风力发电机组电控系统基本组成及各组成部分的功能特点
风力发电机组的工作原理及主要组成部分
风力发电机组的工作原理及主要组成部分1.风能捕捉:风力发电机组的核心部分是风轮或风叶,它们负责捕捉风能。
当风流通过风轮或风叶时,由于气流的动能和静压力的作用,会导致旋转力矩的产生。
2.动力传输:风能转化为旋转动能后,需要通过轴承和传动系统传输给发电机。
通常情况下,风轮转子和发电机的转子是相互连接的,通过传动系统将转动动能传递给发电机转子。
3.电能转化:传动系统将机械能转化为发电机的转动,进而通过电磁感应原理将机械能转化为电能。
发电机的转子通过旋转感应电流,再通过电磁感应产生电压,最终输出电能。
1.风轮:风力发电机组的核心部分,用于捕捉风能并转化为机械能。
通常采用多片叶片将风流导向转子,并利用气流的动能产生旋转力矩。
风轮的叶片材料通常采用复合材料或金属材料,以提高其耐久性和轻量化。
2.发电机:发电机负责将机械能转化为电能。
通常采用异步发电机或同步发电机来生成电能。
发电机的转子和风轮的转子相互连接,通过传动系统将旋转动能传递给发电机转子,产生电能输出。
3.传动系统:传动系统用于将风轮的旋转动能传递给发电机的转子。
传动系统通常由齿轮箱、轴承等组成。
齿轮箱用于调节风轮旋转速度,使其适应发电机的工作条件。
轴承则用于支撑风轮和发电机的转子。
4.控制系统:控制系统负责监测风力发电机组的工作状态,并控制风轮的转速和发电机的输出电压。
通过控制系统,可以使风力发电机组根据实际的风速和电网需求进行工作调节。
总结起来,风力发电机组通过捕捉风能、运用传动系统将机械能传递给发电机,并最终通过电磁感应将机械能转化为电能。
风力发电机组的主要部件包括风轮、发电机、传动系统和控制系统。
通过这些部件的协调工作,可以将风能高效地转化为电能,实现清洁能源的利用。
风力发电机组的结构及组成
风力发电机组的结构及组成在当今追求清洁能源的时代,风力发电作为一种可持续、无污染的能源获取方式,正发挥着越来越重要的作用。
要了解风力发电的工作原理,首先得清楚风力发电机组的结构及组成。
风力发电机组主要由风轮、机舱、塔筒和基础等部分构成。
风轮是风力发电机组中最为关键的部件之一,它就像是一个巨大的“风车”,负责捕捉风能并将其转化为机械能。
风轮通常由叶片、轮毂和变桨系统组成。
叶片的形状和材质对风能的捕获效率有着至关重要的影响。
一般来说,叶片采用高强度、轻质的复合材料制造,如玻璃纤维增强塑料或碳纤维增强塑料。
叶片的外形设计经过精心计算和优化,以确保在不同风速下都能高效地吸收风能。
轮毂则是连接叶片和主轴的部件,起到支撑和传递扭矩的作用。
变桨系统则可以根据风速的变化调整叶片的角度,以优化风能的捕获和机组的运行效率。
机舱位于塔筒的顶部,里面容纳了风力发电机组的核心设备。
其中包括主轴、齿轮箱、发电机、控制系统等。
主轴将风轮的旋转动力传递给齿轮箱,齿轮箱通过变速将低速的旋转运动转化为高速的旋转运动,以适应发电机的工作要求。
发电机则将机械能转化为电能,常见的有异步发电机和同步发电机两种类型。
控制系统就像是机组的“大脑”,负责监测和控制整个风力发电机组的运行状态,确保其安全、稳定、高效地发电。
它可以根据风速、风向、温度等参数,对机组的运行进行实时调整,如启动、停机、变桨、偏航等操作。
塔筒是支撑机舱和风轮的结构,它通常由钢材制造,高度可达数十米甚至上百米。
塔筒的高度对于风能的利用效率有着重要影响,一般来说,越高的塔筒可以接触到更强更稳定的风资源。
为了保证塔筒的稳定性和强度,其内部通常会设置爬梯和平台,以便人员进行维护和检修。
基础是风力发电机组的“根基”,它要承受整个机组的重量和运行时产生的各种载荷。
常见的基础类型有混凝土基础和桩基础。
混凝土基础通常适用于地质条件较好的地区,而桩基础则适用于地质条件较差或者海上风电场。
除了上述主要部件外,风力发电机组还配备了一系列辅助系统,以确保其正常运行和维护。
(完整版)风力发电机组各系统介绍
步骤:得到指令后,释放叶尖快速刹车, 两个圆 盘刹车全部作用,电机立即切出电网。
该程序用于紧急状况或过转速飞车
调整
刹车系统的控制机构-液压系统
四、支承系统
• 塔架的作用 支承风力发电机组的机械部件,承受各部件作用在塔 架上的力和风载
• 基础的作用 安装、支承风力发电机组,平衡运行过程中产生的各 种载荷。
一、传动系统
• 作用: 1、把风能转化成旋转机械能 2、传递扭矩,并增速达到发电机的同步转速 3、将旋转机械能转化成电能
• 传动系统组成
桨叶、轮毂、主轴、轴承、轴 承座、胀套、齿轮箱、联轴器、 发电机
桨
• 功率控制: • 材料: • 叶片长度: • 风轮直径: • 叶片数量: • 锥角: • 轴倾角:
作用 1、与控制系统相互配合,使机组风轮始终处于迎风状态,
充分利用风能,提高机组的发电效率。 2、提供必要的锁紧力矩,以保障风机的安全运行。
偏航驱动
偏航制动器
回转支承内圈 回转支承外圈
• 偏航动作 1、机组与风向夹角达到某一值以上一定时间段。 2、防止电缆缠绕,偏航角度达到某一值以上时解缆。 3、在大风时停机并需要偏航一定角度以减轻机组的风载。
风力发电机组各系统介绍
浙江运达风力发电工程有限公司
风力发电机组原理
风轮把风作用在桨叶上的力转化为自身 的转速和扭矩,通过主轴——增速箱— —联轴器——高速轴把扭矩和转速传递 到发电机,实现风能-机械能-电能的 转换。
风力发电机组的组成
