依题意,y=|x-1|的图像恒在y=a(x-2)图像的上方,而y=a(x-2)恒过(2,0)点,依图分析得0≤a≤1.。
极坐标与参数方程含答案
极坐标系与参数方程一.高考真题1.设b a b a b a +=+∈则,62,,22R 的最小值( C )A .22-B .335-C .-3D .27-2.在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A.ρθ=22cosB.ρθ=-22c o sC.ρθ=22sinD.ρθ=-22s i n3.极坐标方程ρ=cos θ与ρcos θ= 12的图形是( B )A.C.D.4.极坐标方程ρ2cos2θ=1所表示的曲线是( D )A .两条相交直线B .圆C .椭圆D .双曲线5.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 2 .6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( B )(A )0 (B )1 (C )2 (D )27.在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t t y t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 (0,2) ,圆心到直线l 的距离为22.二.极坐标与参数方程 知识点回顾及练习(一)极坐标1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在平面直角坐标系中,方程1y x 22=+所对应的图形经过伸缩变换⎩⎨⎧='='3y y 2x,x 后的图形所对应的方程是19422='+'y x .例2: 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy 3x,x 后,曲线C 变为曲线9y 9x 22='+',则曲线C 的方程是122=+y x例3:在同一平面直角坐标系中,使曲线2sin3x y =变为曲线sinx y =的伸缩变换是⎪⎩⎪⎨⎧='='y y x x 2132.极坐标系的概念如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对( , )叫做点M 的极坐标.例1:极坐标系中,点M )4,4(π表示的意思是 在正方向45°处的距极点距离为4的点。
极坐标与参数方程专项训练及详细答案
一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ). B C二.填空题(共11小题) 5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()在直线所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.)即==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(|OP|=﹣.∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即x+y=圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.d=|CQ||PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标方程为()==故填:8.极坐标方程所表示曲线的直角坐标方程是.解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为中点的距离为×…故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .2|x 则由•,|x |x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:=,即把曲线联立得:,消去,﹣.213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线曲线∴,﹣22,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ),即由于所以15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .(其中×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.)=2化简为:ρ,即===﹣17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。
极坐标与参数方程测试题及答案
极坐标与参数方程测试一、选择题(每题 4 分)1.点 M 的极坐标 (5,2) 化为直角坐标为(C )3A . (5 , 5 3 ) B .(5, 53) C .(5,5 3) D .(5,5 3)222222222.点 M 的直角坐标为 (3, 1) 化为极坐标为(B )A . (2, 5 )B. (2, 7 ) C .(2,11 ) D . (2, )66663.已知曲线 C 的参数方程为x 3t(t 为参数 ) 则点 M 1 (0,1), M 2 (5,4) 与曲线 Cy 2t21的地点关系是( A )A . M 1 在曲线 C 上,但 M 2不在。
B . M 1不在曲线C 上,但 M 2 在。
C . M 1 , M 2都在曲线 C 上。
D. M 1, M 2 都不在曲线 C 上。
