专题·动能、动量的综合性问题

合集下载

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

专题41 动量和能量的综合应用1.[2022·九师联盟质量检测]如图所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A.Mv0m+MmMv22(m+M)B.Mv0m+MmMv2m+MC.mv0m+MmMv22(m+M)D.mv0m+MmMv2m+M2.(多选)如图所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A.虽然A、B两物体会有加速运动,但它们的总动量保持不变B.在以后的运动过程中F1、F2一直做正功,系统的机械能一直在增大C.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体总动能最大D.当弹簧弹力的大小与F1、F2的大小相等时,弹簧弹性势能最大3.[2022·山东省德州市期中]如图所示,光滑水平面上静止着一长为L的平板车,一人站在车尾将一质量为m的物体水平抛出,物体恰好落在车的前端.物体可看做质点,抛出位置位于车尾正上方,距车上表面的竖直高度为h ,不计空气阻力,已知人和车的总质量为M,重力加速度为g ,物体水平抛出时获得的冲量大小为( )A.mLg2hB.MLg2hC.m2LM+mg2hD.MmLM+mg2h4.[2022·八省八校第一次联考](多选)内部长度为L、质量为M的木箱静止在光滑的水平面上,木箱内部正中间放置一可视为质点的质量为m的木块,木块与木箱之间的动摩擦因数为μ.初始时木箱向右的速度为v0,木块无初速度.木箱运动的v­t图像如图所示,所有碰撞均为弹性碰撞且碰撞时间极短,重力加速度为g,则在0~t0时间内,下列说法正确的是( )A.M=2mB.M与m间的相对路程为v2 04μgC.M对地的位移为v2 08μg +32LD.m对地的位移为3v28μg -32L5.[2022·江苏盐城期末]如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5 m/s向右做匀速直线运动.已知甲、乙两球质量分别为0.1 kg和0.2 kg.某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0 s,两球之间的距离为x=2.7 m,则下列说法正确的是( )A.刚分离时,甲、乙两球的速度方向相同B.刚分离时,甲球的速度大小为0.6 m/sC.刚分离时,乙球的速度大小为0.3 m/sD.爆炸过程中释放的能量为0.027 J6.[2022·湖南省五市十校联考]如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是水平粗糙轨道,两段轨道相切于B 点.一质量为m的滑块(可视为质点)从小车上的A点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C点.已知M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g.则下列说法正确的是( )A.滑块从A滑到C的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L) D .水平轨道的长度L =R μ7.[2022·湖北十堰高三阶段练习]如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m /s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m (未脱离轨道).取重力加速度大小g =10 m /s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m /sB .碰撞后瞬间,小球a 的速度大小为3 m /sC .小球b 的质量为3 kgD .两球会发生第二次碰撞8.如图所示,静止在光滑水平面上的小车质量为M =20 kg .从水枪中喷出的水柱的横截面积为S =10 cm 2,速度为v =10 m /s ,水的密度为ρ=1.0×103kg /m 3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.试求:(1)当有质量为m =5 kg 的水进入小车时,小车的速度大小;(2)若将小车固定在水平面上,且水冲击到小车前壁后速度立即变为零,求水对小车的冲击力大小.专题41 动量和能量的综合应用1.C 木块在小车上表面滑动的过程中动量守恒,有mv 0=(M +m )v ,系统因摩擦产生的热量Q =12mv 20 -12(M +m )v 2,两式联立解得木块的最终速度v =mv 0M +m,摩擦产生的热量Q =mMv 22(M +m ),C 正确.2.AC 由题意,水平恒力F 1、F 2等大反向,则系统受合外力为零,总动量守恒,故A 正确;拉力与物体的运动方向相同,则F 1、F 2一直做正功,系统的机械能一直在增大,当物体减速为零后此时弹簧的弹力大于拉力,物体会反向运动,此时拉力与运动方向相反,都做负功则机械能减少,B 错误;当弹簧弹力的大小与F 1、F 2的大小相等后,弹力大于拉力,则物体减速运动,故弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度最大,总动能最大,C 正确;当弹簧弹力的大小与F 1、F 2的大小相等后,物体减速运动,但仍然会使弹簧继续伸长,弹性势能继续增大,D 错误.3.D 系统水平方向动量守恒,mv 1=Mv 2,有mx 1=Mx 2,且x 1+x 2=L ,解得x 1=ML M +m,x 2=mL M +m .由平抛运动的规律得h =12gt 2,x 1=v 1t ,由动量定理得I =mv 1,解得I =MmL M +m g 2h.4.BCD 由v ­t 图像可知木块与木箱最终共速,则mv 0=(M +m )v 02,得m =M ,则A 错;由能量守恒可得:12Mv 20 =12(M +m )v 20 4+μmgs ,得到两物体的相对路程为v 20 4μg,B 正确;由图知共碰撞三次,都是弹性碰撞,到共速为止所花总时间为t =v 0-v 02μg=v 02μg,则木箱运动的位移为32L +v 20 8μg ,木块相对地面的位移为3v 20 8μg -32L ,C 、D 正确.5.D 设甲、乙两球的质量分别为m 1、m 2,刚分离时两球速度分别为v 1、v 2,以向右为正方向,则由动量守恒得(m 1+m 2)v 0=m 1v 1+m 2v 2,根据题意有v 2-v 1=xt,代入数据可解得v 2=0.8 m/s ,v 1=-0.1 m/s ,说明刚分离时两球速度方向相反,故A 、B 、C 错误;爆炸过程中释放的能量ΔE =12m 1v 21 +12m 2v 22 -12(m 1+m 2)v 20 ,将v 2=0.8 m/s ,v 1=-0.1 m/s ,代入计算可得ΔE =0.027 J ,故D 正确.6.D 滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=mv m -Mv M ,mgR =12mv 2m +12Mv 2M ,解得v m =3gR2,v M = gR6,滑块滑到B 点时的速度为3gR2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14(R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =Rμ,故D 正确.7.C 由机械能守恒m b gh =12mv 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12m a v 20 =12m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.8.(1)2 m/s (2)100 N解析:(1)流进小车的水与小车组成的系统动量守恒,当流入质量为m 的水后,小车速度为v 1,则mv =(m +M )v 1代入数据解得v 1=2 m/s.(2)在极短的时间Δt 内,冲击小车的水的质量为Δm =ρSv Δt 根据动量定理-F Δt =0-Δmv 联立解得F =100 N .。

动量、动能定理专题

动量、动能定理专题

江苏省各地2009届高三上学期月考试题分类精编动量和动能定理一.单项选择题(江安中学)1.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑。

开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2。

从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度)。

正确的说法是( )A 、由于F 1、F 2等大反向,故系统机械能守恒B 、F 1、F 2 分别对m 、M 做正功,故系统动量不断增加C 、F 1、F 2 分别对m 、M 做正功,故系统机械能不断增加D 、当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大(安丰中学)2.如图所示,在一辆表面光滑足够长的小车上,有质量为m1、m2的两个小球(m1>m2),原来随车一起运动,当车突然停止时,如不考虑其他阻力,则两个小球( ) A .一定相碰 B .一定不相碰C .不一定相碰D .无法确定,因为不知小车的运动方向 二.多项选择题(高淳外校)1.如图所示,A 、B 两质量相等的长方体木块放在光滑的水平面上,一颗子弹以水平速度v 先后穿过A 和B(此过程中A 和B 没相碰)。

子弹穿过B 后的速度变为2v/5 ,子弹在A 和B 内的运动时间t 1 : t 2=1:2,若子弹在两木块中所受阻力相等,则: A .子弹穿过B 后两木块的速度大小之比为1:2B .子弹穿过B 后两木块的速度大小之比为1:4C .子弹在A 和B 内克服阻力做功之比为3:4D .子弹在A 和B 内克服阻力做功之比为1:22.如图所示,质量分别为m 1和m 2的两个小球A 、B ,带有等量异种电荷,通过绝缘轻弹簧1F相连接,置于绝缘光滑的水平面上.当突然加一水平向右的匀强电场后,两小球A、B将由静止开始运动,在以后的运动过程中,对两个小球和弹簧组成的系统(设整个过程中不考虑电荷间库仑力的作用且弹簧不超过弹性限度),以下说法正确的是( )A.因电场力分别对球A和球B做正功,故系统机械能不断增加B.因两个小球所受电场力等大反向,故系统动量守恒C.当弹簧长度达到最大值时,系统机械能最小D.当小球所受电场力与弹簧的弹力相等时,系统动能最大三.实验题(沛县中学)1.某同学用如图所示的实验装置探究小车动能变化与合外力对它所做功的关系.图中A为小车,连接在小车后面的纸带穿过打点计时器B的限位孔,它们均置于水平放置的一端带有定滑轮的足够长的木板上,C为弹簧测力计,不计绳与滑轮的摩擦.实验时,先接通电源再松开小车,打点计时器在纸带上打下一系列点.(1)该同学在一条比较理想的纸带上,依次选取0、1、2、3、4、5共六个计数点,分别测量后5个计数点与计数点0之间的距离,并计算出它们与0点之间的速度平方差△v2(△v2=v2-v02),填入下表:请以△v2为纵坐标,以s为横坐标在方格纸中作出△v2—s图象.若测出小车质量为0.2kg,结合图象可求得小车所受合外力的大小为▲ N(2)该同学通过计算发现小车所受合外力小于测力计▲▲▲A B读数,明显超出实验误差的正常范围.你认为主要原因是▲,实验操作中改进的措施是▲ .2.、在“验证动量守恒定律”的实验中,(1 ) 下面是某同学实验时测得的小球的直径,它的读数是(2 ) 某同学实验完毕后,发现被碰撞小球落点的痕迹很分散,如果装置调整无误,他在操作中可能出现的错误是________________________________________________________________;(3 ) 此实验下列哪些测量不需要...________________________(填序号)A、用天平测两球质量B、用秒表测两球飞行时间C、用刻度尺量出斜槽末端离地面高度D、用刻度尺量出碰撞前后小球的水平位移四.计算题(南阳中学)1、如图所示,质量m=60kg的高山滑雪运动员,从A点由静止开始沿滑雪道滑下,从B点水平飞出后又落在与水平面成倾角θ=37︒的斜坡上C点.已知AB两点间的高度差为h=25m,B、C两点间的距离为s=75m,已知sin370=0.6,取g=10m/s2,求:(1)运动员从B点水平飞出时的速度大小;(2)运动员从A点到B点的过程中克服摩擦力做的功.(南阳中学)2、如图所示,物块A 的质量为M ,物块B 、C 的质量都是m ,并都可看作质点,且m <M <2m 。

高考一轮复习 专题11 电磁感应中的动力学能量和动量问题

高考一轮复习 专题11 电磁感应中的动力学能量和动量问题

专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v ­ t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v ­ t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。