• 1. 传动系统 • 2. 偏航系统 • 3. 刹车系统 • 4. 支承系统 • 5. 冷却润滑系统 • 6. 电控系统
冷却器:通过与空气的热交换,将热油冷却。
风力发电机组的基本构成
风力发电机组的基本构成
风力发电机组是将风能转化为电能的装置,通常由以下几个部分构成:
1. 风轮:风轮是风力发电机组的核心部件,它由叶片、轮毂和轴组成。
风轮的作用是捕捉风能并将其转化为机械能。
2. 机舱:机舱内装有风力发电机组的主要设备,如发电机、变速器、控制器等。
机舱通常安装在塔顶,通过塔筒与地面相连。
3. 塔筒:塔筒是支撑机舱和风轮的结构,它通常由钢材制成,具有足够的强度和稳定性,以承受风轮和机舱的重量以及风载荷。
4. 发电机:发电机是将机械能转化为电能的设备,它通常采用异步发电机或同步发电机。
发电机的输出功率与风轮的转速和风速有关。
5. 变速器:变速器的作用是将风轮的低速旋转转化为高速旋转,以适应发电机的转速要求。
变速器通常采用齿轮箱或液力耦合器。
6. 控制器:控制器是风力发电机组的控制中心,它负责监测风速、风向、风轮转速、发电机输出功率等参数,并根据预设的控制策略对风力发电机组进行调节和控制。
7. 基础:基础是支撑塔筒和风力发电机组的结构,它通常由混凝土制成,具有足够的承载能力和稳定性。
8. 电缆:电缆用于将发电机的输出电能传输到地面的变压器或配电柜。
以上是风力发电机组的基本构成部分,不同类型和规格的风力发电机组可能会有所不同,但总体结构和功能基本相似。
风力发电机工作原理和基本组成是什么?
风力发电机工作原理和基本组成是什么?1. 工作原理风力发电机是利用风的能量将其转化为电能的一种装置。
它的工作原理基于风能转化为机械能,然后通过发电机将机械能转化为电能。
风力发电机的工作原理可分为以下几个步骤:1. 风能捕捉:风力发电机的核心部件是风轮,它通常由数片叶片组成。
当风吹过叶片时,受到风压的作用,叶片开始转动。
2. 机械能转换:叶片转动带动风轮转动,风轮与轴相连接。
当风轮转动时,轴也随之转动,将风能转化为机械能。
3. 传输和增强:转动的轴通过传动装置(常见的是齿轮箱)将机械能转移到发电机上。
传动装置的作用是增加转速和扭矩。
4. 电能转换:发电机接收到机械能后,将其转化为电能。
发电机是通过电磁感应原理工作的,转动的轴带动磁场与线圈之间的相对运动,从而在线圈中产生电流。
5. 电能输出:产生的电能经过调节和整流,最终通过电缆传输到电网中,供人们使用。
2. 基本组成风力发电机的基本组成包括以下几个核心组件:1. 风轮:也称为叶片,是风力发电机的捕风器。
它通过受到风压力的作用来转动轴,将风能转化为机械能。
2. 轴:风轮转动时带动的部分,将机械能传输给发电机。
3. 传动装置:常见的是齿轮箱,用于将风轮转动的低速旋转传递给发电机,增加转速和扭矩。
4. 发电机:包括定子和转子,通过转动的轴带动转子与定子之间相对运动,利用电磁感应原理将机械能转化为电能。
5. 控制系统:用于监测风力发电机的状态,调节发电机的输出功率,保证系统的稳定运行。
6. 电网接入装置:将发电机产生的电能通过调节和整流后,连接到电网中,实现电能的输出。
综上所述,风力发电机的工作原理是利用风能转化为机械能,再通过发电机将机械能转化为电能。
其基本组成包括风轮、轴、传动装置、发电机、控制系统和电网接入装置等核心部件。
风力发电机的工作原理和基本组成的理解对于深入了解和应用风力发电技术具有重要意义。
风力发电机组控制系统组成结构
风力发电机组控制系统组成结构一、系统概述风力发电场具有机组布置范围广阔,设备运行的自然环境恶劣等特点,WPCS风电控制系统专为大型风力发电机组而设计,产品集成了当代最先进的电力电子、微电子、网络和软件技术,系统的网络结构如下:图1风电控制系统网络结构图WPCS风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。
二、风力发电机组控制单元(WPCU)风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。
由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而WPCS风电控制系统是专门针对大型风电场的运行需求而设计,具有极高的环境适应性和抗电磁干扰等特点,其系统结构如下:图2风力发电机组控制单元系统结构图WPCS风电控制系统的现场控制站包括:塔座主控制器机架、机舱控制站机架、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。
三、远程监控系统(WPCM)所有风电机组通过光纤以太网连接至主控室的上位机操作员站,实现整个风场的远程监控,上位机监控软件具有如下功能:①系统具有友好的控制界面。
②系统显示各台机组的运行数据,如每台机组的瞬时发电功率、累计发电量、发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入上位机,在显示器上显示出来,必要时还可以用曲线或图表的形式直观地显示出来。
③系统显示各风电机组的运行状态,如开机、停车、调向、手/自动控制以及大/小发电机工作等情况,通过各风电机组的状态了解整个风电场的运行情况。
④系统能够及时显示各机组运行过程中发生的故障。
⑤系统能够对风电机组实现集中控制。
值班员在集中控制室内,只需对标明某种功能的相应键进行操作,就能对下位机进行改变设置状态和对其实施控制。
⑥系统管理。