4.曲线 5 表示什么曲线( B)A .直线B.圆C.射线D .线段5.参数方程x t 1(t 为参数 ) 表示什么曲线(C )y1 2 tA .一条直线B.一个半圆C .一条射线D .一个圆x 3 cos)6.椭圆1( 为参数 ) 的两个焦点坐标是 (By5sinA . (-3 , 5) , (-3 , -3)B .(3 ,3) ,(3,-5)C .(1 ,1), (-7 , 1)D .(7 ,-1) , (-1 ,-1)7.曲线的极坐标方程 ρ=4sin θ 化 成直角坐标方程为 ( A)A . x 2+(y+2) 2=4B . x 2+(y-2) 2=4C . (x-2) 2+y 2=4D . (x+2) 2+y 2=48.极坐标方程 4sin2θ=3 表示曲线是 (D)A.两条射线 B .抛物线C.圆D.两条订交直线x 2 cosD ) 9.直线: 3x-4y-9=0 与圆:,( θ为参数 ) 的地点关系是 (y2sinA.相切 B .相离C.直线过圆心 D .订交但直线可是圆心10.双曲线x2tanC ) y 1( θ为参数 ) 的渐近线方程为 (2 secA.y 11( x2) B .y 1 x 22C.y 12( x 2) D .y 12(x 2)二、填空题(每题 5 分,共 20 分)x t 12 t11.双曲线y t11tx cos12.参数方程1cosy sin1cos 的中心坐标是。
极坐标与参数方程综合练习(三套带答案)
极坐标与参数方程综合练习(一)1、圆5cos ρθθ=-的圆心是( )A.45,3π⎛⎫--⎪⎝⎭ B.5,3π⎛⎫- ⎪⎝⎭ C.5,3π⎛⎫⎪⎝⎭D.55,3π⎛⎫-⎪⎝⎭答案:A解析:5 cos ρθθ=-两边同乘以,ρ得25 5 ,cos sin ρρθρθ=-即2250x y x +-+=,故圆心的直角坐标为5(,2,半径为5,结合该点的位置知该点的一个极坐标是4(5,)3π-. 2、已知曲线C 的极坐标方程为6sin ρθ=,以极点为平面直角坐标系的原点,极轴为轴正半轴,直线l的参数方程为1{2x y t=-= (t 为参数),则直线l 与曲线C x 相交所得弦长为( )A.1 B.2 C.3 D.4 答案:D解析:曲线C 的直角坐标方程为2260x y y +-=,即()2239,x y +-=直线1{2x y t=-=的直角坐标方程为210,x y -+=∵圆心C 到直线l的距离d ==∴直线l 与圆C相交所得弦长为 4.== 3、极坐标方程) 2cos R θρ=∈表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线答案:A解析:由 2cos θ=6πθ=或116θπ=,又R ρ∈,故为两条过极点的直线.4过点且斜率为的直线的参数方程为( )A.(为参数)B.(为参数)C.(为参数)D.(为参数)答案: A解析: 因为倾斜角满足所以所以所求参数方程为(为参数).5、在极坐标系中,点关于直线1cos ρθ=(2,)2π的对称点的极坐标为________.答案:)4π解析:结合图形不难知道点(2,)2π关于直线1cos ρθ=的对称点的极坐标为)4π.6、直线2{1x t y t =+=-- (t 为参数)与曲线3cos {3sin x y αα== (α为参数)的交点个数为__________. 答案:2解析:直线方程可化为10x y +-=, 曲线方程可化为229x y +=,故圆心(0,0),半径3r =,∵圆心到直线10x y +-=的距离3d ==<, ∴直线与圆有2个交点.7、在直角坐标xOy 中,圆221:4C x y +=,圆()222:24C x y -+=.1.在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示);2.求圆1C 与2C 的公共弦的参数方程.答案:1.由222cos ,{sin ,x y x y ρθρθρ==+=圆1C 的极坐标方程为2ρ=, 圆2C 的极坐标方程为4cos ρθ=.解2,{4cos ρρθ==得2ρ=,3πθ=±,故圆1C 与圆2C 交点的坐标为2,3π⎛⎫ ⎪⎝⎭,2,3π⎛⎫- ⎪⎝⎭.注:极坐标系下点的表示不唯一. 2.方法一:由cos ,{sin x y ρθρθ==得圆1C 与圆2C交点的直角坐标分别为(,(1,.故圆1C 与圆2C的公共弦的参数方程为(1,{x t y t=≤≤= . (或参数方程写成1,{,x y y y =≤≤=方法二:将1x =代入cos ,{sin ,x y ρθρθ==得cos 1ρθ=,从而1cos ρθ=. 于是圆1C 与圆2C 的公共弦的参数方程为1,{tan 33x y ππθθ=⎛⎫-≤≤ ⎪=⎝⎭. 解析:8、在平面直角坐标系xOy 中,求过椭圆5cos {3sin x y ϕϕ== (ϕ为参数)的右焦点,且与直线42{3x ty t=-=- (t 为参数)平行的直线的普通方程.答案:由题设知,椭圆的长半轴长5a =,短半轴长3b =,从而4c ==, 所以右焦点为()4,0?.将已知直线的参数方程化为普通方程220x y -+=. 故所求直线的斜率为12, 因此其方程为()14?2y x =-, 即240x y --=.极坐标与参数方程综合练习(二)1、在极坐标系中,过点()1,0并且与极轴垂直的直线方程是( ) A.cos ρθ= B.sin ρθ= C.cos 1ρθ= D.sin 1ρθ= 答案:C解析:在直角坐标系中,过点()1,0并且与极轴垂直的直线方程是1x =, 其极坐标方程为cos 1ρθ= , 故选 C.点评:本题考查极坐标方程与直角坐标方程的互化,求出直角坐标系中直线的方程是解题的关键.2、参数方程()()cossin,22{0211sin 2x y θθθπθ=+<<=+表示()A.双曲线的一支,这支过点11,2⎛⎫ ⎪⎝⎭B.过点11,2⎛⎫⎪⎝⎭的抛物线C.双曲线的一支,这支过点11,2⎛⎫- ⎪⎝⎭D.过点11,2⎛⎫- ⎪⎝⎭的抛物线答案:B解析:因为cossin 22x θθ=+,所以21sin x θ=+,因为()11sin 2y θ=+,所以212y x =,即22x y =,是抛物线.当1x =时,12y =,故抛物线过点11,2⎛⎫ ⎪⎝⎭.3、已知圆A :221x y +=在伸缩变换'2,{'3x x y y==的作用下变成曲线C ,则曲线C 的方程为( )A.22149x y += B.22194x y += C.22123x y += D.22132x y += 答案:A解析:由题意得1',2{1',3x x y y ==代入圆的方程得22''149x y +=,即双曲线C 的方程为22149x y +=. 