2020-2021九年级数学下期末一模试题(含答案)(4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021九年级数学下期末一模试题(含答案)(4)
一、选择题
1.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()
A.B.
C.D.
2.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数01234
人数41216171
关于这组数据,下列说法正确的是()
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
3.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B 点,甲虫沿大半圆弧ACB路线爬行,乙虫沿小半圆弧ADA1、A1EA2、A2FA3、A3GB路线爬行,则下列结论正确的是 ( )
A.甲先到B点B.乙先到B点C.甲、乙同时到B点 D.无法确定
4.下列图形是轴对称图形的有()
A.2个B.3个C.4个D.5个
5.点 P(m + 3,m + 1)在x轴上,则P点坐标为()
A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)
6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()
A.40°B.50°C.60°D.70°
7.如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形的周长为()
A.40B.30C.28D.20
8.下列计算错误的是()
A.a2÷a0•a2=a4B.a2÷(a0•a2)=1
C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.5
9.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()
A.2
3
π﹣3B.
1
3
π3C.
4
3
π﹣3D.
4
3
π3
10.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
A.1 个B.2 个C.3 个D.4个
11.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A.13B.5C.22D.4
12.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M 是第三象限内»OB上一点,∠BMO=120°,则⊙C的半径长为()
A.6 B.5 C.3 D.32
二、填空题
13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.
14.不等式组
125
x a
x x
->
⎧
⎨
->-
⎩
有3个整数解,则a的取值范围是_____.
15.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.
16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:
(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;
(2)根据手中剩余线的长度出风筝线BC 的长度为70米;
(3)量出测倾器的高度AB =1.5米.
根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).
17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
18.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.
20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.
三、解答题
21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:
A .从一个社区随机选取1 000户家庭调查;
B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;
C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.
(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;
(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.
请根据以上不完整的统计图提供的信息,解答下列问题:
①补全条形统计图.
②估计该市100万户家庭中决定不生二胎的家庭数.
22.如图,在平面直角坐标系中,直线AB 与函数y =k x
(x >0)的图象交于点A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使
OD =
12
OC ,且△ACD 的面积是6,连接BC . (1)求m ,k ,n 的值;
(2)求△ABC 的面积.
23.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x
=>经过点B . (1)求直线10y kx =-和双曲线m y x =
的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;
②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;
③当136112
DC =时,请直接写出t 的值.
24.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .
(1)证明:ADP CDP △≌△;
(2)判断CEP △的形状,并说明理由.
(3)如图2,把菱形ABCD 改为正方形ABCD ,其他条件不变,直接..
写出线段AP 与线段CE 的数量关系.
25.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值
,然后设y =x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法. 例:解方程:(x ﹣2)4+(x ﹣3)4=1
解:因为﹣2和﹣3的均值为
,所以,设y =x ﹣,原方程可化为(y+)4+(y ﹣)4
=1,
去括号,得:(y 2+y+)2+(y 2﹣y+)2=1
y 4+y 2++2y 3+y 2+y+y 4+y 2+﹣2y 3+y 2﹣y =1 整理,得:2y 4+3y 2﹣ =0(成功地消去了未知数的奇次项)
解得:y 2=或y 2=(舍去)
所以y =±,即x ﹣=±.所以x =3或x =2.
(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.
设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.
(2)用这种方法解方程(x+1)4+(x+3)4=706
26.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.
【详解】
①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;
②点P在BC上时,3<x≤5,
∵∠APB+∠BAP=90°,
∠PAD+∠BAP=90°,
∴∠APB=∠PAD,
又∵∠B=∠DEA=90°,∴△ABP∽△DEA,
∴AB
DE
=
AP
AD
AB AP
DE AD
=,
即3
4
x
y
=,
∴y=12
x
,
纵观各选项,只有B选项图形符合,
故选B.
2.A
解析:A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
3.C
解析:C
【解析】
1 2π(AA1+A1A2+A2A3+A3B)=
1
2
π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半
圆的弧长相等,因此两个同时到B点。
故选C.
4.C
解析:C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
图(3)有二条对称轴,是轴对称图形,符合题意;
图(3)有五条对称轴,是轴对称图形,符合题意;
图(3)有一条对称轴,是轴对称图形,符合题意.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
5.D
解析:D
【解析】
【分析】
根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】
解:因为点P(m + 3,m + 1)在x轴上,
所以m+1=0,解得:m=-1,
所以m+3=2,
所以P点坐标为(2,0).
故选D.
【点睛】
本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 6.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
【点睛】
掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
7.D
解析:D
【解析】
【分析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,
∴AB==5,
∴菱形的周长为4×5=20.
故选D.
【点睛】
本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB的长是解题的关键.
8.D
解析:D
【解析】
分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.