第4讲 动能定理与动量定理的综合应用

第4讲 动能定理与动量定理的综合应用
[答案]
[解析] 由动量定理得 ,其中 ,解得末速度 ;
(4) 若水平力 ( 为力作用后运动的速度, 为常量),求末速度 .
[答案]
[解析] 由动能定理得 ,其中 ,解得末速度 .
▶ 角度1 应用动能定理解决多过程问题
应用动能定理解题的基本步骤
图4-4
例3 (16分)如图4-4所示,水平轨道 的左端与竖直固定的光滑 圆轨道相切于 点,右端与一倾角为 的光滑斜面轨道在 点平滑连接(即物体经过 点时速度
[答案]
[解析] 滑块由 至 过程,由动能定理可得 (2分)解得 (2分)
(2) 整个过程中弹簧具有最大的弹性势能为多少?
[答案]Байду номын сангаас
[解析] 滑块第一次到 点时,弹簧具有最大的弹性势能,滑块由 至 过程,由动能定理可得 (2分)解得 (2分)故弹簧的最大弹性势能 (2分)
图4-2
1.如图4-2甲所示,弹簧一端固定在墙壁上,光滑水平地面上的物体压缩弹簧至弹簧长度为 后释放,某同学研究该弹簧的弹力和弹簧长度时得到的部分数据如图乙所示,则物体离开弹簧时动能约为( )
A
A. B. C. D.
[解析] 根据题图乙中描出的点作出 图像如图甲所示,由图可知,弹簧原长为 ,压缩到长度为 后释放,则弹簧弹力 与弹簧形变量 的关系图像如图乙所示,弹簧对物体做的功等于 图像中图线与 轴围成的面积,即 ,由动能定理得,物体离开弹簧时的动能 ,故A正确.
表达式
标矢性
矢量式
标量式
应用场景
力的时间累积
力的空间累积
共同点
在分析和研究多运动过程问题时,可以全程列式,也可以分过程列式
例1 [2022·湖北卷] 一质点做曲线运动,在前一段时间内速度大小由 增大到 ,在随后的一段时间内速度大小由 增大到 .前后两段时间内,合外力对质点做功分别为 和 ,合外力的冲量大小分别为 和 .下列关系式一定成立的是( )A. , B. , C. , D. ,

专题07动量和能量的综合应用

专题07动量和能量的综合应用

专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。

②若两物体相向运动,碰后两物体的运动方向不可能都不改变。

爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。

专题20 动量与能量综合问题(解析版)

专题20  动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。

作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。

下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。

动量和动能计算综合练习题

动量和动能计算综合练习题

动量和动能计算综合练习题
题目一
一辆质量为500kg的小汽车以30m/s的速度行驶,求其动量是
多少?
解答:
动量的公式为:动量 = 质量 ×速度
根据题目给出的质量和速度,将其带入公式计算,得到:
动量 = 500kg × 30m/s = kg·m/s
题目二
一个质量为2kg的物体以5m/s的速度运动,求其动能是多少?
解答:
动能的公式为:动能 = 1/2 ×质量 ×速度的平方
根据题目给出的质量和速度,将其带入公式计算,得到:
动能 = 1/2 × 2kg × (5m/s)^2 = 25J
题目三
一个质量为10kg的物体以8m/s的速度运动,求其动能是多少?
解答:
动能的公式为:动能 = 1/2 ×质量 ×速度的平方
根据题目给出的质量和速度,将其带入公式计算,得到:
动能 = 1/2 × 10kg × (8m/s)^2 = 320J
题目四
一个质量为2kg的物体以10m/s的速度运动,求其动量是多少?
解答:
动量的公式为:动量 = 质量 ×速度
根据题目给出的质量和速度,将其带入公式计算,得到:
动量 = 2kg × 10m/s = 20kg·m/s
题目五
一个质量为5kg的物体以2m/s的速度运动,求其动量是多少?
解答:
动量的公式为:动量 = 质量 ×速度
根据题目给出的质量和速度,将其带入公式计算,得到:
动量 = 5kg × 2m/s = 10kg·m/s。