4、在平面直线坐标系xOy 中,点P的直角坐标为(1,,若以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,则点P 的极坐标可以是( )A.1,3π⎛⎫- ⎪⎝⎭ B.42,3π⎛⎫ ⎪⎝⎭ C.2,3π⎛⎫- ⎪⎝⎭ D.42,3π⎛⎫-⎪⎝⎭答案:C解析:∵在直角坐标系xOy 中,点P 位于第四项限,2ρ==,tan θ=P 的极坐标可以是2,3π⎛⎫- ⎪⎝⎭.5、圆2cos ,{2sin 2x y θθ==+的圆心坐标是( )A.(0,2)B.(2,0)C.(0,-2)D.(-2,0) 答案:A解析:本题考查参数方程与普通方程的互化.消去参数θ,得圆的方程为()2224x y +-=,所以圆心坐标为()0,2.6、极坐标方程) cos R θρ=∈表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线 答案:A解析:由 cos θ=6πθ=或116θπ=,又R ρ∈,故为两条过极点的直线.7、已知直线l 的参数方程为2{4x a ty t=-=- (t 为参数),圆C 的参数方程为4cos ,{4sin x y θθ== (θ为参数).若直线l 与圆C 有公共点,则实数a 的取值范围是__________.答案:⎡-⎣解析:易知直线l 的普通方程为220x y a --=,圆C 的普通方程为2224x y +=,由题意知圆C 的圆心到直线l 的距离4d =≤,解得a -≤≤.8、在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,?A B 两点,则AB =__________。
极坐标和参数方程真题卷(含答案)
2015级《极坐标和参数方程》真题卷班级___________________________1.在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧⎪⎨=⎪⎩,为参数,.以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= .(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标.2.在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB ∣求l 的斜率.3.在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ. (Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C 1与C 2的公共点都在C 3上,求a.4.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M,N ,求2C MN ∆的面积.5.在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.6.已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.7.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.8.已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与参数方程经典试题带详细解答————————————————————————————————作者:————————————————————————————————日期:21.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C 的极坐标方程为2cos()4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q 的极坐标为7(22,)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足OM OP 2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos 2sin x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l 的参数方程为13221122x t x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A 的极坐标为2,24π⎛⎫⎪ ⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点。
11.已知曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '.(1)求曲线C '的普通方程;(2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程.12.已知曲线C 的极坐标方程是θρsin 2=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数).(I )将曲线C 的极坐标方程转化为直角坐标方程;(Ⅱ)设直线l 与x 轴的交点是,M N 为曲线C 上一动点,求MN 的最大值.13.已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcos θ+3=0,(1)求曲线C,P 的直角坐标方程.(2)设曲线C 和曲线P 的交点为A,B,求|AB|.14.极坐标与参数方程: 已知点P 是曲线2cos ,:(3sin ,x C y θθπθπθ=⎧⎪≤≤⎨=⎪⎩为参数,2)上一点,O 为原点.若直线OP 的倾斜角为3π,求点P 的直角坐标. 15.