监控软件具有运行数据的定时打印和人工即时打印以及故障自动记录的功能,以便随时查看风电场运行状况的历史记录情况。
风力发电机组的控制系统
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风力发电系统组成及技术原理
风力发电系统组成及技术原理
风力发电系统组成及技术原理
风力发电系统是一种使用风能生成电力的设备,由风轮、传动系统、发电机、塔架、控制系统等组成。
1. 风轮:风轮是风力发电系统中最核心的组成部分,它可以根据风力的大小,实现转动产生动能的效果,并将其传递到发电机上。
风轮通常采用三叶片的设计,既能保证功率输出,又能降低噪音和振动。
2. 传动系统:传动系统主要将风轮转动的动能,传递到发电机上。
传动系统一般由叶片支撑结构、变速器、轴等组成。
其中,变速器的设计非常重要,它可以使发电机始终以最佳效率旋转。
3. 发电机:发电机是风力发电系统中的另一个重要组成部分。
一般采用同步发电机,它可以将机械转动转化为电能输出。
在发电机中还有控制器,通过实时监测风轮的转速,调节发电机的输出电压和电流。
4. 塔架:风力发电系统的塔架主要用于支撑风轮和发电机组,使其高度达到风力较强的高空区域,提高发电效率。
5. 控制系统:风力发电系统的控制系统主要负责监测和调节风轮转速以及发电机输出电压和电流,保证风力发电系统的安全性和稳定性。
控制系统同时也可用于收集数据、监测运行状态并进行自动化控制。
6. 逆变器:逆变器是用于电能转换的设备,主要将直流电转换为交流电,并将电能输送到电网上。
逆变器也可用于监测风力发电系统的运行数据,帮助保障设备的安全和稳定。
总之,风力发电系统的组成非常复杂,需要各个部件间的高度配合,才能有效地利用风力发电。
风力发电系统将风能转化为电能,是一种非常环保、经济、高效的发电方式。
风力发电机组控制系统介绍
故障预警机制
建立故障预警机制,提前预测可能出现的故 障,避免意外停机带来的损失。
04 功能模块详解
偏航控制系统
风向标与传感器
实时监测风向变化,为偏航控制提供准确数据。
偏航电机与减速器
驱动机组偏航,确保风轮始终对准风向。
偏航轴承与润滑系统
风力发电机组控制系统介绍
目录
• 引言 • 控制系统组成与原理 • 关键技术与实现方法 • 功能模块详解 • 操作与维护管理 • 发展趋势与挑战
01 引言
背景与意义
能源危机与环境污染
风力发电技术的发展
随着化石能源的日益枯竭和环境污染 的加剧,可再生能源的开发利用成为 迫切需求。
随着风力发电技术的不断进步和成熟, 风力发电机组在电力系统中的比重逐 渐增加。
高风能利用率。
独立变桨控制
通过对每个叶片的独立变桨控制,减 少风力发电机组在复杂风况下的载荷 波动,提高稳定性。
安全保护控制
在极端天气或机组故障等情况下,及 时采取制动、停机等保护措施,确保 风力发电机组的安全运行。
03 关键技术与实现方法
传感器技术应用
风速风向传感器
用于实时监测风速和风向,为 控制系统提供输入信号。
01
02
03
智能化监测与诊断
利用先进传感器和算法, 对风力发电机组进行实时 监测和故障诊断,提高运 维效率。
智能化控制策略
基于大数据和人工智能技 术,优化风力发电机组的 控制策略,提高发电效率 和稳定性。
智能化运维管理
利用物联网和云计算技术, 实现风力发电机组的远程 监控和运维管理,降低运 维成本。
风力发电机系统及其自动化控制
风力发电机系统及其自动化控制一、引言风力发电是一种利用风能转化为电能的可再生能源技术。
风力发电机系统是实现风能转化的关键设备,而自动化控制则能提高风力发电系统的效率和稳定性。
本文将介绍风力发电机系统的组成和工作原理,并探讨其自动化控制的重要性和应用。
二、风力发电机系统的组成风力发电机系统主要由风力发电机组、变频器、变压器、电网连接和监控系统等组成。
1. 风力发电机组风力发电机组是风力发电系统的核心部件,它由风轮、发电机和控制系统组成。
风轮是转化风能的装置,通常由数片叶片组成,叶片的形状和数量会影响风力发电机组的性能。
发电机是将机械能转化为电能的装置,常用的发电机有同步发电机和异步发电机两种。
控制系统用于监测和控制风力发电机组的运行状态,包括风速、转速、温度等参数的监测和调节。
2. 变频器变频器是将风力发电机组产生的交流电转化为适合电网输送的交流电的装置。
它能根据电网的要求调节输出电压和频率,以实现电能的稳定输送。
3. 变压器变压器用于将变频器输出的电能升压或降压,以适应电网的电压要求。
变压器还能提高电能的传输效率和减少能量损耗。
4. 电网连接电网连接是将风力发电机组产生的电能与电网连接起来,实现电能的输送和分配。
电网连接还包括电能计量和保护装置,以确保电能的安全和稳定输送。
5. 监控系统监控系统用于实时监测风力发电机组的运行状态和性能参数,包括风速、转速、温度、功率等。
监控系统还能对风力发电机组进行故障诊断和预警,以提高系统的可靠性和可维护性。
三、风力发电机系统的工作原理风力发电机系统的工作原理是将风能转化为机械能,再将机械能转化为电能,并通过电网连接实现电能的输送和分配。
1. 风能转化为机械能当风力发电机组受到风力的作用时,风轮开始旋转。
风轮的旋转会带动发电机组内的发电机转子旋转,将风能转化为机械能。
2. 机械能转化为电能发电机转子的旋转会在发电机中产生感应电动势,通过电磁感应原理将机械能转化为电能。
风力发电机组的组成
风力发电机组的组成风力发电机组是一种利用风能转换为电能的一种装置,它由风轮、风速传感器、变流器和其他部件组成。