动量、动能定理、机械能守恒、能量守恒综合运用

动量、动能定理、机械能守恒、能量守恒综合运用

图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。

专题力学三大观点的综合应用

专题力学三大观点的综合应用

力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题 1动量和能量观点在力学中的应用例1(2014 ·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 1.0 m ,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1)2.5 m/s(2)6次(3)5 s12.75 m解析(1) 设两者间相对静止时速度为v,由动量守恒定律得m v0= 2m vv=2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F =μF=μmgf N设两者相对静止前相对运动的路程为s1,由功能关系得1212- F f·s1=(m+m)v- m v022解得 s1= 12.5 m已知 L= 1 m,可推知物块与右侧槽壁共发生 6 次碰撞.(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v 1′、 v2′.有m v1+ m v2=m v1′+ m v2′121m v22121m v2′2m v1+=m v1′+2222得 v 1′= v2, v2′= v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为 13 段,凹槽、物块的v —t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v= v 0+ata =- μg解得 t = 5 s凹槽的 v —t 图象所包围的阴影部分面积即为凹槽的位移大小 s 2.(等腰三角形面积共分13 份,第一份面积为 0.5 L ,其余每两份面积和均为 L.)1 v 0)t + 6.5L ,解得 s 2= 12.75 m.s 2=(221.如图 2 所示,倾角 45°高 h 的固定斜面.右边有一高3h的平台,平台顶部左边水平,上面有一质量为1圆弧.质量为2m 的小球 A 从斜面底端以某一初速度沿斜面上滑,M 的静止小球 B ,右边有一半径为 h 的 4从斜面最高点飞出后恰好沿水平方向滑上平台,与 B 发生弹性碰撞, 碰后 B 从圆弧上的某点离开圆弧. 所有接触面均光滑, A 、 B 均可视为质点,重力加速度为 g.图 2(1) 求斜面与平台间的水平距离s 和 A 的初速度 v 0;(2) 若 M = 2m ,求碰后 B 的速度;(3) 若 B 的质量 M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为 α.求 cos α的取值范围.答案(1) h 2gh (2) 2gh(3)2≤ cos α≤ 133解析(1) 设小球 A 飞上平台的速度为 v 1,小球由斜面顶端飞上平台,可看成以速度v 1 反向平抛运动,由平抛运动规律得:1h = 1gt 2, s =v 1t , tan 45 =°gt2 2v 1解得: v 1= gh , s = h由机械能守恒定律得:1m v 0 2= 3mgh + 1m v 1 222 2解得: v 0= 2 gh.(2) 设碰后 A 、 B 的速度分别为 v A 、 v B ,由动量、能量守恒得m v 1= m v A + M v B1 2 1 21 2m v 1 =m v A + M v B2222m2v B = m + M v 1= 3gh.(3) 由 (2) 可知,当 M ? m 时 v B ≈ 2 gh > gh 从顶端飞离则 cos α= 1 当 M ? m 时, v B = 0,设 B 球与圆弧面在 C 处分离,则:1 2 Mgh (1- cos α)=2M v Cv C 2 , cos α= 2,故 2≤ cos α≤ 1Mg cos α= M h331.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题 2应用动力学、能量、动量解决综合问题例 2如图3所示,在光滑的水平面上有一质量为m= 1 kg 的足够长的木板C,在 C 上放置有A、 B 两物体, A 的质量 m A= 1 kg,B 的质量为 m B= 2 kg.A、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能 E p= 3 J,现突然给A、B 一瞬时冲量作用,使A、B同时获得v 0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与 A、B 分离.已知 A 和的摩擦因数为μ= 0.2,B、 C 之间的动摩擦因数为μ= 0.1,且滑动摩擦力略小于最大静摩擦力.求:1 2C 之间图3(1)弹簧与 A、 B 分离的瞬间, A、 B 的速度分别是多大?(2) 已知在 C 第一次碰到右边的固定挡板之前,A、B 和 C 已经达到了共同速度,求在到达共同速度之前B、 C 的加速度分别是多大及该过程中产生的内能为多少?(3) 已知 C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前 A 在 C 上滑行的距离?审题突破(1) 根据动量守恒和能量守恒列方程组求A、B 分离时的速度; (2) 由牛顿第二定律求三者的加速A、度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解.答案(1)0 3 m/s(2)4.5 J 1.5 m/s (3)0.75 m解析(1) 在弹簧弹开两物体的过程中,由于作用时间极短,对A、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A+m B)v0= m A v A+ m B v B121212E p+ (m A+ m B)v0=m A v A+ m B v B222联立解得: v A=0, v B=3 m/s.2(2) 对物体 B 有: a =μg= 1 m/s ,方向水平向左B2对 A、 C 有:μ+ m)a2m B g=(m A又因为: m A a<μ1m A g故物体 A、 C 的共同加速度为a= 1 m/s 2,方向水平向右对 A、 B、 C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B= ( m A+ m B+ m)v 121(m A+ m B+ m)v2Q= m B v B-22解得: Q= 4.5 J,v= 1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0 后向右匀加速运动,分析可知,在向右加速过程中先和 A 达到共同速度v1,之后 A、C 再以共同的加速度向右匀加速, B 一直向右匀减速,最后三者达共同速度 v 2后做匀速运动.在此过程中由于摩擦力做负功,故 C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A=μ1g= 2 m/s2, a B=μ2g= 1 m/s2μ,解得: a = 4 m/s 21m A g + μ2m B g = ma C C v 1= v - a A t =- v + a C t解得: v 1= 0.5 m/st = 0.5 s- v + v 1 x A1=v + v 12 t = 0.5 m , x C1= 2 t =- 0.25 m故 A 、 C 间的相对运动距离为x AC = x A1+ |x C1|= 0.75 m.2. (2014 广·东 ·35)如图 4 所示,的水平轨道中, AC 段的中点 B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1 沿光滑轨道向右以速度v 1 与静止在 A 点的物体 P 2 碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在 t 1= 2 s 至 t 2= 4 s 内工作.已知 P 1、 P 2 的质量都为 m = 1 kg , P 与 AC 间的动摩擦因数2为 μ= 0.1, AB 段长 L = 4 m , g 取 10 m/s , P 1、 P 2 和 P 均视为质点, P 与挡板的碰撞为弹性碰撞.图 4(1) 若 v 1= 6 m/s ,求 P 1、 P 2 碰后瞬间的速度大小 v 和碰撞损失的动能E ;(2) 若 P 与挡板碰后, 能在探测器的工作时间内通过 B 点,求 v 1 的取值范围和 P 向左经过 A 点时的最大动能 E .答案 (1)3 m/s 9 J (2)10 m/s ≤ v 1≤ 14 m/s 17 J解析(1) 设 P 1 和 P 2 发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1= 2m v 2①解得: v 2=v 1= 3 m/s2E = 1m v 11× 2m v 2碰撞过程中损失的动能为:2- 2②2 2解得E =9 J.(2) P 滑动过程中,由牛顿第二定律知2ma =- 2μ mg③可以把 P 从 A 点运动到 C 点再返回 B 点的全过程看作匀减速直线运动,根据运动学公式有1 2 3L = v 2t + at2④26L - at由 ①③④ 式得 v 1=t① 若 2 s 时通过 B 点,解得: v 1= 14 m/s ② 若 4 s 时通过 B 点,解得: v 1= 10 m/s 故 v 1 的取值范围为: 10 m/s ≤ v 1≤ 14 m/s设向左经过 A 点的速度为 v A ,由动能定理知1× 2m v A 2- 1× 2m v 2 2=- μ·2mg ·4L22 当 v = 1v 1 = 7 m/s 时,复合体向左通过 A 点时的动能最大, E =17 J.22根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练训练 6题组 1动量和能量的观点在力学中的应用1.如图 1 所示,在倾角为 30°的光滑斜面上放置一质量为 m 的物块 B , B 的下端连接一轻质弹簧,弹簧下端与挡板相连接, B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块 A ,距物块 B 为 3x 0,现让 A 从静止开始沿斜面下滑, A 与 B 相碰后立即一起沿斜面向下运动,并恰好回到 O 点(A 、 B 均视为质点 ).试求:图 1(1) A 、 B 相碰后瞬间的共同速度的大小;(2) A 、 B 相碰前弹簧具有的弹性势能;(3) 若在斜面顶端再连接一光滑的半径 R = x 0 的半圆轨道 PQ ,圆轨道与斜面相切于最高点 P ,现让物块 A以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上的速度,试问:v 为多大时物块 A 恰能通过圆弧轨道的最高点?答案 (1) 1 3gx 0 120+ 4 3 gx 02(2) mgx 0 (3)4解析(1) 设 A 与 B 相碰前 A 的速度为 v 1, A 与 B 相碰后共同速度为 v 2由机械能守恒定律得 3mgx 0 sin 30 1 2=°m v 12由动量守恒定律得m v 1= 2m v 21解以上二式得 v 2= 2 3gx 0.(2) 设 A 、B 相碰前弹簧所具有的弹性势能为 E p ,从 A 、 B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p + 1·2m v 2 2= 2mgx 0 sin 30 °2解得 E p = 1mgx 0.4(3) 设物块 A 与 B 相碰前的速度为 v 3,碰后 A 、 B 的共同速度为 v 41 21 2m v + 3mgx 0 sin 30 =°m v 322m v 3= 2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则1·2m v 4 2+ E p = 1·2m v 5 2+ 2mgx 0sin 30 °2 211此后 A 继续上滑到半圆轨道最高点时速度为v 6,则2 2+ 2mgx 0 sin 30 +°mgR(1+ sin 60 ) °2m v 5= m v 62在最高点有 mg =m v 6 R 2联立以上各式解得v =20+ 4 3 gx 0.2.如图 2 所示,质量为 m 1 的滑块 (可视为质点 )自光滑圆弧形槽的顶端 A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点, A 、 B 的高度差为 h 1= 1.25 m .传导轮半径很小,两个轮之间的距离为 L = 4.00 m .滑块与传送带间的动摩擦因数 μ= 0.20.右端的轮子上沿距离地面高度h 2= 1.80 m ,g取 10 m/s 2.(1) 若槽的底端没有滑块图m 2,传送带静止不运转,求滑块2m 1 滑过C 点时的速度大小v ; (结果保留两位有效数字)(2)在m 1 下滑前将质量为 m 2 的滑块(可视为质点)停放在槽的底端.m 1 下滑后与 m 2 发生弹性碰撞,且碰撞后 m 1 速度方向不变,则m 1、 m 2 应该满足什么条件?(3) 满足 (2) 的条件前提下, 传送带顺时针运转, 速度为 v = 5.0 m/s.求出滑块 m 1、m 2 落地点间的最大距离 (结果可带根号 ).答案(1)3.0 m/s (2)m 1> m 2 (3)(621 - 3) m5 解析(1) 滑块 m 11 2滑到 B 点有 m 1gh 1= m 1v 02解得 v 0= 5 m/s滑块 m 由 B 滑到 C 点有- μm1 2-1211gL = m 1 vm 1v 022解得 v = 3.0 m/s.(2) 滑块 m 2 停放在槽的底端, m 1 下滑并与滑块 m 2 弹性碰撞,则有m 1v 0=m 1v 1+ m 2v 211 v 0 2= 11v 1 2 + 1 2v 2 22m2m2mm 1 速度方向不变即v 1= m 1- m 2+ m v 0> 0m 12 则 m 1> m 2.(3) 滑块经过传送带作用后做平抛运动12h 2=2gt当两滑块速度相差最大时,它们的水平射程相差最大,当 m 1? m 2 时,滑块 m 1、 m 2 碰撞后的速度相差最大,经过传送带后速度相差也最大m 2m 1- m 2 1- m 1 v 0≈ v 0= 5.0 m/s v 1= + m v 0=2m 1+m 1v 2= 2m 1v 0= 2v 0≈ 2v 0= 10.0 m/s+ m 2m2m1+m 1滑块 m 1 与传送带同速度,没有摩擦,落地点射程为x 1= v 1t = 3.0 m滑块 m 2 与传送带发生摩擦,有 - μm1′ 2- 122gL =2m 2v 2 2m 2v 2解得 v 2′= 2 21 m/s落地点射程为 x 2= v 2′ t =621 m5m 2、m 1 的水平射程相差最大值为x = (6 21- 3) m.5题组 2应用动力学观点、能量观点、动量观点解决综合问题3.如图 3 所示,质量 M = 4 kg 的平板小车停在光滑水平面上,车上表面高 h 1= 1.6 m .水平面右边的台阶高 h 2= 0.8 m ,台阶宽l = 0.7 m ,台阶右端B 恰好与半径r = 5 m的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ= 53°,在平板小车的A 处有质量m 1= 2 kg 的甲物体和质量m 2= 1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上 A 点左侧表面光滑,右侧粗糙且动摩擦因数为 μ= 0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取 10 m/s 2,sin 53=°0.8, cos 53 =°0.6).求:图 3(1) 炸药爆炸使两物体增加的机械能E ;(2) 物体在圆弧轨道最低点 C 处对轨道的压力 F ;(3) 平板车上表面的长度 L 和平板车运动位移 s 的大小.答案 (1)75 J (2)46 N ,方向竖直向下(3)1 m解析(1) 甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2= 01 2 1 m 2v 22=75 J.E = m 1v 1 +22(2) 设甲物体平抛到 B 点时,水平方向速度为 v x ,竖直分速度为 v yv y = 2g h 1- h 2 = 4 m/s v x =v y= 3 m/stan θ合速度为: v B = 5 m/s物体从 B 到 C 过程中:m 1gr(1- cos θ)= 1m 1v C 2- 1m 1v B222v C 2F N - m 1 g = m 1 rF N =46 N由牛顿第三定律可知:F = F N = 46 N ,方向竖直向下.v y(3) 甲物体平抛运动时间: t = g = 0.4 s 平抛水平位移: x = v x t = 1.2 m > 0.7 m甲物体在车上运动时的加速度为: a 1= μg = 2 m/s2甲物体在车上运动时间为:t 1= v 0- v x = 1 sa 1甲物体的对地位移: x =1+ v = 4 m12 (v 0 x )t 1a 2= μm 1g = 1 m/s 2甲物体在车上运动时,车的加速度为:1M甲离开车时,车对地的位移:2= 0.5 mx 2= a 2t 12车长为: L = 2(x 1- x 2)= 7 m车的位移为: s = x 2+ (x - l)= 1 m.4.如图 4 所示,光滑的水平面 AB(足够长 )与半径为 R = 0.8 m 的光滑竖直半圆轨道 BCD 在 B 点相切, D点为半圆轨道最高点.A 点的右侧等高地放置着一个长为 L = 20 m 、逆时针转动且速度为v = 10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1= 3 kg ,乙的质量为 m 2= 1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过 D 点,且过 D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为 0.6,重力加速度 g 取 10 m/s 2,甲、乙两物体可看做质点.图 4(1) 求甲球离开弹簧时的速度.(2) 若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3) 甲、乙均不固定,烧断细线以后,求甲和乙能否再次在 AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案(1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为 6 3m/s ,方向水平向左解析(1) 甲离开弹簧时的速度大小为v 0,运动至 D 点的过程中机械能守恒:12 1 2m 1 v 0 = m 1g ·2R +m 1v D ,22 在最高点 D ,由牛顿第二定律,v D 2 有 2m 1g = m 1 R联立解得: v 0= 4 3 m/s.(2) 甲固定,烧断细线后乙的速度大小为 v 乙 ,由能量守恒:E p =1m 1v 0 2=1m 2v 乙 2,2 2得 v 乙 = 12 m/s之后乙滑上传送带做匀减速运动:μm 2g = m 2a得 a = 6 m/s 2乙的速度为零时,在传送带滑行的距离最远,最远距离为:2v 乙s=2a= 12 m < 20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为 v1、 v 2,甲、乙分离瞬间动量守恒: m1v1= m2v2甲、乙弹簧组成的系统能量守恒:121212E p= m1v0= m1v1+m2v2222解得: v1=2 3 m/s,v2= 6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h,12则2m1v1=m1gh得 h= 0.6 m< 0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s< 12 m/s,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回 AB 面上时速度大小仍然为v2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为 2 3 m/s,方向水平向右,乙的速度为 6 3 m/s,方向水平向左.。