在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧-=-=2cos 3sin 32θαy x ,(其中α为参数,R ∈α),在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴)中,曲线2C 的极坐标方程为cos()4a πρθ-=.(1)把曲线1C 和2C 的方程化为直角坐标方程;(2)若曲线1C 上恰有三个点到曲线2C 的距离为32,求曲线2C 的直角坐标方程. 16.已知在平面直角坐标系xOy 中,圆C 的参数方程为33cos 13sin x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线l 的极坐标方程为cos()06πρθ+=.⑴写出直线l 的直角坐标方程和圆C 的普通方程;⑵求圆C 截直线l 所得的弦长. 17.圆O 1和O 2的极坐标方程分别为4cos 4sin ρθρθ==-,. (1)把圆O 1和O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和O 2交点的直线的直角坐标方程.18.已知曲线C 1的参数方程为(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 19.极坐标系的极点是直角坐标系的原点,极轴为x 轴正半轴。
已知曲线1C 的极坐标方程为θρcos 2=,曲线2C 的参数方程为)),0[(sin 3cos 2παααα∈⎩⎨⎧+=+=为字母常数且为参数,其中t t y t x 求曲线1C 的直角坐标方程和曲线2C 的普通方程; 当曲线1C 和曲线2C 没有公共点时,求α的取值范围。
20.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为:=2cos()3πρθ-,曲线C 2的参数方程为:4cos cos 3(0)2sin sin 3x t t y t πααπα⎧=+⎪⎪>⎨⎪=+⎪⎩为参数,,点N 的极坐标为(4)3π,.(Ⅰ)若M 是曲线C 1上的动点,求M 到定点N 的距离的最小值;(Ⅱ)若曲线C 1与曲线C 2有有两个不同交点,求正数t 的取值范围.21.以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐极系,并在两种坐极系中取相同的长度单位.已知直线的极坐标方程为4πθ=(R ∈ρ),它与曲线⎩⎨⎧+=+=ααsin 22,cos 21y x (α为参数)相交于两点A 和B,求AB 的长. 22.选修4-4:极坐标系与参数方程在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ααsin cos 3y x ,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为24)4sin(=+πθρ.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值. 23.已知曲线1C 的极坐标方程为82cos 2=θρ,曲线2C 的极坐标方程为6π=θ,曲线1C 、2C 相交于A 、B 两点. (R ρ∈)(Ⅰ)求A 、B 两点的极坐标; (Ⅱ)曲线1C 与直线⎪⎪⎩⎪⎪⎨⎧=+=t y t x 21231(t 为参数)分别相交于N M ,两点,求线段MN 的长度.24.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线()2:sin 2cos 0C a a ρθθ=>,已知过点()2,4P --的直线l 的参数方程为:222,242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩直线l 与曲线C 分别交于,M N(1)写出曲线C 和直线l 的普通方程;(2)若||,||,||PM MN PN 成等比数列,求a 的值. 25.设直线l 过点P (-3,3),且倾斜角为56π. (1)写出直线l 的参数方程;(2)设此直线与曲线C :24x cos y sin θθ⎧⎨⎩=,= (θ为参数)交于A ,B 两点,求|PA |·|PB |.26.平面直角坐标系中,直线l 的参数方程是3x ty t =⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为2222cos sin 2sin 30ρθρθρθ+--=.(Ⅰ)求直线l 的极坐标方程;(Ⅱ)若直线l 与曲线C 相交于,A B 两点,求||AB .27. 已知直线l 的参数方程为12(312x t t y t ⎧=⎪⎪⎨⎪=+⎪⎩为参数), 曲线C 的极坐标方程为22sin 4πρθ⎛⎫=+⎪⎝⎭,直线l 与曲线C 交于,A B 两点, 与y 轴交于点P . (1)求曲线C 的直角坐标方程;(2)求11PA PB+的值. 28.已知曲线1C 的极坐标方程为2cos ρθ=,曲线2C 的参数方程为4,5325x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t为参数).(1)判断1C 与2C 的位置关系;(2)设M 为1C 上的动点,N 为2C 上的动点,求MN 的最小值.29.已知曲线1C 的参数方程为431x ty t =⎧⎨=-⎩(t 为参数),当0t =时,曲线1C 上对应的点为P ,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2233sin ρθ=+.(1)求证:曲线1C 的极坐标方程为3cos 4sin 40ρθρθ--=;(2)设曲线1C 与曲线2C 的公共点为,A B ,求PA PB •的值.30.已知曲线C 的极坐标方程为4cos ρθ=,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为35212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设曲线C 与直线l 相交于P Q 、两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.31.