一、风轮风轮是整个发电机组的核心部件,它是将风能转换为机械能的装置。
它由轮毂、轮皮和叶片三大部分组成。
轮毂部分由铸铁或铝合金材料制成,设有轴承,将风轮固定在轴上,并使其旋转;轮皮由镀锌板材或不锈钢板制成,用于形成整体结构;叶片部分由碳纤维或玻璃纤维复合材料制成,叶片数量可以根据需要设计,一般为3~6片。
二、风速传感器风速传感器是测量风速的装置,它可以检测出风轮的转速,通过对风速的检测,使风轮以最佳的转速运行,从而获得最佳的发电效率。
风速传感器的常用装置有热电偶、传感器等。
三、变流器变流器是一种用于将交流电转换成直流电的装置,它是一种半导体器件,可以将交流电转换成直流电。
风力发电机组中的变流器包括桥式整流器、门控整流器、双极性整流器等,它们可以将交流电转换成直流电,并将其输出到电网中。
四、控制器控制器是一种电子设备,它可以根据实际情况调节风轮的转速,从而保证发电机组的最佳性能。
它还可以根据风速变化对发电机组进行负荷调节,从而使发电机组保持稳定工作状态。
五、风力发电机风力发电机是风力发电机组的重要组成部分,它将风轮旋转产生的机械能转换为电能,并输出到电网中。
它采用永磁异步发电机,具有较高的效率和可靠性,而且具有较高的稳定性。
六、安全保护装置风力发电机组的安全保护装置是为了保障发电机组的安全运行而设置的装置,包括漏电保护器、避雷器、温度保护器等。
它们可以在发电机组发生故障时,立即停止发电机组的运行,从而保护发电机组的安全。
以上就是关于风力发电机组的组成的详细说明,它由风轮、风速传感器、变流器、控制器、风力发电机和安全保护装置组成。
它们可以有效地将风能转换为电能,为人们提供可再生的可持续的能源。
风力发电的组成
风力发电的组成一、风力发电的基本组成风力发电主要由风机、传动系统、发电机、控制系统和电力系统组成。
1. 风机风机是风力发电的核心部件,它由塔筒、叶片、机舱和控制系统等组成。
塔筒是支撑整个风机的结构,通常由混凝土或钢筋混凝土制成。
叶片是转动捕捉风能的部分,它们通常由纤维复合材料或玻璃钢制成。
机舱包含发电机和传动系统等关键装置,用于将风能转化为电能。
控制系统负责监测和控制风机的运行状态,确保其安全高效运行。
2. 传动系统传动系统是将风机旋转的机械装置,通常由齿轮箱和轴组成。
风机叶片捕捉到的风能通过传动系统传递给发电机,进而产生电能。
传动系统需要具备高效传递能量和承受大风荷载的能力。
3. 发电机发电机是将机械能转化为电能的关键设备。
在风力发电中,通常采用异步发电机或永磁同步发电机。
当风机叶片旋转时,传动系统将转动力传递给发电机,发电机通过磁场感应原理产生电能。
4. 控制系统控制系统是风力发电的大脑,负责监测风速、风向等环境参数,并根据这些参数调整风机的角度和转速,以实现最佳的发电效果。
控制系统还能对风机进行故障检测和保护,确保风机的安全运行。
5. 电力系统电力系统是将风能转化为可供使用的电能的关键环节。
风机发电后的交流电通过变压器升压后送入输电网,供用户使用。
电力系统还包括电缆、开关设备等组成部分,用于输送和分配电能。
二、风力发电的工作原理风力发电的工作原理是利用风能带动风机叶片旋转,进而驱动发电机产生电能。
当风吹过风机的叶片时,由于叶片的特殊形状,风的动能被转化为叶片的动能。
叶片的运动带动传动系统,将动能传递给发电机。
发电机通过磁场感应原理,将机械能转化为电能。
最终,通过控制系统和电力系统,将产生的电能输送到用户。
风力发电的效率受到多个因素影响,其中最重要的是风速和叶片面积。
风速越高,风能转化为机械能的效率越高;叶片面积越大,能够捕捉到的风能越多。
此外,风向、空气密度、叶片材料等因素也会影响风力发电的效果。
风力发电机组的组成部分
风力发电机组的组成部分风力发电机组是一种利用风能将其转化为电能的设备。
它主要由风轮、传动装置、发电机、控制系统和支架等几部分组成。
在接下来的文章中,我们将逐一对风力发电机组的这几个组成部分进行详细的介绍。
风轮风轮是风力发电机的核心组成部分,它承担着转化风能为机械能的任务。
它通常是由多个叶片组成,且尺寸和形状各异,一般有二、三、四、五等不同叶片数。
在风能的作用下,叶片旋转,通过传动装置将旋转的能量传递到发电机中。
传动装置传动装置是将叶轮旋转能量传递给发电机的一个重要组成部分,它由减速器和轴系组成。
减速器是将叶轮高速旋转的转速减低至适合发电机的转速。
轴系是机组整个旋转系统的支撑,也是组织叶片旋转的“传动桥梁”。
发电机发电机是将叶轮通过传动装置所传递过来的机械能转化为电能的关键部分。
它的工作原理是利用磁场和电流的相互作用,将机械能转化为电能,这样才能将风能转为可用的能源。
发电机的容量决定了风力发电机组的发电量和输出功率的大小。
控制系统控制系统是风力发电机组的大脑,它可以控制机组安全和高效的运转。
它主要由风速测量系统、偏航控制系统和保护控制系统三个部分组成。
风速测量系统从风速仪接收风速信息,控制机组的转动;偏航控制系统使风能在不同方向吹来时,机组转向对准风源;保护控制系统可以监测机组的运行情况,检测可能出现的故障,保护整个机组安全运行。
支架支架是风力发电机组的支撑系统,不仅支持机组转动和发电,还要承受外界风的冲击和风压。
支架的稳定性和结构的合理性是机组运行的保证,它直接决定机组的寿命和运行安全性。
最后,风力发电机组需要完整、可靠的网络系统对每个部件进行监控和管理。
在低效率的情况下,风力发电机组的维护和管理非常昂贵,这一点需要重视。