微专题49 动量与能量的综合问题

微专题49 动量与能量的综合问题

微专题49 动量与能量的综合问题1.如果要研究在某一时刻物理量的关系,可用牛顿第二定律列式.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究对象为一系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,满足动量守恒定律.1.(2020·河南名校联考)在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,如图1所示.小球A 与小球B 发生正碰后,小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5 PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,小球均可看成质点,求:图1(1)两小球质量之比m 1m 2; (2)若小球A 与小球B 碰后的运动方向以及小球B 反弹后与A 相遇的位置均未知,两小球A 、B 质量满足什么条件,就能使小球B 第一次反弹后一定与小球A 相碰.答案 (1)2∶1 (2)m 1>m 23解析 (1)两球发生弹性碰撞,设碰后A 、B 两球的速度分别为v 1、v 2,规定向右为正方向,根据系统动量守恒得m 1v 0=m 1v 1+m 2v 2已知小球间的碰撞及小球与墙壁之间的碰撞均无机械能损失,由机械能守恒定律得12m 1v 02= 12m 1v 12+12m 2v 22 从两球碰撞后到它们再次相遇,甲和乙的速度大小保持不变,由于PQ =1.5PO , 则小球A 和B 通过的路程之比为s 1∶s 2=v 1t ∶v 2t =1∶4,联立解得m 1m 2=21(2)由(1)中两式解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0若小球A 碰后静止或继续向右运动,一定与小球B 第一次反弹后相碰,此时有v 1≥0,即m 1≥m 2 若小球A 碰后反向运动,则v 1<0,此时m 1<m 2,则小球A 与B 第一次反弹后相碰需满足|v 1|<|v 2| 即m 2-m 1m 1+m 2v 0<2m 1m 1+m 2v 0 解得m 1>m 23综上所述,只要小球A 、B 质量满足m 1>m 23,就能使小球B 第一次反弹后一定与小球A 相碰. 2.(2020·河北邢台市期末)如图2所示,竖直平面内粗糙水平轨道AB 与光滑半圆轨道BC 相切于B 点,一质量m 1=1 kg 的小滑块P (视为质点)在水平向右的力F 作用下,从A 点以v 0= 0.5 m/s 的初速度滑向B 点,当滑块P 滑到AB 正中间时撤去力F ,滑块P 运动到B 点时与静止在B 点的质量m 2=2 kg 的小滑块Q (视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q 恰好能滑到半圆轨道的最高点C ,并且从C 点飞出后又恰好落到AB 的中点,小滑块P 恰好也能回到AB 的中点.已知半圆轨道半径R =0.9 m ,重力加速度g =10 m/s 2.求:图2(1)与Q 碰撞前的瞬间,小滑块P 的速度大小;(2)力F 所做的功.答案 (1)925 m/s (2)61.75 J 解析 (1)滑块P 、Q 碰撞过程机械能守恒、动量守恒,则有12m 1v 12=12m 1v 1′2+12m 2v 22 m 1v 1=m 1v 1′+m 2v 2滑块Q 从B 运动到C 的过程机械能守恒,则有12m 2v 22=12m 2v 32+m 2g ×2R 滑块Q 在C 点时,有m 2g =m 2v 32R解得v 3=3 m/s ,v 1′=-352m/s 与Q 碰撞前的瞬间,小滑块P 的速度大小v 1=952m/s.(2)滑块P从A到B过程,由动能定理,有W F-μm1gx AB=12m1(v12-v02)滑块P与Q碰撞后返回过程,有v1′2=2μg·x AB2解得W F=61.75 J.3.(2020·河南中原名校第五次考评)如图3所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现使M 获得一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而M落在水平地面上的C点,其水平位移s=1.2 m,不计空气阻力,g=10 m/s2,求:图3(1)质量为M的物块落地时的动能;(2)若物块M在P处的初速度大小为8.0 m/s,平台表面与物块间动摩擦因数μ=0.5,物块M 与小球的初始距离s1为多少?答案(1)25 J(2)2.8 m解析(1)碰后物块M做平抛运动,设其平抛运动的初速度为v3由h=12gt2,s=v3t,得:v3=s g2h=3.0 m/s落地时的竖直速度为:v y=2gh=4.0 m/s所以物块落地时的速度为:v=v32+v y2=5.0 m/s物块落地时的动能为:E k=12M v2=25 J(2)物块与小球在B处碰撞,设碰撞前物块的速度为v1,碰撞后小球的速度为v2,由动量守恒定律:M v1=m v2+M v3碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为v A:12=12m v A2+2mgL2m v2小球在最高点时有:2mg=m v A2L联立解得:v2=6.0 m/sv1=6.0 m/s物块M从P运动到B处过程中,由动能定理得:-μMgs1=12-12M v022M v1解得:s1=2.8 m.4.如图4所示为研究某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带足够长,传送带的轮子沿逆时针方向转动,带动传送带以恒定速度v=2.0 m/s匀速运动.三个质量均为m=1.0 kg的滑块A、B、C置于水平导轨上,开始时在B、C 间有一压缩的轻弹簧,两滑块用细绳相连处于静止状态.滑块A以初速度v0=4.0 m/s沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B碰撞过程中滑块C的速度仍为零.因碰撞使连接B、C的细绳受到扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v C=4.0 m/s滑上传送带,已知滑块C与传送带间的动摩擦因数μ=0.20,重力加速度g取10 m/s2.求:图4(1)滑块C在传送带上向右滑动距N点的最远距离s max;(2)弹簧锁定时的弹性势能E p;(3)滑块C在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q.答案(1)4.0 m(2)4.0 J(3)18 J解析(1)滑块C滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远.由动能定理得-μmgs max=0-122m v C解得s max=4.0 m.(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,由动量守恒定律有m v 0=2m v 12m v 1=2m v 2+m v C解得v 1=2 m/s ,v 2=0由能量守恒定律有E p +12×2m v 12=12×2m v 22+12m v C 2 解得E p =4.0 J.(3)滑块C 在传送带上向右做匀减速运动,设滑块C 在传送带上运动的加速度大小为a ,滑块C 在传送带上经时间t 1速度减为零,在同样时间内传送带向左的位移大小为x 1.根据牛顿第二定律和运动学公式可知a =μmg m=2 m/s 2 滑块C 速度减小到零所需的时间t 1=v C a=2 s 传送带的位移大小x 1=v t 1=2×2 m =4 m相对路程Δx 1=s max +x 1=8 m滑块C 在传送带上向右运动至速度为0后开始向左做匀加速直线运动,当速度达到与传送带速度相同时,与传送带一起做匀速直线运动.滑块C 在传送带上向左做匀加速直线运动的时间t 2=v a=1 s 滑块C 的位移大小s 1=12at 22=1 m 传送带的位移大小x 2=v t 2=2 m相对路程Δx 2=x 2-s 1=1 m则滑块C 在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q =μmg (Δx 1+Δx 2)=0.2×1×10×9 J =18 J .。