已知直线l 过点(0,4)P -,且倾斜角为4π,圆C 的极坐标方程为4cos ρθ=. (1)求直线l 的参数方程和圆C 的直角坐标方程;(2)若直线l 和圆C 相交于A 、B ,求||||PA PB ⋅及弦长||AB 的值.32.在平面直角坐标系xOy 中,直线l 的参数方程为11232x t y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的方程为23sin ρθ=. (Ⅰ)写出直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若点P 的直角坐标为(1,0),圆C 与直线l 交于,A B 两点,求||||PA PB +的值. 33.以直角坐标系的原点为极点,x 轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位.已知:直线l 的参数方程为 11232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数), 曲线C 的极坐标方程为(1+sin 2θ)ρ2=2.(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求2211APBP+34.在直角坐标系xoy 中,以原点o 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线1C 的极坐标方程为2221sin ρθ=+,直线l 的极坐标方程为42sin cos ρθθ=+.(Ⅰ)写出曲线1C 与直线l 的直角坐标方程;(Ⅱ)设Q 为曲线1C 上一动点,求Q 点到直线l 距离的最小值.35.在直角坐标系xOy 中,直线l 的参数方程为:2cos (3sin x t t y t αα=+⎧⎪⎨=+⎪⎩为参数,其中0)2πα<<,椭圆M 的参数方程为2cos (sin x y βββ=⎧⎨=⎩为参数),圆C 的标准方程为()2211x y -+=.(1)写出椭圆M 的普通方程;(2)若直线l 为圆C 的切线,且交椭圆M 于,A B 两点,求弦AB 的长.36.已知曲线C 的极坐标方程为2cos 4sin ρθθ=-.以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=-+⎩(t 为参数).(1)判断直线l 与曲线C 的位置关系,并说明理由;(2)若直线l 和曲线C 相交于,A B 两点,且32AB =,求直线l 的斜率.37.在直角坐标系xOy 中,曲线1C 的参数方程为为参数)t t y t x (,2,22⎩⎨⎧+-=+=,在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的方程为θρ2sin 312+=.(1)求曲线1C 、2C 的直角坐标方程;(2)(2)若A 、B 分别为曲线1C 、2C 上的任意点,求AB 的最小值.38.已知在直角坐标系x y O 中,曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),在极坐标系(与直角坐标系x y O 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin 224πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)求曲线C 在极坐标系中的方程;(Ⅱ)求直线l 被曲线C 截得的弦长.39.已知曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是t t y t x (sin cos 1⎩⎨⎧=+=αα是参数).(1)写出曲线C 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点,且14=AB ,求直线l 的倾斜角α的值. 40.在直角坐标系中,以原点O 为极点,x 轴为正半轴为极轴,建立极坐标系.设曲线⎩⎨⎧==ααsin cos 3y x C :(α为参数); 直线4)sin (cos =+θθρ:l . (Ⅰ)写出曲线C 的普通方程和直线l 的直角坐标方程; (Ⅱ)求曲线C 上的点到直线l 的最大距离.41.在直角坐标系xoy 中,直线l 的参数方程为3122 (312x t t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩为参数),曲线C 的参数方程为2cos (2sin x y θθθ=⎧⎨=⎩为参数).(Ⅰ)将曲线C 的参数方程转化为普通方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,试求线段AB 的长.42.在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求:(1)写出曲线的直角坐标方程和直线的普通方程;(2)若求的值.xoy O x C 2sin 4cos ρθθ=l 222242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩t ,M N C l (2,4)P --PM PN +43在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系 的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.直线与曲线交于两点,求线段AB 的长.xoy l 122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩t xOy O Ox C 2cos()4πρθ=-l C ,A B参考答案1.(Ⅰ) 28y x =;(Ⅱ)32||3AB =. 【解析】试题分析:本题考查坐标系和参数方程.考查学生的转化能力和计算能力.