详解:∵a2÷a0•a2=a4,
∴选项A不符合题意;
∵a2÷(a0•a2)=1,
∴选项B不符合题意;
∵(-1.5)8÷(-1.5)7=-1.5,
∴选项C不符合题意;
∵-1.58÷(-1.5)7=1.5,
∴选项D符合题意.
故选D.
点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
9.C
解析:C
【解析】
分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:
∵圆的半径为2,
∴OB=OA=OC=2,
又四边形OABC是菱形,
∴OB⊥AC,OD=1
2
OB=1,
在Rt△COD中利用勾股定理可知:22
213
-=,3
∵sin∠COD=
3 CD
OC
=
∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=1
2
B×AC=
1
2
×2×33
S扇形AOC=
2
12024
3603
π
π
⨯⨯
=,
则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4
23 3
π-
故选C.
点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=1
2 a•b
(a、b是两条对角线的长度);扇形的面积=
2
360
n rπ
,有一定的难度.
10.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
11.A
解析:A
【解析】
试题分析:由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1
故选A.
考点: 1.旋转;2.勾股定理.
12.C
解析:C
【解析】
【分析】
先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.
【详解】
解:∵四边形ABMO是圆内接四边形,∠BMO=120°,
∴∠BAO=60°,
∵∠AOB=90°,
∴AB是⊙C的直径,
∴∠ABO=90°-∠BAO=90°-60°=30°,
∵点A的坐标为(0,3),
∴OA=3,
∴AB=2OA=6,
∴⊙C的半径长=3,故选:C
【点睛】
本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.
二、填空题
13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得
AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可
解析:【解析】
【分析】
连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】
连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,
由勾股定理可得BO=3,
所以BD=6,
即可得菱形的面积是1
2
×6×8=24.
考点:菱形的性质;勾股定理.
14.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得
解析:﹣2≤a<﹣1.
【解析】
【分析】
先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式x﹣a>0,得:x>a,
解不等式1﹣x>2x﹣5,得:x<2,
∵不等式组有3个整数解,
∴不等式组的整数解为﹣1、 0、1,
则﹣2≤a<﹣1,
故答案为:﹣2≤a<﹣1.
【点睛】
本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1
解析:-1
【解析】
试题分析:根据待定系数法可由(-2,3)代入y=k
x
,可得k=-6,然后可得反比例函数的
解析式为y=-6
x
,代入点(m,6)可得m=-1.
故答案为:-1.
16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6
055+15≈621
解析:1.
【解析】
试题分析:在Rt △CBD 中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt △CBD 中,
.55(米). ∵AB=1.5,
∴CE=60.55+1.5≈62.1(米).
考点:解直角三角形的应用-仰角俯角问题. 17.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正
解析:4×109
【解析】
【分析】
科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
4400000000的小数点向左移动9位得到4.4,
所以4400000000用科学记数法可表示为:4.4×
109, 故答案为4.4×
109. 【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
18.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:(
解析:4+【解析】
【分析】
过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠=o
根据三角形外角的性质可得30,EAG EGA ∠=∠=o 根据锐角三角函数求出GC ,即可求解.
【详解】
如图,过点E 作EH AG ⊥交AG 的延长线于H ,
15,2C AE EG ︒∠===厘米,`
根据折叠的性质可知:15,C CAG ∠=∠=o
30,EAG EGA ∴∠=∠=o 322cos302223,2
AG HG EG ==⋅=⨯⨯=o 根据折叠的性质可知:23,GC AG ==
2,BE AE ==
222342 3.BC BE EG GC ∴=++=++=+(厘米)
故答案为:42 3.+
【点睛】
考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.
19.【解析】【分析】【详解】试题分析:画树状图如下:∴P (两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式
解析:
14
. 【解析】
【分析】
【详解】 试题分析:画树状图如下:
∴P (两次摸到同一个小球)=416=14.故答案为14
. 考点:列表法与树状图法;概率公式.
20.28【解析】【分析】设加分前及格人数为x 人不及格人数为y 人原来不及格加分为及格的人数为n 人所以72x+58y=66(x+y)75(x+n)+59(y-
n)=(66+5)(x+y)用n 分别表示xy 得到
解析:28
【解析】
【分析】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.
【详解】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,
解得,
所以x+y=n,
而15<n<30,n为正整数,n为整数,
所以n=5,
所以x+y=28,
即该班共有28位学生.
故答案为28.
【点睛】
本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.
三、解答题
21.(1)C;(2)①作图见解析;②35万户.
【解析】
【分析】
(1)C项涉及的范围更广;
(2)①求出B,D的户数补全统计图即可;
①100万乘以不生二胎的百分比即可.
【详解】
解:(1)A、B两种调查方式具有片面性,故C比较合理;
故答案为:C;
⨯=户
(2)①B:100030%300
1000-100-300-250=350户
补全统计图如图所示:
(3)因为
350
10035
1000
⨯=(万户),
所以该市100万户家庭中决定不生二胎的家庭数约为35万户.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.
【解析】
试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD
的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;
(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.