第七章 专题强化十三 动量和能量的综合问题

第七章 专题强化十三 动量和能量的综合问题

专题强化十三 动量和能量的综合问题 目标要求 1.掌握解决力学综合问题常用的三个观点.2.会灵活选用三个观点解决力学综合问题.1.解动力学问题的三个基本观点(1)动力学观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.用动量定理可简化问题的求解过程.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转化为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化,作用时间都极短,因此用动量守恒定律去解决.题型一 动量与能量观点的综合应用例1 (2020·天津卷·11)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 15gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl 联立解得v A =5gl由动量定理,有I =m 1v A =m 15gl(2)设两球粘在一起时速度大小为v ′,若A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′联立解得v B =5gl (2m 1+m 2)m 2 又E k =12m 2v B 2 可得碰撞前瞬间B 的动能E k 至少为E k =5gl ()2m 1+m 222m 2. 例2 (2022·四川省泸县第四中学高三月考)如图所示,质量为M =2 kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R =0.4 m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切.质量为m =1 kg 的滑块B (可视为质点)以初速度v 0=8 m/s 从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧.A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数μ=0.1,A 足够长,B 始终未从A 表面滑出,取g =10 m/s 2.(1)求滑块B 到圆弧底端时的速度大小v 1;(2)若A 与台阶碰前,已和B 达到共速,求A 向左运动的过程中与B 摩擦产生的热量Q (结果保留两位有效数字);(3)若A 与台阶只发生一次碰撞,求x 满足的条件.答案 (1)4 m/s (2)5.3 J (3)x ≥1 m解析 (1)滑块B 从释放到圆弧最低点的运动过程,由动能定理得mgR =12m v 12-12m v 02 解得v 1=4 m/s(2)B 与A 向左运动过程中,取向左为正方向,由动量守恒定律得m v 1=(m +M )v 2解得v 2=43m/s 由能量守恒定律得Q =12m v 12-12(m +M )v 22 解得Q ≈5.3 J(3)从B 刚滑到A 上到A 左端与台阶碰撞前瞬间, A 、B 的速度分别为v 3和v 4,由动量守恒定律得m v 1=m v 4+M v 3若A 与台阶只碰撞一次,碰撞后必须满足|M v 3|≥|m v 4|对A 板,应用动能定理μmgx =12M v 32-0 联立解得x ≥1 m题型二 力学三大观点的综合应用例3 如图所示,一质量为M =3.0 kg 的平板车静止在光滑的水平地面上,其右侧足够远处有一障碍物A ,质量为m =2.0 kg 的b 球用长l =2 m 的细线悬挂于障碍物正上方,一质量也为m 的滑块(视为质点)以v 0=7 m/s 的初速度从左端滑上平板车,同时对平板车施加一水平向右的,大小为6 N 的恒力F .当滑块运动到平板车的最右端时,二者恰好相对静止,此时撤去恒力F .当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后与b 球正碰并与b 粘在一起成为c .不计碰撞过程中的能量损失,不计空气阻力.已知滑块与平板车间的动摩擦因数μ=0.3,g 取10 m/s 2,求:(1)撤去恒力F 前,滑块、平板车的加速度各为多大,方向如何;(2)撤去恒力F 时,滑块与平板车的速度大小;(3)c 能上升的最大高度.答案 (1)滑块的加速度为3 m/s 2、方向水平向左,平板车的加速度为4 m/s 2,方向水平向右(2)4 m/s (3)0.2 m解析 (1)对滑块,由牛顿第二定律得:a 1=μg =3 m/s 2,方向水平向左对平板车,由牛顿第二定律得:a 2=F +μmg M =6+0.3×203m/s 2=4 m/s 2,方向水平向右 (2)设经过时间t 1滑块与平板车相对静止,此时撤去恒力F ,共同速度为v 1则:v 1=v 0-a 1t 1v 1=a 2t 1解得:t 1=1 s ,v 1=4 m/s.(3)规定向右为正方向,对滑块和b 球组成的系统运用动量守恒得,m v 1=2m v 2,解得v 2=v 12=42m/s =2 m/s. 根据机械能守恒得,12×2m v 22=2mgh , 解得h =v 222g =420m =0.2 m. 例4 如图所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m =0.4 kg 的物块A 自圆弧形轨道的顶端释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为s =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:(1)BP 间的水平距离s BP ;(2)判断物块B 能否沿圆轨道到达M 点;(3)物块A 由静止释放的高度h .答案 (1)4.1 m (2)不能 (3)1.8 m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时v y 2=2gR ①其中v y v D=tan 45°② 由①②解得v D =4 m/s ③设平抛用时为t ,水平位移为s 2,则有R =12gt 2④ s 2=v D t ⑤由④⑤解得s 2=1.6 m ⑥物块B 碰后以初速度v 0=6 m/s ,加速度a =-4 m/s 2减速到v D ,则BD 过程由运动学公式v D 2-v 02=2as 1⑦解得s 1=2.5 m ⑧故BP 之间的水平距离s BP =s 2+s 1=4.1 m ⑨(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,由D 到M 的运动过程,根据动能定理, 则有-22mgR =12m v M 2-12m v D 2⑩ 设在M 点轨道对物块的压力为N ,则N +mg =m v M 2R⑪ 由⑩⑪解得N =(1-2)mg <0,假设不成立,即物块不能到达M 点.(3)对物块A 、B 的碰撞过程,根据动量守恒有:m A v A =m A v A ′+m B v 0⑫根据机械能守恒有:12m A v A 2=12m A v A ′2+12m B v 02⑬ 由⑫⑬解得:v A =6 m/s ⑭设物块A 释放的高度为h ,对下落过程,根据动能定理有:mgh =12m v A 2,⑮ 由⑭⑮解得h =1.8 m .⑯课时精练1.如图,光滑轨道PQO 的水平段QO =h 2,轨道在O 点与水平地面平滑连接.一质量为m 的小物块A 从高h 处由静止开始沿轨道下滑,在O 点与质量为4m 的静止小物块B 发生碰撞.A 、B 与地面间的动摩擦因数均为μ=0.5,重力加速度为g .假设A 、B 间的碰撞为完全弹性碰撞,碰撞时间极短.求:(1)第一次碰撞后瞬间A 和B 速度的大小;(2)请计算说明物块A 与B 能否发生第二次碰撞.答案 见解析解析 (1)设碰撞前A 的速度为v ,对A 下滑过程由动能定理得:mgh =12m v 2,得v =2gh 碰撞中由动量守恒得:m v =m v ′+4m v B由机械能守恒得:12m v 2=12m v ′2+12×4m v B 2 解得v ′=m -4m m +4m v ,v B =2m m +4mv 解得碰撞后A 的速度:v ′=-352gh B 的速度v B =252gh (2)碰撞后A 沿光滑轨道上升后又滑到O ,然后向右减速滑行至停止,对此过程由动能定理得:μmgx A =12m v ′2,解得x A =1825hB 沿地面减速滑行至停止,μ·4mgx B =12×4m v B 2 得x B =825h 因为x A >x B ,所以会发生第二次碰撞.2.如图,一水平放置的圆环形铁槽固定在水平面上,铁槽底面粗糙,侧壁光滑,半径R =2π m ,槽内放有两个大小相同的弹性滑块A 、B ,质量均为m =0.2 kg.两滑块初始位置与圆心连线夹角为90°;现给A 滑块一瞬时冲量,使其获得v 0=210 m/s 的初速度并沿铁槽运动,与B 滑块发生弹性碰撞(设碰撞时间极短);已知A 、B 滑块与铁槽底面间的动摩擦因数μ=0.2,g =10 m/s 2;试求:(1)A 、B 第一次相碰过程中,系统储存的最大弹性势能E pm ;(2)A 滑块运动的总路程.答案 见解析解析 (1)对A 滑块,由动能定理可得:-μmg 2πR 4=12m v 12-12m v 02 A 、B 碰撞时,两者速度相等时,储存的弹性势能最大,由动量守恒定律得:m v 1=(m +m )v 2又由能量守恒定律可得:12m v 12=12(m +m )v 22+E pm 解得:E pm =1.8 J(2)A 、B 发生弹性碰撞,由动量守恒定律得:m v 1=m v 3+m v 4又由机械能守恒定律可得:12m v 12=12m v 32+12m v 42 解得:v 3=0,v 4=6 m/sA 、B 的总路程为s 1,由功能关系有:-μmgs 1=0-12m v 02A 、B 运动的总圈数为n ,有:s 1=2πRn得:n =2.5对A 、B 的运动过程分析,A 运动了1.25圈,故A 滑块的路程s 2=1.25×2πR =5 m.3.光滑四分之一圆弧导轨最低点切线水平,与光滑水平地面上停靠的一小车上表面等高,小车质量M =2.0 kg ,高h =0.2 m ,如图所示.现从圆弧导轨顶端将一质量为m =0.5 kg 的滑块由静止释放,当小车的右端运动到A 点时,滑块正好从小车右端水平飞出,落在地面上的B 点.滑块落地后0.2 s 小车右端也到达B 点.已知AB 相距L =0.4 m ,g 取10 m/s 2,求:(1)滑块离开小车时的速度大小;(2)圆弧导轨的半径;(3)滑块滑过小车的过程中产生的内能.答案 (1) 2 m/s (2) 1.8 m (3) 7 J解析 (1)滑块平抛过程中,沿竖直方向有:h =12gt 12 沿水平方向:L =v 1t 1解得:t 1=2h g =0.2 s ,v 1=L t 1=2 m/s (2)滑块滑出后小车做匀速直线运动:v 2=L t 1+Δt =0.40.2+0.2m/s =1 m/s 滑块在小车上运动的过程中,滑块与小车组成的系统在水平方向上动量守恒,选取向右为正方向,则:m v 0=m v 1+M v 2代入数据得:v 0=6 m/s滑块在圆弧导轨上运动的过程中机械能守恒,有: mgR =12m v 02 代入数据得:R =1.8 m(3)根据能量守恒可得滑块滑过小车表面的过程中产生的内能:ΔE =mgR -(12m v 12+12M v 22) 代入数据得:ΔE =7 J.4.如图所示,水平轨道OP 光滑,PM 粗糙,PM 长L =3.2 m .OM 与半径R =0.15 m 的竖直半圆轨道MN 平滑连接.小物块A 自O 点以v 0=14 m/s 向右运动,与静止在P 点的小物块B 发生正碰(碰撞时间极短),碰后A 、B 分开,A 恰好运动到M 点停止.A 、B 均看作质点.已知A 的质量m A =1.0 kg ,B 的质量m B =2.0 kg ,A 、B 与轨道PM 的动摩擦因数均为μ=0.25,g 取10 m/s 2,求:(1)碰后A 、B 的速度大小;(2)碰后B 沿轨道PM 运动到M 所需时间;(3)若B 恰好能到达半圆轨道最高点N ,求沿半圆轨道运动过程损失的机械能.答案 (1) 4 m/s 5 m/s (2) 0.8 s (3) 1.5 J解析 (1)由牛顿第二定律,A 、B 在PM 上滑行时的加速度大小相同,均为a ,a =μm A g m A =μm B g m B=μg 代入数据得:a =2.5 m/s 2由运动学知识,对A ,v 12=2aL得碰后速度v 1=4 m/sA 、B 相碰的过程中系统水平方向的动量守恒,选取向右为正方向,得:m A v 0=m A v 1+m B v 2 得碰后B 的速度v 2=5 m/s(2)对B 物块,P 到M 的运动过程,有:L =v 2t -12at 2 结合(1)可解得:t 1=3.2 s(不符合,舍去)t 2=0.8 s即所求时间t =0.8 s(3)B 在M 点的速度大小v 3=v 2-at代入数值解得:v 3=3 m/sB 恰好过N 点,满足:m B v 42R=m B g M 到N 过程,由功能关系可得ΔE =12m B v 32-12m B v 42-2m B gR 联立解得损失机械能:ΔE =1.5 J.。

第十六章 专题 动量和能量的综合应用

第十六章  专题 动量和能量的综合应用

第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。

动量及能量经典题剖析及问题详解

动量及能量经典题剖析及问题详解

动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为m的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度v。

2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

动量和能量综合问题

动量和能量综合问题

动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。

动量守恒,碰撞系统动能损失。

根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。

动能定理和动量定理专题

动能定理和动量定理专题

例1 如图2-1所示,单摆的质量为m、摆长为l,最大摆角为θ(θ<100),则在摆球从最高点第一次运动到平衡位置的过程中,求:(1)重力的冲量;(2)合外力的冲量?图2-1 例2 在一次抗洪抢险活动中,解放军某部动用直升飞机抢救落水人员,静止在空中的直升飞机上电动机通过悬绳将人从离飞机90m处的洪水中吊到机舱里.已知人的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12kw,为尽快把人安全救起,操作人员采取的办法是:先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当人到达机舱时恰好达到最大速度.(g=10m/s2)求:(1)人刚到达机舱时的速度;(2)这一过程所用的时间.例3 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m/s2)例4 有一宇宙飞船,以v=10km/s的速度进入分布均匀的宇宙微粒区,飞船每前进s =1km与n=1×104个微粒相碰.已知每个微粒的质量m=2×10-4g.假如微粒与飞船碰撞后附于飞船上,则要保持飞船速度不变,飞船的牵引力应增加多少?1.下列说法中正确的是 ( )A .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同B .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反C .在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反D .在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反2.质量为m 的物体以初速度v 0水平抛出,经过时间t ,下降的高度为h ,速率变为v ,在这段时间内物体动量变化量的大小为 ( )A .m (v -v 0)B .mgtC .22v v mD .gh m 23.古有“守株待兔”的寓言。