第一问利用互化公式将极坐标方程转化为普通方程;第二问,先将直线方程代入曲线中,整理,利用两根之和、两根之积求弦长.试题解析:(Ⅰ)由2sin 8cos ρθθ=,得22sin 8cos ρθρθ=,即曲线C 的直角坐标方程为28y x =.5分(Ⅱ)将直线l 的方程代入28y x =,并整理得,2316640t t --=,12163t t +=,12643t t =-. 所以212121232||||()43AB t t t t t t =-=+-=. 10分考点:1.极坐标方程与普通方程的互化;2.韦达定理. 2.(1)22111()()222x y -+-=;(2)14.【解析】试题分析:(1)由参数方程的概念可以写成l 的参数方程为1cos 261sin6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,化简为1322112x t y t⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数) ;在2cos()4πρθ=-两边同时乘以ρ,且ρ2=x 2+y 2,ρcosθ=x ,ρsinθ=y ,∴22111()()222x y -+-=.(2)在l 取一点,用参数形式表示1322112x t y t⎧=+⎪⎪⎨⎪=+⎪⎩,再代入22111()()222x y -+-=,得到t 2+12t -14=0,|PA|·|PB|=|t 1t 2|=14.故点P 到点A 、B 两点的距离之积为14. 试题解析:(1)直线l 的参数方程为1cos 261sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即1322112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数) 由2cos()4πρθ=-,得ρ=cosθ+sinθ,所以ρ2=ρcosθ+ρsinθ,∵ρ2=x 2+y 2,ρcosθ=x ,ρsinθ=y ,∴22111()()222x y -+-=. (2)把1322112x t y t⎧=+⎪⎪⎨⎪=+⎪⎩代入22111()()222x y -+-=. 得t 2+12t -14=0,|PA|·|PB|=|t 1t 2|=14.故点P 到点A 、B 两点的距离之积为14. 考点:1.参数方程的应用;2.极坐标方程与直角坐标方程的转化.3.(I )22(,)22-;(Ⅱ)26 【解析】(I)把圆C 的极坐标方程利用222,cos ,sin x y x y ρρθρθ=+==化成普通方程,再求其圆心坐标.(II )设直线上的点的坐标为22(,42)22t t +,然后根据切线长公式转化为关于t 的函数来研究其最值即可.解:(I )θθρsin 2cos 2-=Θ,θρθρρsin 2cos 22-=∴, ………(2分)02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分)即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II ):直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , …………(8分) ∴直线l 上的点向圆C 引的切线长的最小值是62 …………(10分)∴直线l 上的点向圆C 引的切线长的最小值是621522=- …………(10分)4.(1)22cos 2sin 20ρρθρθ-+-=(2)40x y --= 【解析】试题分析:(1) 先化参数方程为普通方程,然后利用平面直角坐标与极坐标互化公式:222,cos ,sin x y x y ρρθρθ+===即可;(2)先把Q 点坐标化为平面直角坐标,根据圆的相关知识明确:当直线l ⊥CQ 时,MN 的长度最小,然后利用斜率公式求出MN 斜率. 试题解析:(1)圆C 的直角坐标方程为2222(1)(1)42220x y x y x y -++=⇒+-+-=,2分又222,cos ,sin x y x y ρρθρθ+=== 4分∴圆C 的极坐标方程为22cos 2sin 20ρρθρθ-+-= 5分(2)因为点Q 的极坐标为7(22,)4π,所以点Q 的直角坐标为(2,-2)7分 则点Q 在圆C 内,所以当直线l ⊥CQ 时,MN 的长度最小 又圆心C (1,-1),∴2(1)121CQ k ---==--,直线l 的斜率1k = 9分 ∴直线l 的方程为22y x +=-,即40x y --= 10分考点:(1)参数方程与普通方程;(2)平面直角坐标与极坐标;(3)圆的性质. 5.解:(1)∵点M 的直角坐标是)3,0(,直线l 倾斜角是ο135, …………(1分)∴直线l 参数方程是⎩⎨⎧+==οο135sin 3135cos t y t x ,即⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 22322, ………(3分) )4sin(22πθρ+=即2(sin cos )ρθθ=+,两边同乘以ρ得22(sin cos )ρρθρθ=+,曲线C 的直角坐标方程曲线C 的直角坐标方程为02222=--+y x y x ;………………(5分)(2)⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 22322代入02222=--+y x y x ,得03232=++t t∵06>=∆,∴直线l 的和曲线C 相交于两点A 、B ,………(7分) 设03232=++t t 的两个根是21t t 、,321=t t ,∴||||MB MA ⋅3||21==t t . ………………(10分)【解析】略 6.曲线2C 的极坐标方程为θρsin 8=,它们与射线3πθ=交于A 、B 两点的极径分别是343sin8,323sin421====πρπρ,因此,3221=-=ρρAB点评:本题考查坐标系与参数方程的有关内容,求解时既可以化成直角坐标方程求解,也可以直接求解(关键要掌握两种坐标系下的曲线与方程的关系与其他知识的联系) 【解析】略7.