维护保养包括检查和更换零部件,也包括保持机组的清洁,尤其是叶片的定期清洗。
只有保证每个部分的正常运行,才能摆脱燃煤和核能等传统能源的依赖,更好地利用风能进行能源转换。
风力发电机组的发电系统基础知识讲解
主轴剖面图
前轴承(BT轴承) 前轴承是双列圆锥滚子轴承,
它具有一个双滚道的外圈和两个 内圈,内圈之间有一隔圈,可以 通过改变隔圈的厚度调整轴承游 隙。
特点:这类轴承可以在承受径向载荷的同时承受双方向轴 向载荷,可在轴承的轴向游隙范围内限制轴和外壳的轴向 位移。主要用于承受以径向载荷为主的径向与轴向联合载 荷。具有承载能力大,极限转速低的特点。
59#发电机过速1故障为例:
HTMF文件
b文件
转子Biblioteka 轴承线圈永磁体定子
定轴 动轴
永磁体: 非满载状态下效率高 结构紧凑、重量轻
外转子、内定子结构: 磁通密度大、不会退磁
主动温度控制冷却系统: 冷却性能好
一体化轴承概念: 不另外需要轴承
发电机热量散热方式
发电机锁定装置
锁定系统包括维护手柄、叶轮锁定传感器、安全门以及叶轮锁定 销等部分。锁定传感器反馈叶轮是否锁住,安全门所反馈安全门 是否锁定,只有安全门锁住才可以退出发电机锁定销。锁定销装 置装在发电机定子支架上,通过操作机舱维护手柄进行叶轮锁定 后,拍下机舱急停按钮,安全门可以打开取下,通过发电机人孔 就可以进入轮毂工作。
发电机系统巡检项目
1.发电机散热风道密封完好无破损漏风,连接牢固; 2.发电机散热电机无振动无异常噪音; 3.滑环支架螺栓无松动; 4.滑环安装螺栓无松动; 5.发电机转速传感器电缆安装牢固,电缆完好绑扎固定良好; 6.发电机转速传感器距离测量物2-3mm; 7.转子制动器与定子连接螺栓无松动、无锈蚀; 8.制动器摩擦片厚度是否小于2mm; 9.制动器各油管路密封良好,无泄漏; 10.安全门锁的锁扣、行程开关的检查; 11.发电机轴承温度无异常,油脂正常、无溢出; 12.发电机开关柜电缆出线防火封堵的检查;
风力发电机组电控系统基本组成及各组成部分的功能特点
Verteco变流器元件散热是通过一套强制水冷系统实现的。水冷的优点是水的比热系数大,同样体积的水和空气,在同样温升下,水吸收的热量大。同时,柜体采用散热管道铺设方式散热,有利于集中把热量排出塔架,也解决了塔架内部噪声大的问题。缺点是柜体结构较复杂,制造成本大。
2.Verteco变流系统主拓扑结构
变流器采用了可控整流的方式把发电机发出的电整流为直流电,通过网侧逆变模块把直流电变成工频交流电并入电网。其控制方式为分布式控制,这种方式和它的主电路拓扑结构相对应,即网侧和发电机侧各有独立的控制器,以网侧控制器为主控制器,通过控制器之间的联系进行相互信息的交换和控制,其它控制器为子控制器。
3)理解变桨电控系统的组成及特点
4)理解主控系统的组成及特点
教学重点:变流电控系统控制原理
变桨电控系统控制原理
教学难点:电控系统安全保护措施
教学方法:实物演示、多媒体教学
实训设备:大型风机缩比模型
安全要点:按照操作规程操作、注意用电安全
时间分配
课堂组织
分钟
实习小结
分钟
理论讲解
分钟
布置作业
分钟
学生分组自主翻译,教师巡回指导
(3)温度检测(PT100):检测温度;
(4)0°接近开关及90°限位开关:检测叶片接近0°以及到达90°位置报警。
2.变桨电控系统的拓扑结构
风力发电机组采用三套独立的变桨系统,见图4-22。动力线、DP线、安全链线通过滑环连接一号变桨柜和机舱控制柜,二号、三号变桨柜通过一号变桨柜间接连接到机舱控制柜。机舱控制柜与三个独立的变桨柜通信,接收三个变桨柜的信号,并对变桨系统发送实时控制信号控制变桨动作。
项目名称
风电机组发电机系统
风电机组发电机系统1. 简介风电机组发电机系统是风能转化为电能的关键部分,它负责将风能转化为旋转机械能,再通过励磁控制使其产生电能。
本文将从风电机组发电机系统的组成、工作原理、性能指标以及维护等方面进行介绍。
2. 组成风电机组发电机系统主要由以下几个部分组成:2.1 风轮风轮是风电机组的关键部件,它通过捕捉和利用风能来转动发电机。
风轮通常由多个叶片组成,这些叶片的形状和数量会对风能的捕捉效率产生影响。
2.2 塔架塔架是支撑整个风电机组的结构,它通常是由钢铁材料构建的,以提供足够的稳定性和抗风能力。
2.3 发电机发电机是风电机组的核心组件,它将风轮产生的旋转机械能转化为电能。
发电机的类型可以分为同步发电机和异步发电机两种,其中同步发电机在风电机组中更加常见。
2.4 变流器变流器是将发电机输出的交流电转化为适用于电网的电能的装置。
它可以将发电机输出的电能进行调整和稳定,以满足电网的要求。
3. 工作原理风电机组发电机系统的工作原理如下:1.风能通过风轮被捕捉和利用,使风轮产生旋转。
2.风轮的旋转通过轴将旋转机械能传递给发电机。
3.发电机接收到机械能后,通过励磁控制产生感应电流。
4.产生的电流经过变流器转化为适用于电网的电能。
5.变流器输出的电能通过电网传输和使用。
4. 性能指标风电机组发电机系统的性能指标通常包括以下几个方面:4.1 发电效率发电效率是指发电机将机械能转化为电能的效率,通常以百分比表示。
高发电效率意味着更多的风能被有效转化为电能。
4.2 功率因数发电机的功率因数是指发电机输出电能的正弦波形与电压波形之间的相位差。
功率因数越接近1,表示发电机输出的电能质量越高。
4.3 响应速度响应速度是指发电机在遇到电网故障或电网负荷变化时,重新建立稳定运行状态所需的时间。