专题十二 力学三大观点的综合应用

专题十二 力学三大观点的综合应用

第七章 动量守恒定律专题十二 力学三大观点的综合应用核心考点五年考情命题分析预测动量与能量观点的综合应用2022:广东T13,湖北T16;2021:湖北T15;2020:山东T18力学三大观点的综合应用往往以高考压轴题的形式考查,综合性强,难度大,常与曲线运动、带电粒子在电磁场中的运动或导体棒切割磁感线等知识点相结合进行考查.预计2025年高考可能会出现三大观点应用的计算题.三大观点的综合应用2023:山东T18,广东T15,辽宁T15,浙江6月T18,浙江1月T18;2022:浙江6月T20;2021:北京T17,湖南T14题型1 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律. 2.三种技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显出它们的优越性.1.[2024江西九校联考]如图所示,质量M =4kg 的滑块套在光滑的水平轨道上,质量m =2kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕轴O自由转动.开始时轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,以初始时刻轴O 的位置为坐标原点,在竖直平面内建立固定的直角坐标系xOy ,取g =10m/s 2.(1)若锁定滑块,求小球通过最高点时轻杆对小球的作用力大小;(2)若解除对滑块的锁定,求小球运动到最高点时的动能E k ;(3)若解除对滑块的锁定,在平面直角坐标系xOy 中,求出小球从出发至运动到最高点的过程的轨迹方程.答案 (1)4N (2)4J (3)(32x -14)2+y 2=14解析 (1)若锁定滑块,则小球从开始运动到上升至最高点的过程,机械能守恒,有12m v 02=12m v 12+mgL小球在最高点时,设轻杆对小球的作用力大小为F ,则有mg +F =mv 12L联立解得F =4N(2)若解除对滑块的锁定,由于小球与滑块组成的系统在水平方向上不受力,因此小球与滑块组成的系统在水平方向上动量守恒.设小球通过最高点时的速度大小为v 2,此时滑块的速度大小为v ,以水平向右为正方向,则有0=mv 2-Mv运动过程中,系统的机械能守恒,则有12m v 02=12m v 22+12Mv 2+mgL又E k =12m v 22联立解得E k =4J(3)若解除对滑块的锁定,在小球上升的过程中,滑块向左运动,小球在水平方向上向右运动,设小球的位置坐标为(x ,y )时,滑块向左运动的位移大小为Δx ,则由人船模型有m (L -x )=M Δx由几何关系可知(x -Δx )2+y 2=L 2联立可得小球运动的轨迹方程为(32x -14)2+y 2=14.题型2 三大观点的综合应用1.三大基本观点动力学观点 运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题能量观点 用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题2.三大观点的选用原则力学中首先考虑使用两个守恒定律.从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x 、时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动问题特别方便.2.[三大观点的综合应用/2021湖北]如图所示,一圆心为O 、半径为R 的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q 点相切.在水平面上,质量为m 的小物块A 以某一速度向质量也为m 的静止小物块B 运动.A 、B 发生正碰后,B 到达半圆弧轨道最高点时对轨道压力恰好为零,A 沿半圆弧轨道运动到与O 点等高的C 点时速度为零.已知重力加速度大小为g ,忽略空气阻力.(1)求B 从半圆弧轨道飞出后落到水平面的位置到Q 点的距离;(2)当A 由C 点沿半圆弧轨道下滑到D 点时,OD 与OQ 夹角为θ,求此时A 所受力对A 做功的功率;(3)求碰撞过程中A 和B 损失的总动能.答案 (1)2R (2)mg sin θ√2gRcosθ (3)√10mgR解析 (1)设B 到半圆弧轨道最高点时速度为v 2',由于B 对轨道最高点的压力为零,则由牛顿第二定律得mg =mv 22'RB 离开最高点后做平抛运动,则在竖直方向上有2R =12gt 2在水平方向上有x =v 2't联立解得x =2R(2)对A 由C 到D 的过程,由机械能守恒定律得mgR cos θ=12m v D2由于对A 做功的力只有重力,则A 所受力对A 做功的功率为P =mgv D sin θ解得P =mg sin θ√2gRcosθ(3)设A 、B 碰后瞬间的速度分别为v 1、v 2,对B 由Q 到最高点的过程,由机械能守恒定律得12m v 22=12m v 22'+mg ·2R解得v 2=√5gR对A 由Q 到C 的过程,由机械能守恒定律得12m v 12=mgR解得v 1=√2gR设碰前瞬间A 的速度为v 0,对A 、B 碰撞的过程,由动量守恒定律得mv 0=mv 1+mv 2解得v 0=√2gR +√5gR碰撞过程中A 和B 损失的总动能为ΔE =12m v 02-12m v 12-12m v 22解得ΔE =√10mgR .3.[三大观点的综合应用/2023浙江6月]为了探究物体间的碰撞特性,设计了如图所示的实验装置.水平直轨道AB 、CD 和水平传送带平滑无缝连接,两半径均为R =0.4m 的四分之一圆周组成的竖直细圆弧管道DEF 与轨道CD 和足够长的水平直轨道FG 平滑相切连接.质量为3m 的滑块b 与质量为2m 的滑块c 用劲度系数k =100N/m 的轻质弹簧连接,静置于轨道FG 上.现有质量m =0.12kg 的滑块a 以初速度v 0=2√21m/s 从D 处进入,经DEF 管道后,与FG 上的滑块b 碰撞(时间极短).已知传送带长L =0.8m ,以v =2m/s 的速率顺时针转动,滑块a 与传送带间的动摩擦因数μ=0.5,其他摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能E p =12kx 2(x 为形变量).(1)求滑块a 到达圆弧管道DEF 最低点F 时速度大小v F 和所受支持力大小F N ;(2)若滑块a 碰后返回到B 点时速度v B =1m/s ,求滑块a 、b 碰撞过程中损失的机械能ΔE ;(3)若滑块a 碰到滑块b 立即被粘住,求碰撞后弹簧最大长度与最小长度之差Δx .答案 (1)v F =10m/s F N =31.2N (2)ΔE =0 (3)Δx =0.2m解析 (1)滑块a 以初速度v 0从D 处进入竖直圆弧管道DEF 运动,由动能定理有mg ·2R=12m v F 2-12m v 02解得v F=10m/s在最低点F ,由牛顿第二定律有F N -mg =m v F2R解得F N =31.2N(2)碰撞后滑块a 返回到B 点的过程,由动能定理有-mg ·2R -μmgL =12m v B 2-12m v a2解得v a =5m/s滑块a 、b 碰撞过程,由动量守恒定律有mv F =-mv a +3mv b解得v b =5m/s碰撞过程中损失的机械能为ΔE =12m v F 2-12m v a 2-12·3m v b 2=0(3)滑块a 碰撞b 后立即被粘住,由动量守恒定律有mv F =(m +3m )v ab解得v ab =2.5m/s滑块ab 一起向右运动,压缩弹簧,ab 减速运动,c 加速运动,当abc 三者速度相等时,弹簧长度最小,由动量守恒定律有(m +3m )v ab =(m +3m +2m )v abc解得v abc =53m/s由机械能守恒定律有E p1=12×4m v ab 2-12×6m v abc2解得E p1=0.5J由E p1=12k x 12解得最大压缩量x 1=0.1m滑块ab 一起继续向右运动,弹簧弹力使c 继续加速,使ab 继续减速,当弹簧弹力减小到零时,c 速度最大,ab 速度最小;滑块ab 一起再继续向右运动,弹簧弹力使c 减速,使ab 加速,当abc 三者速度相等时,弹簧长度最大,其对应的弹性势能与弹簧长度最小时的弹性势能相等,由弹簧的弹性势能公式可知最大伸长量x 2=0.1m所以碰撞后弹簧最大长度与最小长度之差Δx =x 1+x 2=0.2m.方法点拨深化观念、建构模型,解决力学综合难题1.[2023浙江1月]一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角θ=37°的直轨道AB 、螺旋圆形轨道BCDE 、倾角θ=37°的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接.螺旋圆形轨道与轨道AB 、EF 相切于B (E )处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道FG 、平台JK 位于同一水平面.已知螺旋圆形轨道半径R =0.5m ,B 点高度为1.2R ,FG 长度L FG =2.5m ,HI 长度L 0=9m ,摆渡车长度L =3m 、质量m =1kg.将一质量也为m 的滑块从倾斜轨道AB 上高度h =2.3m 处静止释放,滑块在FG 段运动时的阻力为其重力的0.2倍.(摆渡车碰到竖直侧壁IJ 立即静止,滑块视为质点,不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2)(1)求滑块过C 点的速度大小v C和轨道对滑块的作用力大小F C;(2)摆渡车碰到IJ 前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数μ;(3)在(2)的条件下,求滑块从G 到J 所用的时间t .答案 (1)4m/s 22N (2)0.3 (3)2.5s解析 (1)C 点离地高度为1.2R +R cos θ+R =3R滑块从静止释放到C 点过程,根据动能定理可得 mg (h -3R )=12m v C2-0 解得v C=4m/s在最高点C 时,根据牛顿第二定律可得 F C+mg =m v C2R解得F C=22N(2)从静止释放到G 点,由动能定理可得 mgh -0.2mgL FG=12m v G2由题可知,滑块到达摆渡车右端时刚好与摆渡车共速,速度大小设为v根据动量守恒定律可得2mv =mv G由功能关系可得μmgL =12m v G 2-12×2mv 2综合解得μ=0.3(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为a =μg设滑块从滑上摆渡车到共速的时间为t 1,有t 1=v G -v μg=1s共速后继续向右匀速运动的时间t 2=L 0-L -12vt 1v=1.5st =t 1+t 2=2.5s .2.[2022广东]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A 处以初速度v 0为10m/s 向上滑动时,受到滑杆的摩擦力f 为1N.滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m =0.2kg ,滑杆的质量M =0.6kg ,A 、B 间的距离l =1.2m ,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v ;(3)滑杆向上运动的最大高度h .答案 (1)8N 5N (2)8m/s (3)0.2m解析 (1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f',f'=f代入数据得N 2=5N(2)解法1 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1解得a 1=15m/s 2,方向向下由运动学公式得v 2-v 02=-2a 1l代入数据得v =8m/s解法2 由动能定理得-(mg +f )l =12mv 2-12m v 02代入数据解得v =8m/s(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v 共代入数据得v 共=2m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有-(M +m )gh =0-12(M +m )v 共2代入数据得h =0.2m.3.[2021湖南]如图,竖直平面内一足够长的光滑倾斜轨道与一长为L 的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ .质量为m 的小物块A 与水平轨道间的动摩擦因数为μ.以水平轨道末端O 点为坐标原点建立平面直角坐标系xOy ,x 轴的正方向水平向右,y 轴的正方向竖直向下,弧形轨道P 端坐标为(2μL ,μL ),Q 端在y 轴上.重力加速度为g .(1)若A 从倾斜轨道上距x 轴高度为2μL 的位置由静止开始下滑,求A 经过O 点时的速度大小;(2)若A 从倾斜轨道上不同位置由静止开始下滑,经过O 点落在弧形轨道PQ 上的动能均相同,求PQ 的曲线方程;(3)将质量为λm (λ为常数且λ≥5)的小物块B 置于O 点,A 沿倾斜轨道由静止开始下滑,与B 发生弹性碰撞(碰撞时间极短),要使A 和B 均能落在弧形轨道上,且A 落在B 落点的右侧,求A 下滑的初始位置距x 轴高度的取值范围.答案 (1)√2μgL (2)x 22y +2y =4μL (0≤x ≤2μL ) (3)3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)2解析 (1)设A 滑到O 点时速度为v 0,A 从倾斜轨道上滑到O 点过程中,由动能定理有mg ·2μL -μmgL =12m v 02解得v 0=√2μgL(2)若A 以(1)中的位置从倾斜轨道上下滑,A 从O 点抛出,假设能运动到弧形轨道上的P 点,水平方向有2μL =v 0t 1竖直方向有y P =12g t 12解得y P =μL ,假设成立所以A 落在弧形轨道时的动能E k 满足mg ·2μL -μmgL +mg ·μL =E k -0A 从O 点抛出,做平抛运动,水平方向有x =v 1t竖直方向有y =12gt 2又y =v y22g ,E k =12m (v 12+v y 2)联立解得PQ 的曲线方程为x 22y+2y =4μL (0≤x ≤2μL )(3)设A 初始位置到x 轴的高度为h ,A 滑到O 点的速度为v A 0,碰撞后的速度为v A 1,反弹后再次返回O 点时速度为v A ,A 、B 碰撞后B 的速度为v B ,A 、B 碰撞过程有mv A 0=mv A 1+λmv B12m v A02=12m v A12+12λm v B2解得v A 1=1-λ1+λv A 0,v B =21+λv A 0A 从倾斜轨道上滑到O 点的过程有mgh -μmgL =12m v A02碰后又运动到O 点过程有-μmg ·2L =12m v A 2-12m v A12又A 、B 均能落在弧形轨道上且A 落在B 点右侧应满足v B <v A ≤v 0联立求解得3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)24.[高考新题型/2023湖南]如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直.质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上.整个过程凹槽不翻转,重力加速度为g .(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;(2)在平面直角坐标系xOy 中,求出小球运动的轨迹方程;(3)若Mm =ba -b,求小球下降h =b2高度时,小球相对于地面的速度大小(结果用a 、b 及g表示).