试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,
∴OC=2,AC⊥y轴,
∵OD=OC,
∴OD=1,
∴CD=3,
∵△ACD的面积为6,
∴CD•AC=6,
∴AC=4,即m=4,
则点A的坐标为(4,2),将其代入y=可得k=8,
∵点B(2,n)在y=的图象上,
∴n=4;
(2)如图,过点B作BE⊥AC于点E,则BE=2,
∴S △ABC =AC•BE=×4×2=4,
即△ABC 的面积为4.
考点:反比例函数与一次函数的交点问题.
23.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52
;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】
【分析】
(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;
(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;
②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA
∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.
【详解】
(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -
∴将点(12,0)A 代入得12100k -= 解得56
k = 故直线的表达式为5106
y x =- 将点(,5)B a -代入直线的表达式得
51056a -=-
解得6a =
(6,5)B ∴- ∵双曲线(0)m y x x
=>经过点(6,5)B - 56
m ∴=-,解得30m =- 故双曲线的表达式为30y x =-
; (2)①//AC y Q 轴,点A 的坐标为(12,0)A
∴点C 的横坐标为12 将其代入双曲线的表达式得305122y =-
=- ∴C 的纵坐标为52
-,即52AC = 由题意得512t AC ⋅==,解得52
t = 故当点C 在双曲线上时,t 的值为52
; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下: 若点D 与点A 重合
由题意知,点C 坐标为(12,)t -
由两点距离公式得:222
(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+
22AC t =
由勾股定理得222AB BC AC +=,即226136(5)t t ++-+= 解得12.2t =
因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧 如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK 由(1)知,直线AB 的表达式为5106
y x =- 令0x =得10y =-,则(0,10)M -,即10OM =
Q 点K 为CD 的中点,BD BC ⊥
12
BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12
AK DK CK CD === BK DK CK AK ∴===
∴A 、D 、B 、C 四点共圆,点K 为圆心
BCD DAB ∴∠=∠(圆周角定理) 105tan tan 126
OM BCD DAB OA ∴∠=∠===;
③过点B 作⊥BM OA 于M
由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置 此时,四边形ACBD 是矩形,则5AC BD ==,即5t = 因此,分以下2种情况讨论:
如图2,当05t <<时,过点C 作CN BM ⊥于N
(6,5(1),2,0),(12,)B A t C --Q
12,6,6,5,OA OM AM OA OM BM AC t ∴===-=== 90CBN DBM BDM DBM ∠+∠=∠+∠=︒Q
CBN BDM ∴∠=∠
又90CNB BMD ∠=∠=︒Q
CNB BMD ∴∆~∆
CN BN BM DM ∴
= AM BM AC BM DM -∴=,即655t DM
-= 5(5)6
DM t ∴=- 56(5)6
AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD +=
即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦
解得52t =或152t =(不符题设,舍去)
当512t ≤<时,同理可得:22251361
6(5)()612t t ⎡⎤--+=⎢⎥⎣⎦
解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52
或152.
【点睛】
本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
24.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)2CE =
. 【解析】
【分析】
(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;
(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出
∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;
【详解】
(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,
在ADP ∆和CDP ∆
AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩
,
∴()ADP CDP SAS ∆≅∆.
(2)CEP ∆是等边三角形,
由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,
∵PA PE =,∴DAP DEP ∠=∠,
∴DCP DEP ∠=∠,
∵CFP EFD ∠=∠(对顶角相等),
∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,
即60CPF EDF ∠=∠=︒,
又∵PA PE =,AP CP =;
∴PE PC =,
∴CEP ∆是等边三角形.
(3)
2CE AP =.
过程如下:证明:如图1中,
∵四边形ABCD 是正方形,
∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,
在△PDA 和△PDC 中,
PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩
===,,
∴△PDA ≌△PDC ,
∴PA=PC ,∠3=∠1,
∵PA=PE ,
∴∠2=∠3,
∴∠1=∠2,
∵∠EDF=90°,∠DFE=∠PFC ,
∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.
∴2PC 2AP .
【点睛】
本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
25.(1)4,4,1,1;(2)x =2或x =﹣6.
【解析】
【分析】
(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=
1130;
(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.
【详解】
(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,
故答案为4,4,1,1;
(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,
去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,
y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,
整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),
解得:y2=16或y2=﹣22(舍去)
所以y=±4,即x+2=±4.所以x=2或x=﹣6.
【点睛】
本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.
26.123米.
【解析】
【分析】
在Rt△ABC中,利用tan
BC CAB
AB
∠=即可求解.
【详解】
解:∵CD∥AB,
∴∠CAB=∠DCA=39°.
在Rt△ABC中,∠ABC=90°,
tan
BC CAB
AB
∠=.
∴
100
123
tan0.81
BC
AB
CAB
==≈
∠
.
答:A、B两地之间的距离约为123米.
【点睛】
本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。