(1)点M 的极坐标为(2,0),点N 的极坐标为23π,32⎛⎫⎪ ⎪⎝⎭;(2) 0=θ,ρ∈R .【解析】试题分析:(1)先利用三角函数的差角公式展开曲线C 的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x 2+y 2,进行代换即得.(2)先在直角坐标系中算出点M 的直角坐标为(2,0),再利用直角坐标与极坐标间的关系求出其极坐标和直线OM 极坐标方程即可.解:(1)由πcos =13ρθ⎛⎫-⎪⎝⎭, 得12ρcos θ+32ρsin θ=1,∴曲线C 的直角坐标方程为13=122x y +, 即x +3y -2=0.当θ=0时,ρ=2,∴点M 的极坐标为(2,0);当π=2θ时,23=3ρ,∴点N 的极坐标为23π,32⎛⎫ ⎪ ⎪⎝⎭. (2)由(1)得,点M 的直角坐标为(2,0),点N 的直角坐标为230,3⎛⎫⎪ ⎪⎝⎭, 直线OM 的极坐标方程为0=θ,ρ∈R .考点:1.极坐标和直角坐标的互化;2.曲线的极坐标方程.8.(1) 221124x y ⎛⎫-+= ⎪⎝⎭;(2) min 712PQ -=【解析】试题分析:(1)把222cos ,x y ρθρ==+代入曲线C 2是极坐标方程cos ρθ=中,即可得到曲线C 2的直角坐标方程;(2)由已知可知P (ααsin 2,cos 2),)0,21(2C ,由两点间的距离公式求出2PC 的表达式,再根据二次函数的性质,求出2PC 的最小值,然后可得min PQ =2PC min -12. 试题解析: (1)θρcos =Θ, 2分22x y x +=221124x y ⎛⎫-+= ⎪⎝⎭. 4分 (2)设P (ααsin 2,cos 2),)0,21(2C()22222212cos 2sin 214cos 2cos 2sin 492cos 2cos 4PC ααααααα⎛⎫=-+⎪⎝⎭=-++=-+6分1cos 2α∴=时,2min 72PC =, 8分min 712PQ -=. 10分 考点:1.极坐标方程和直角坐标方程的互化;2.曲线与曲线间的位置关系以及二次函数的性质.9.(1)()2211x y -+=;(2)12. 【解析】试题分析:(1)在极坐标方程2cos ρθ=的两边同时乘以ρ,然后由222x y ρ=+,cos x ρθ=即可得到圆C 的直角坐标方程;(2)将直线l 的标准参数方程代入圆的直角坐标方程,消去x 、y 得到有关t 的参数方程,然后利用韦达定理求出AP AQ ⋅的值.(1)由2cos ρθ=,得22cos ρρθ=222x y ρ=+Q ,cos x ρθ=, 222x y x ∴+=即()2211x y -+=,即圆C 的直角坐标方程为()2211x y -+=;(2)由点A 的极坐标2,24π⎛⎫⎪ ⎪⎝⎭得点A 直角坐标为11,22⎛⎫⎪⎝⎭,将132211y 22x t t⎧=+⎪⎪⎨⎪=+⎪⎩代入()2211x y -+=消去x 、y ,整理得2311022t t ---=, 设1t 、2t 为方程2311022t t ---=的两个根,则1212t t =-, 所以1212AP AQ t t ⋅==. 考点:1.圆的极坐标方程与直角坐标方程之间的转化;2.韦达定理【答案】(Ⅰ)cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩,(α为参数,02απ<<)(Ⅱ)过坐标原点【解析】(Ⅰ)由题意有,(2cos ,2sin )P αα, (2cos 2,2sin 2)Q αα,因此(cos cos 2,sin sin 2)M αααα++,M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩,(α为参数,02απ<<).(Ⅱ)M 点到坐标原点的距离为2222cos (02)d x y ααπ=+=+<<,当απ=时,0d =,故M 的轨迹过坐标原点.本题第(Ⅰ)问,由曲线C 的参数方程,可以写出其普通方程,从而得出点P 的坐标,求出答案; 第(Ⅱ)问,由互化公式可得.对第(Ⅰ)问,极坐标与普通方程之间的互化,有一部分学生不熟练而出错;对第(2)问,不理解题意而出错.【考点定位】本小题主要考查坐标系与参数方程的基础知识,熟练这部分的基础知识是解答好本类题目的关键.11.(1)221x y +=;(2)2231()24x y -+=. 【解析】试题分析:本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C 的坐标直接代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩中,得到曲线C '的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P 、A 点坐标,利用中点坐标公式,得出00,x y ,由于点A 在曲线C '上,所以将得到的00,x y 代入到曲线C '中,得到,x y 的关系,即为AB 中点P 的轨迹方程.试题解析:(1)将3cos 2sin x y θθ=⎧⎨=⎩ 代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩ ,得C '的参数方程为cos sin x y θθ=⎧⎨=⎩∴曲线C '的普通方程为221x y +=. 5分(2)设(,)P x y ,00(,)A x y ,又(3,0)B ,且AB 中点为P所以有:00232x x y y=-⎧⎨=⎩又点A 在曲线C '上,∴代入C '的普通方程22001x y +=得22(23)(2)1x y -+=∴动点P 的轨迹方程为2231()24x y -+=. 10分 考点:参数方程与普通方程的互化、中点坐标公式.12.(1)2220x y y +-=;(2)51+.【解析】试题分析:(1)根据222,cos ,sin x y x y ρρθρθ=+==可以将极坐标方程转化为坐标方程,(2)将直线的参数方程转化成直角坐标方程,再根据平时熟悉的几何知识去做题. 