响应速度越快,表示发电机对电网变化的适应能力越强。
4.4 可靠性发电机系统的可靠性是指其在长时间运行中能够保持稳定工作的能力,并且在出现故障时能够自动检测和隔离故障,以保证风电机组的正常发电运行。
风力发电机的组成部件及其功用
风力发电机的组成部件及其功用风力发电机的组成部件及其功用风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。
风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。
下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。
图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。
图3-3-4 小型风力发电机示意图1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器图3-3-5 中大型风力发电机示意图1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。
1 风轮风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。
其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。
风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。
叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。
风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。
图3-3-7所示为风力发电机叶片(横截面)的几种结构。
图3-3-6 风轮1.叶片2.叶柄3.轮毂4.风轮轴图3-3-7 叶片结构(a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面;(e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。
木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。
用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。
叶片的材质在不断的改进中。
1 机头座与回转体风力发电机塔架上端的部件——风轮、传动装置、对风装置、调速装置、发电机等组成了机头,机头与塔架的联结部件是机头座与回转体(参阅后面的图3-3-24)。
(1)机头座它用来支撑塔架上方的所有装置及附属部件,它牢固如否将直接关系到风力机的安危与寿命。
风力发电机组成部件及作用
风力发电机组成部件及作用
风力发电机是利用风力把风能变为机械能、再变为电能的机械装置。
它的组成
部件包括风轮、风机、传动轴、发电机、控制部分等。
风轮是风力发电机组成的重要部件,是由数支叶片组成的旋转体,抓住风力的
部件。
它的叶片可以沿着风的方向发生改变,以便夹住风力,使风轮旋转,使发电机产生电力。
风机是一种相当简单的叶片风轮,有快速旋转的功能,它重要的功能是用螺旋
桨切入风流,让被切入的空气慢慢改变方向,将其转变为旋转动量传递至发动机。
传动轴是将风轮所产生的动力传输给发电机,完成发电机与风轮之间的连接。
发电机是风力发电机的关键部件。
它采用特殊的磁电同步方式,把风轮的机械
能转换成电能,存入电网或提供到各种负载用于发电。
控制部分是针对发电负荷实时调整系统功率的部分,调节风轮旋转的角速度,
确保发电机的运行安全,并让发电机尽能发挥潜力。
总的来说,风力发电机组成部件包括风轮、风机、传动轴、发电机和控制部分。
风轮用于把风能转变为机械能;风机将风能转变为旋转动力;传动轴用于传输动力;发电机把机械动力转变为电能;控制部分实现发电在负荷的实时调整。
以上就是风力发电机组成部件及作用的相关论述。
风力发电系统有哪些设备组成
二、风力发电系统有哪些设备组成2.1 基本原理和部件组成如下:大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。
距轴心四分之一叶片长度处的转速为16米/秒。
图中的黄色带子比红色带子,被吹得更加指向风电机的背部。
这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。
大型风电机的转子叶片通常呈螺旋状。
从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。
如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。
因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。
2.2 风电机结构机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。
维护人员可以通过风电机塔进入机舱。
机舱左端是风电机转子,即转子叶片及轴。
转子叶片:捉获风,并将风力传送到转子轴心。
现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。