答案 (1)√2m 2gbM (m +M )ma M +m(2)[(M +m )x -ma ]2M 2a 2+y 2b2=1(y ≤0)(3)2b √ga+3b解析 (1)小球从静止到第一次运动到轨道最低点的过程,水平方向上小球和凹槽组成的系统动量守恒,有0=mv 1-Mv 2对小球与凹槽组成的系统,由机械能守恒定律有mgb =12m v 12+12M v 22 联立解得v 2=√2m 2gbM (m +M )根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=maM +m(2)小球向左运动过程中,凹槽向右运动,当小球的坐标为(x ,y )时,小球向左运动的位移x'1=a -x ,则凹槽水平向右运动的位移为x'2=mM (a -x )小球在凹槽所在的椭圆上运动,根据数学知识可知小球的运动轨迹满足(x -x '2)2a 2+y 2b2=1整理得小球运动的轨迹方程为[(M +m )x -ma ]2M 2a 2+y 2b 2=1(y ≤0)(3)若Mm =b a -b,代入(2)问结果化简可得[x -(a -b )]2+y 2=b 2即小球的运动轨迹是半径为b 的圆小球下降h =b 2高度的过程,小球与凹槽组成的系统在水平方向动量守恒,有mv'1x =Mv'2对小球与凹槽组成的系统,由机械能守恒定律有mgh =12mv'12+12Mv'22由几何关系及速度的分解得v'1sin30°=v'1x联立解得v'1=2b √g a+3b.1.[2024四川成都蓉城名校联考/多选]一次台球练习中,某运动员用白球击中彩球,白球与静止的彩球发生正碰,碰撞时间极短,碰后两球在同一直线上运动,且台球运动时所受桌面阻力保持不变,两球质量均为m =0.2kg ,碰撞后两球的位移x 与速度的平方v 2的关系如图所示,重力加速度g 取10m/s2.则下列说法正确的是( BC )A.碰撞前白球的速度为1.64m/sB.碰撞过程中,白球对彩球的冲量大小为0.2kg·m/sC.碰撞过程中,系统有机械能转化为内能D.台球所受桌面阻力为0.5N解析 由题图可知,碰后白球速度v 1=0.8 m/s ,彩球速度v 2=1.0 m/s.设碰撞前白球 速度为v 0,由动量守恒得mv 0=mv 1+mv 2,解得v 0=1.8 m/s ,故A 错误;碰撞过程中,白球对彩球的冲量I =mv 2=0.2×1.0 kg·m/s =0.2 kg·m/s ,B 正确;由于12m v 02>12m v 12+12m v 22,故碰撞过程中,系统有机械能转化为内能,C 正确;由运动学知识可知a =v 122x 1=0.642×1.28 m/s 2=0.25 m/s 2,故阻力为f =ma =0.05 N ,故D 错误.2.[2024北京海淀区期中/多选]如图所示,质量m A =1kg 、长L =9m 的薄板A 放在水平地面上,在大小为4N 、水平向右的外力F 作用下由静止开始运动,薄板与地面间的动摩擦因数μ1=0.2,其速率达到v A =2m/s 时,质量m B =1kg 的物块B 以v B =4m/s 的速率由薄板A 右端向左滑上薄板,A 与B 间的动摩擦因数μ2=0.1,B 可视为质点,重力加速度g 取10m/s 2.下列说法正确的是( AD )A.当A 的速率减为0时,B 的速率为2m/sB.从B 滑上A 到B 掉下的过程中,A 、B 所组成的系统动量守恒C.从B 滑上A 到B 掉下的过程,A 、B 和地面所组成的系统因摩擦而产生的热量为9JD.从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能减少9J解析 B 滑上A 后,B 开始做减速运动,此时对B 由牛顿第二定律有μ2m B g =m B a B ,解得a B =1 m/s 2,对A 由牛顿第二定律有μ1(m A +m B )g +μ2m B g -F =m A a A ,解得a A =1 m/s 2,A 也开始做减速运动,假设A 速率减为0时,B 未从A 上掉下,则A 的速率减为0的时间为t 1=v Aa A=2 s ,此时B 的速度大小为v B 1=v B -a B t 1=2 m /s ,此过程A 、B 的相对位移Δx =v A22a A+v B 2−v B122a B=8 m <L ,故假设成立,A 正确;在B 滑上A 到A 速度减到零的过程中,有μ1(m A +m B )g =F ,即A 、B 所组成的系统受到的合力为零,动量守恒,当A 速度减为零时,由于μ1(m A +m B )g +μ2m B g >F ,则A 此后处于静止状态,且由平衡条件可知A 与地面间的摩擦力f <F ,A 、B 所组成的系统受到的合力不为零,动量不守恒,B 错误;从B 滑上A 到A 速度减为零的过程,A 的位移为x A =v A22a A=2 m ,此过程B 的位移为x B =v B 2−v B122a B=6 m ,结合B 项分析可知,此后A 处于静止状态,B 继续向左做匀减速运动直至掉下,则对从B 滑上A 到B 掉下的整个运动过程,A 、B 和地面所组成的系统因摩擦而产生的热量为Q =μ1(m A +m B )gx A +μ2m B gL =17 J ,C 错误;从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能的减少量为ΔE k =Q -Fx A =9 J ,D 正确.3.[设问创新/2024重庆南开中学校考/多选]如图所示,半径为R 、质量为3m 的14圆弧槽AB 静止放在光滑水平地面上,圆弧槽底端B 点切线水平,距离B 点为R 处有一质量为3m 的小球2,其左侧连有轻弹簧.现将质量为m 的小球1(可视为质点)从左侧圆弧槽上端的A 点由静止释放,重力加速度为g ,不计一切摩擦.则下列说法正确的是( BC )A.系统(三个物体)全程动量守恒B.小球1刚与弹簧接触时,与圆弧槽底端B 点相距53RC.弹簧弹性势能的最大值为916mgRD.小球1最终的速度大小为√6gR 4解析 小球1在圆弧槽上运动时,系统在竖直方向上动量不守恒,故A 错误.小球1从圆弧槽的A 点到B 点的过程中,设小球1滑到B 点时小球1的速度为v 0,圆弧槽的速度为v ,取水平向右为正方向,小球1与圆弧槽在水平方向动量守恒有0=mv 0-3mv ,由能量守恒有mgR =12m v 02+12·3mv 2,解得v 0=3v =√3gR 2.设小球1到B 点时,小球1水平向右移动的距离为x 1,圆弧槽向左运动的距离为x 2,两者的相对位移为R ,因此有mx 1-3mx 2=0,x 1+x 2=R ,联立解得x 1=34R ,x 2=14R . 此时圆弧槽的B 点与弹簧之间的距离L =x 2+R =54R .小球1从B 点向右以v 0匀速运动,圆弧槽向左以v03匀速运动,小球1刚与弹簧接触时,与圆弧槽底端B 点的距离L'=L +v03·Lv 0=43L =53R ,故B 正确.小球1与小球2共速时,弹簧弹性势能有最大值,从小球1刚与弹簧接触到两球共速,由动量守恒有mv 0=(m +3m )v 共,由能量守恒有12m v 02=12(m +3m )v 共2+E p ,联立解得E p =916mgR ,故C 正确.从小球1刚与弹簧接触到两球分开,由动量守恒有mv 0=mv 1+3mv 2,由能量守恒有12m v 02=12m v 12+12·3m v 22,解得v 1=-12v 0,v 2=12v 0.小球1之后向左以12v 0匀速运动,因为圆弧槽此时正向左以v03匀速运动,故会再次和圆弧槽碰撞,以向左为正,碰撞前、后动量守恒有m ·v02+3m ·v03=mv 3+3mv 4,由能量守恒有12m (v02)2+12·3m (v03)2=12m v 32+12·3m v 42,解得v 3=14v 0,v 4=512v 0,最终小球1以14v 0的速度向左运动,圆弧槽以512v 0的速度向左运动,小球2以12v 0的速度向右运动,小球1最终的速度为14v 0=√6gR 8,故D 错误.4.长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 1√5gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律有m 1g =m 1v 2l ①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl ②由动量定理有I =m 1v A③联立①②③式,得I =m 1√5gl ④(2)设两球粘在一起后瞬间的速度大小为v',A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v'=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律有m 2v B -m 1v A =(m 1+m 2)v' ⑥又E k =12m 2v B 2 ⑦联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧.5.[三轨推拉门/2023江苏扬州三模]有一款三轨推拉门(如图甲),门框内部宽为2.4m ,三扇相同的门板的俯视图如图乙,每扇门板宽为d =0.8m ,质量为m =20kg ,与轨道间的动摩擦因数为μ=0.01.在门板边缘凸起部位贴有尼龙扣,两门板碰后可连在一起.现三扇门板静止在最左侧,用力F 水平向右拉3号门板,一段时间后撤去.取重力加速度g =10m/s 2.(1)若3号门板左侧凸起部位恰能与2号门板右侧凸起部位接触,求力F 做的功W .(2)若F =12N ,3号门板恰好到达门框最右侧,大门完整关闭.①求3号门板与2号门板碰撞前瞬间的速度大小v 0.②求拉力F 的作用时间t .答案 (1)1.6J (2)①0.8m/s②2√63s解析 (1)根据动能定理有W -μmgd =0,解得W =1.6J(2)①设3号门板与2号门板碰撞后速度大小为v 1,碰后两门板位移大小均为d =0.8m从3号门板与2号门板碰撞后到大门完整关闭,根据功能关系有-2μmgd =-12·2m v 12碰撞过程,根据动量守恒定律有mv 0=2mv 1,解得v 0=0.8m/s②根据牛顿第二定律有F -μmg =ma根据动能定理有 Fx -μmgd =12m v 02【易错辨析】在关门过程中,拉力F 作用时间与门受到的摩擦力作用时间不同,不推荐应用动量定理列方程解答.根据运动学公式有x =12at 2解得t =2√63s.6.[2024湖南湘潭一中校考]如图是一游戏装置的简易模型,它由光滑的水平轨道和竖直平面内的光滑圆轨道组成,竖直圆轨道的半径R =0.9m ,圆轨道内侧最高点E 点装有一力传感器,且竖直圆轨道的最低点D 、D'点相互靠近且错开.水平轨道左侧放置着两个用细绳连接的物体A 和B ,其间有一压缩的轻弹簧(物体与轻弹簧不粘连),烧断细绳,物体被弹出.轨道右侧M 端与水平传送带MN 等高,并能平滑对接,传送带总长度L =5m ,传送带速度大小和方向均可调.已知A 物体质量m A =1kg ,B 物体质量可变,A 、B 间被压缩的弹簧的弹性势能为30J ,取重力加速度g =10m/s 2.(1)求测得的力传感器能显示的力的最小值;(2)要使物体A 冲上传送带后,均能到达N 点,求传送带与物体A 之间的动摩擦因数的最大值;(3)要使物体A 在圆轨道上运动时不脱离轨道,求物体B 的质量范围.答案 (1)0 (2)0.45 (3)m B ≤37kg 或m B ≥3kg解析 (1)当由重力提供向心力时,对E 点压力为0,所以测得的力传感器能显示的力的最小值F min =0(2)当物体A 恰好通过圆轨道最高点后进入传送带时速度最小,此时若传送带静止或逆时针转动,则物体A 一直在传送带上做匀减速直线运动.当物体A 到达N 点的速度为0时,则动摩擦因数最大,即对物体A 分析有m A g =m A v E2Rm A g ·2R -μm A gL =0-12m A v E2得μ=0.45.(3)物体A 不脱离圆轨道有两种情况:①过最高点的速度v E ≥√gR对物体A 从被弹簧弹出开始到到达最高点,根据动能定理有-m A g ·2R =12m A v E 2-12m A v A2得v A ≥√5gR =3√5m/s②到达圆轨道的圆心等高处时速度恰好为0,对物体A 从被弹簧弹出开始到到达圆心等高处,根据动能定理有-m A gR =0-12m A v A2得v A ≤√2gR =3√2m/s因为物体A 是通过释放弹簧的弹性势能获得速度,且A 与B 反向弹开,由动量守恒有m A v A =m B v B由机械能守恒有E p =12m A v A 2+12m B v B2得m B =v A260-v A2kg代入数据得m B ≤37kg 或m B ≥3kg.7.[2024河北唐山摸底演练]如图所示,一圆弧轨道AB 与倾角为θ的斜面BC 在B 点相接.可视为质点的两个形状相同的小球a 、b ,将小球b 置于圆弧轨道的最低点,使小球a 从圆弧轨道A 点由静止释放,两小球在最低点发生弹性正碰,整个系统固定于竖直平面内.已知圆弧轨道半径R =1m ,圆弧过A 、B 两端点的半径与竖直方向间的夹角均为θ=37°,小球a 的质量m 1=4kg ,小球b 的质量m 2=1kg ,重力加速度g =10m/s 2,不计一切阻力,sin37°=0.6,cos37°=0.8.求:(1)与小球b 碰前瞬间,小球a 的速度大小v 0;(2)碰后瞬间小球b 对轨道的压力大小F ;(3)小球b 从B 点飞出圆弧轨道后,距离斜面BC 的最远距离h ,√6.24取2.5.答案 (1)2m/s (2)20.24N (3)0.36m解析 (1)对小球a 从静止释放到与小球b 碰撞前瞬间的过程,由动能定理有m 1gR (1-cos θ)=12m 1v 02代入数据解得v 0=2m/s(2)小球a 与小球b 发生弹性正碰,则有m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22对碰撞后瞬间小球b ,由牛顿第二定律有F N -m 2g =m 2v 22R联立并代入数据解得F N =20.24N由牛顿第三定律可得小球b 对轨道的压力大小F =F N =20.24N(3)对小球b 从碰撞后到飞出圆弧轨道瞬间的过程,由动能定理有-m 2gR (1-cos θ)=12m 2v 32-12m 2v 22代入数据解得v 3=2.5m/s由几何关系可知,此时小球b 的速度与斜面的夹角为α=74°小球b 在垂直斜面方向做类竖直上抛运动,则有v'0=v 3sin α,a =g cos θ对小球b 从B 点运动到距离斜面最远的过程,由运动学规律有2ah =v '02代入数据解得h =0.36m.8.[板块模型+弹簧模型+新信息/2023辽宁]如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态.质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触.木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力.弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2.取重力加速度g =10m/s 2,结果可用根式表示.(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1.(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小.(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0.求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示).答案 (1)1m/s 0.125m (2)0.25m√32m/s (3)(4√3t 0-8t 02)J解析 (1)小物块从滑上木板到两者共速的过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1解得v 1=1m/s两者共速前,对木板,由牛顿第二定律有μm 2g =m 1a解得a =4m/s 2由运动学公式有2ax 1=v 12。