试题解析:(1)θρsin 2=两边同时乘以ρ得22sin ρρθ=,则222x y y +=曲线C 的极坐标方程转化为直角坐标方程为:2220x y y +-=(2)直线l 的参数方程化为直角坐标方程得:4(2)3y x =-- 令0y =得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则5MC =.51MN MC r ∴≤+=+.考点:1.极坐标与直角坐标的转化,2.参数方程与直角坐标方程的转化. 13.(1) x 2+y 2-4x+3=0 (2)【解析】(1)由ρsin(θ+)=,得ρ[sin θ·(-)+cos θ·]=, ∴ρcos θ-ρsin θ-1=0, ∴x-y-1=0,由ρ2-4ρcos θ+3=0, 得x 2+y 2-4x+3=0.(2)曲线P 表示为(x-2)2+y 2=1表示圆心在(2,0),半径r=1的圆, 由于圆心到直线C 的距离为d==, ∴|AB|=2=.14.25215(,).55--【解析】试题分析:利用22cos sin 1θθ+=消去参数,得曲线C 的直角坐标方程为221,(0)43x y y +=≤,注意参数对范围的限制. 直线OP 方程为3y x =,联立方程解得,25,5215,5x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去),或25,5215,5x y ⎧=-⎪⎪⎨⎪=-⎪⎩故点P 的直角坐标为25215(,).55-- 解:由题意得,曲线C 的直角坐标方程为221,(0)43x y y +=≤, (2分)直线OP 方程为3y x =,---------------(4分)联立方程解得,25,5215,5x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去),或25,5215,5x y ⎧=-⎪⎪⎨⎪=-⎪⎩故点P 的直角坐标为25215(,).55-- (10分)考点:参数方程15.(1)曲线1C 的直角坐标方程为:9)2()2(22=++-y x ;曲线2C 的直角坐标方程为a y x 2=+;(2)曲线2C 的直角坐标方程为223±=+y x . 【解析】试题分析:(1)对于曲线1C ,把已知参数方程第一式和第二式移向,使等号右边分别仅含αsin 3、αcos 3,平方作和后可得曲线1C 的直角坐标方程;对于曲线2C ,把⎩⎨⎧==θρθρsin cos y x 代入极坐标方程cos()4a πρθ-=的展开式中即可得到曲线2C 的直角坐标方程.(2)由于圆1C 的半径为3,所以所求曲线2C 与直线0=+y x 平行,且与直线0=+y x 相距23时符合题意.利用两平行直线的距离等于23,即可求出a ,进而得到曲线2C 的直角坐标方程.试题解析:(1)曲线1C 的参数方程为⎩⎨⎧-=-=2cos 3sin 32θαy x ,即⎩⎨⎧+=-=2cos 32sin 3y xθα,将两式子平方化简得,曲线1C 的直角坐标方程为:9)2()2(22=++-y x ;曲线2C 的极坐标方程为a =+=-θρθρπθρsin 22cos 22)4cos(,即a y x =+2222, 所以曲线2C 的直角坐标方程为a y x 2=+.(2)由于圆1C 的半径为3,故所求曲线2C 与直线0=+y x 平行,且与直线0=+y x 相距23时符合题意.由2322=a ,解得23±=a .故曲线2C 的直角坐标方程为223±=+y x . 考点:圆的参数方程;直线与圆的位置关系;简单曲线的极坐标方程.16.(1)03=-y x 和22(3)(1)9x y -+-=;(2)42.【解析】试题分析:(1)圆的参数方程化为普通方程,消去参数即可,直线的极坐标方程化为直角坐标方程,利用两者坐标之间的关系互化,此类问题一般较为容易;(2)求直线被圆截得的弦长,一般不求两交点的坐标而是利用特征三角形解决.试题解析:解:⑴消去参数θ,得圆C 的普通方程为:22(3)(1)9x y -+-= ;由cos()06πρθ+=,得0sin 21cos 23=-θρθρ, ∴直线l 的直角坐标方程为03=-y x . 5分⑵圆心(3,1)到直线l 的距离为()11313322=+-⨯=d ,设圆C 截直线l 所得弦长为m ,则2219222=-=-=d r m, 24=∴m . 10分考点:极坐标方程和参数方程.17.(1)2240x y x +-=为圆1O 的直角坐标方程,2240x y y ++=为圆2O 的直角坐标方程. (2)y x =-【解析】(I)根据cos x ρθ=,sin y ρθ=把极坐标方程化成普通方程. (II )两圆方程作差,就可得到公共弦所在直线的方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=.所以224x y x +=.即2240x y x +-=为圆1O 的直角坐标方程. 同理2240x y y ++=为圆2O 的直角坐标方程.(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩,解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即圆1O ,圆2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-.18.(1)(2)(, ),(2, )【解析】(1)将消去参数t,化为普通方程 ,即C 1:.将代入得.所以C 1的极坐标方程为.(2)C 2的普通方程为 .由解得或所以C 1与C 2交点的极坐标分别为(, ),(2, )19.(1)曲线1C :0222=-+x y x,曲线0tan 23)(tan :2=-+-ααy x C ;),2()6,0[),0[33tan 11tan |3tan |0tan 23)(tan :)2(22πππαπαααααα⋃∈∴∈<∴=>++-=∴=-+-Θr d y x C【解析】本试题主要是考查了极坐标与参数方程的综合运用。