轴心:转子轴心附着在风电机的低速轴上。
低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。
在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。
轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。
它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。
发电机:通常被称为感应电机或异步发电机。
在现代风电机上,最大电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。
偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。
图中显示了风电机偏航。
通常,在风改变其方向时,风电机一次只会偏转几度。
电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。
为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过电话调制解调器来呼叫风电机操作员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.认识主控制柜、机舱控制柜主要的电气设备,了解其性能特点;
8.理解风力发电机组监控系统的监测内容,认识常用的传感器,了解其性能特点;
9.清楚风力发电机组电控系统采取的安全保护措施。
二、任务准备与实施建议
1.通过主控室监控画面和就地监控画面,记录电控系统监测的数据信息,了解这些数据的安全范围。
(二)变流电控系统
风力发电机组的变流电控系统能够实现以下两个功能。
(1)能量转换功能
变流器在风机系统中的主要作用是把风能转换成适应电网的电能,反馈回电网。
(2)低电压穿越功能
随着国家电网公司对国内风机运行标准的提高,风力发电机组要具备低电压穿越功能,在电网波动短时间能够正常运行,在一段时间内保证风机不脱网。
【讲解新课】
情境四风力发电机组电控调试与运行维护
任务二风力发电机组电控系统的认知
一、学习目标
1.理解风力发电机组电控系统基本组成及各组成部分的功能特点;
2.理解变流电控系统功能、变流柜柜体布局;
3.理解变流电控系统网侧与电机侧控制原理;
4.理解变桨电控系统基本组成及功能特点;
5.认识变桨电控柜主要电气设备,了解其性能特点;
变桨系统内部电气及控制检测主要包括以下部分:
(1)开关电源:将50HZ线电压400V(三相)交流电输入转换为60V直流电输出;
(2)变桨变频器:将60VDC转换成三相频率可变的29VAC,通过变频变速调节变桨电机;
(3)超级电容:储备电能;
(4)A10检测模块,检测采集超级电容高低电压,判断是否正常;将取自超级电容的60V与30V直流电压信号、充电器的直流电流输出信号,经过信号处理,转换成适合beckoff双极性模拟输入模块允许输入范围内的信号;
4)恒功率阶段
该阶段为变桨,但叶轮转速基本恒定阶段,叶片位置设定值或叶片变桨速率的设定值,则由控制策略根据叶轮转速、风机输出功率计算所得。
5)停机阶段
在上述运行的各个阶段,无论是按停机按钮(主控柜上停机按扭、就地显示屏上停机按钮、中央监控上停机命令),还是风机发生运行故障、阵风、小风、安全链故障,风机将根据上述不同情况,以不同速度朝90°顺桨。
3.变桨电气系统组成
每个叶片配备一套变桨电气系统,由变桨柜、备用电源柜、变桨电机、91°限位开关、接近开关等组成。
1)启动阶段
叶片从顺桨位置开始,直到叶轮转速增加到9RPM或10RPM,风机开始发电,这个过程为变速、变桨过程。风机开始发电时叶片角度大小由风的状况决定,目前主控软件规定,在切入风速下,开始发电时叶片角度在1.5°。
2.Verteco变流系统主拓扑结构
变流器采用了可控整流的方式把发电机发出的电整流为直流电,通过网侧逆变模块把直流电变成工频交流电并入电网。其控制方式为分布式控制,这种方式和它的主电路拓扑结构相对应,即网侧和发电机侧各有独立的控制器,以网侧控制器为主控制器,通过控制器之间的联系进行相互信息的交换和控制,其它控制器为子控制器。
分钟
课后记事:
教学内容
教学方法
【课堂组织】纪律考勤
【复习旧课】
1.风力发电机组控制系统的运行控制原理及控制功能;
2.安全保护内容及保护措施。
【引入新课】
风力发电机组配备的电控系统以可编程控制器为核心,控制电路是由PLC中心控制器及其功能扩展模块组成。主要实现风力发电机正常运行控制、机组的安全保护、故障检测及处理、运行参数的设定、数据记录显示以及人工操作,配备有多种通讯接口,能够实现就地通讯和远程通讯。
除水冷系统以外,Verteco变流柜内部还有1套风冷却系统。可以在变流柜内形成风冷却循环以防止出现局部过热现象,并且柜体内还装有湿度监测传感器,以保障变流系统在适宜的湿度下工作。
(三)变桨电控系统
1.变桨电控系统基本功能
变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。
3.网侧控制原理
网侧功率单元的作用是将直流母线上的直流有功功率转换为50Hz交流有功功率传送到电网上,其控制对象为直流母线电压。见图4-17。当直流母线上输入有功功率增加到大于通过网侧模块输送到电网上的有功时,将导致直流母线电压上升;而当直流输入有功功率下降到小于输送到电网的有功时,直流母线电压会下降。也就是说,直流母线电压的变化直接反应了发电机发出的功率的变化。网侧功率模块通过监测直流母线电压的波动,就可以得到输出有功电流的大小。
7.思考电控系统中各设备可能出现的故障。
三、相关知识学习
(一)风力发电机组电控系统概述
风力发电机组的电气控制系统由低压电气柜、电容柜、控制柜、变流柜、机舱控制柜、三套变桨柜、传感器和连接电缆等组成,电控系统包含正常运行控制、运行状态监测和安全保护三个方面的职能。
电控系统又可分为变桨系统、变流系统、主控系统和监控系统等四大子系统。
主控制柜位于塔底,是机组可靠运行的核心,主要由可编程控制器(PLC)及其扩展模块组成,分别组成主站和低压配电(LVD)站,其结构紧凑,主要完成数据采集及输入、输出信号处理,逻辑判定等功能;向变流控制柜的执行机构发出控制指令并接收变流控制柜送出的实时状态数据;与机舱柜通讯,接收机舱信号,并根据实时情况进行判断发出偏航或液压站的工作信号;接收三个变桨柜的信号,并对变桨系统发送实时控制信号控制变桨动作;对变流系统进行实时的检测,根据不同的风况对变流系统输出扭矩要求,使风机的发电功率保持最佳;与中央监控系统实时传递信息;根据信号的采集、处理和逻辑判断保障整套机组的可靠运行。主控制柜能够满足无人职守、独立运行、监测及控制的要求,运行数据与统计数值可通过就地控制系统或远程的中央监控计算机记录和查询。可以通过就地操作面板显示风力发电机组信息,通过操作面板的按键实现对风力发电机组的操作,可以由中央监控计算机远程实施对风力发电机组的基本控制,包括包括机组自动启动、变流器并网、主要零部件除湿加热、机舱自动跟踪风向、液压系统开停、散热器开停、机舱扭缆和自动解缆、电容补偿和电容滤波投切以及低于切入风速时自动停机。控制器存储采集到的数据,并通过通信设备连续的把数据传递给中央监控计算机,便于中央监控计算机作其它的数据分析。
项目名称
风力发电机组运行维护与调试
编写教师
编写日期
年 月 日
审核教师
审核日期
年 月 日
实训班级
实训日期
年 月 日
指导教师
实训地点
风机测试实训室
实训内容:学习情境四风力发电机组电控系统调试与运行维护
任务二风力发电机组电控系统的认知
教学目标:1)理解风力发电机组电控系统基本组成及各组成部分的功能特点
2)理解变流电控系统网侧与电机侧控制原理
8)故障诊断和记录功能
9)人机界面
10)通讯功能
(2)安全控制系统
安全系统是独立于风机正常控制系统外的状态监控系统。安装在风机上独立于正常控制系统外的传感器和执行机构通过安全模块连成一个独立的系统。当这些传感器动作时,触发安全控制系统,安全系统一旦被触发,风机立即停机,并且切断偏航系统接触器,风机停止偏航和自动起机,此时风机脱离正常控制系统,从而最大程度上保持风机的安全。安全控制系统从功能上可分为:
4.机舱控制柜
柜内主要包括低压配电单元、电机转速检测单元、风速、风向检测单元、Topbox I/O子站和外围辅助控制回路组成。Topbox I/O子站通过Profibus-DP总线和塔底控制主站连接,其主要功能是采集和处理信号。它采集的信号包括:液压站油位、润滑加脂、偏航计数、机舱左偏航、机舱右偏航,机舱维护、机舱启动、机舱停止、振动开关、环境温度、机舱温度、发电机绕组温度,风向、风速、发电机转速、叶轮转速、叶轮锁定、机舱加速度、发电机接触器等。机舱柜内的各种PLC模块采集到的信号全部通过总线耦合器BK3150和DP总线传输给塔底主控制器,由主控器进行集中的处理和管理,并由主控器发出控制信号使机舱中的元件动作,执行偏航和W直驱风力发电机组为例,说明变流系统的硬件基本组成,见图4-13。
由发电机发出的交流电,其电压和频率都很不稳定,随叶轮转速的变化而变化。经过电机侧整流单元(或称INU)整流,变换成直流电;再经过斩波升压,使电压升高到正负600V,送到直流母排上;再通过逆变单元(或称AFE)把直流电逆变成能够和电网相匹配的形式送入电网。为了保护变流器系统的稳定,还设置了一个过压保护单元(CHOPPER),当某种原因使得直流母线上的能量无法正常向电网传递时,它可以将多余的能量在电阻上通过发热消耗掉,以避免直流母线电压过高造成器件的损坏。
(5)BC3150总线端子控制器及beckoff模块,是带PLC功能的总线耦合器。控制器有一个PROFIBUS-DP现场总线接口,可在PROFIBUS系统中作为智能从站使用,完成变桨安全控制,采集状态信号,发出控制信号。
外部驱动及检测部分包括:
(1)变桨电机:驱动变桨减速器;
(2)旋转编码器:增量式和绝对式混合型的旋转编码器,检测变桨角度和变桨速度;
6)风机变桨系统调试与维护阶段
在风机停机后,通过对连接到机舱控制柜控制手柄上执行变桨操作,可以进行强制手动变桨操作,在超出-2°~90°的范围内变桨。
5.变桨电控系统安全保护
主控通过变桨系统组态获取变桨系统运行过程中出现的故障,变桨系统故障诊断包括以下几个大项:温度、电容电压不平衡、变桨位置比较、旋转编码器、变桨位置传感器、变桨限位开关、变桨速度超限等故障。这些故障通过主控程序的分析给出不同的停机指令,并且有一些可以在条件满足之后重新自动复位重启,但是有一些需要经过维护人员处理以后手动复位才能够重新运行。
(四)主控系统
1.主控系统的基本功能
主控系统是整机控制的核心,可以分为两个子系统:常规控制系统、安全控制系统。
(1)常规控制系统
用来控制整个风机在各种外部条件下能够在正常的限定范围内运行。从功能上分为:
1)功率控制系统