高中物理-专题六第2课时 电学中的动量和能量问题

高中物理-专题六第2课时 电学中的动量和能量问题

第2课时电学中的动量和能量问题专题复习定位解决问题本专题主要培养学生应用动量定理、动量守恒定律、动能定理、机械能守恒定律和能量守恒定律分析与解决电学综合问题。

高考重点动量定理和动量守恒定律在电学中的理解及应用;应用动量和能量观点解决电场和磁场问题;电磁感应中的动量和能量问题。

题型难度本专题针对综合性计算题的考查,一般过程复杂,要综合利用电学知识、动量和能量观点分析问题,综合性较强,难度较大。

高考题型1电磁感应中的动量和能量问题类型1动量定理和能量观点的应用【例1】(2021·江苏省普通高等学校全国统一考试模拟)如图1所示,CD、EF是两条水平放置的阻值可忽略的平行金属导轨,其左右端都与接有阻值为R的倾斜光滑轨道平滑连接,导轨间距都为d,在水平导轨的右侧存在磁感应强度方向垂直于导轨平面向下的匀强磁场,磁感应强度大小为B,磁场区域的宽度为L1。

现将一阻值为r、质量为m的导体棒从右侧倾斜轨道上高h处由静止释放,导体棒最终停在距离磁场的左边界为L2处。

已知右侧倾斜轨道与竖直方向夹角为θ,导体棒始终与导轨垂直且接触良好,且导体棒与水平导轨动摩擦因数为μ,重力加速度为g。

求:图1(1)通过导体棒的最大电流;(2)左侧电阻R上产生的焦耳热;(3)导体棒在水平导轨上运动的时间。

答案 (1)2Bd 2gh R +2r (2)R 2(R +2r )mg (h -μL 1-μL 2) (3)1μ2h g -2B 2d 2L 1μmg (R +2r )解析 (1)质量为m 的导体棒从倾斜轨道上h 高处由静止释放,刚进入磁场时速度最大,由机械能守恒定律得mgh =12m v 2解得最大速度v =2gh产生的最大感应电动势E m =Bd v =Bd 2gh由闭合电路欧姆定律可得通过导体棒的最大电流I m =E m R 2+r =2Bd 2gh R +2r 。

(2)由能量守恒定律可知整个电路中产生的焦耳热Q =mgh -μmg (L 1+L 2)电阻R 中产生的焦耳热 Q R =R 2(R +2r )mg (h -μL 1-μL 2)。

动量和动能的计算问题

动量和动能的计算问题

动量和动能的计算问题一、动量的计算1.动量的定义:动量是物体运动的物理量,它是质量与速度的乘积,用公式表示为 p = mv。

2.动量的计算公式:动量 p = 质量 m × 速度 v。

3.动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。

4.动量的矢量性:动量是一个矢量,具有大小和方向,其方向与速度的方向相同。

5.动量的守恒定律:在没有外力作用的情况下,系统的总动量保持不变。

二、动能的计算1.动能的定义:动能是物体由于运动而具有的能量,它是质量、速度和高度的函数,用公式表示为 E_k = 1/2 m v^2。

2.动能的计算公式:动能 E_k = 1/2 × 质量 m × 速度 v^2。

3.动能的单位:国际单位制中,动能的单位是焦耳(Joule,符号 J)。

4.动能与速度的关系:动能与速度的平方成正比,速度越大,动能越大。

5.动能与质量的关系:动能与质量成正比,质量越大,动能越大。

三、动量和动能的相互转化1.动能转化为动量:当物体速度增大时,动能减小,动量增大。

2.动量转化为动能:当物体速度减小时,动量减小,动能增大。

3.动能与动量的守恒:在没有外力作用的情况下,系统的总动能和总动量保持不变。

四、动量和动能的计算应用1.碰撞问题:分析碰撞前后物体的动量和动能变化,应用动量守恒和能量守恒定律。

2.抛体运动:分析抛体在空中的动量和动能变化,考虑重力对动量和动能的影响。

3.弹性碰撞和非弹性碰撞:弹性碰撞中,动量和动能完全守恒;非弹性碰撞中,动量和动能部分守恒。

4.火箭推进:分析火箭发射过程中,燃料燃烧产生的高温气体对火箭的动量和动能影响。

知识点总结:动量和动能的计算问题是物理学中的重要内容,掌握动量和动能的定义、计算公式、相互转化关系以及应用场景,有助于深入理解物体运动规律。

习题及方法:一个质量为2kg的物体以6m/s的速度撞击另一个质量为1kg的静止物体,求撞击后两个物体的动量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题·动能、动量的综合性问题(2课时)
一、教学目标
1.在分章复习的基础上,建立力的三种效应之间的关联,构建力学知识的网络.
2.培养学生分析复杂物理过程,建立正确物理图景的能力.
3.培养学生抓住过程,模型特点,利用物理规律分析推理的能力.
二、重点、难点分析
1.重点.
①熟练掌握解决力学问题的三个规律;
②结合具体问题正确选择适当的规律解决问题.
2.难点.
(1)挖掘题目的隐含条件;
(2)将复杂的物理过程分解为若干特点不同的分过程;
(3)对应不同的过程特点,建立相应的物理模型,以发挥已有知识的正向迁移作用.
三、教具
投影仪,投影胶片.
四、重要教学过程
(一)引入新课
1.展示投影片,其内容如下:
引导学生回忆力的三个作用效应以及与之对应的三个力学规律(牛顿第二定律、冲量定理、动能定理),强调时、空是密切相关的,力对时间和空间的累积过程往往是同步发生的.2.由于三个规律是密切相关的,因此同一个力学问题原则上都可以用这三个规律去解决.但是由于题目给定条件的限制,中学阶段数学知识的限制等等,在解决具体问题时,还存在选择哪一个规律更为简捷方便的问题.
调动学生讨论并归纳选择规律的一般原则.
(1)当题目中出现时间时,优先选择冲量定理、动量守恒定律解决问题.
(2)当题目中出现位移时,优先选择动能定理、机械能守恒定律解决问题.
(3)遇必要时(如题目要求计算某时刻的力或加速度),或题目所述过程是匀变速直线运动过程,才使用牛顿第二定律并结合运动学公式解决问题.
(二)教学过程设计
1.展示投影片1,其内容如下:
如图所示,倾角θ1=37°的光滑斜面AB与倾角θ2=30°的光滑斜面DC,通过长度为2.2m的光滑水平面BC连接(连接处有一很短的光滑圆弧),将质量m1=0.5kg的小球P从AB 斜面上距地高度h1=1.8m处自由释放,同时将质量为m2的另一小球Q从DC面上某点自由释放,要使两小球同时进入水平面,且不断地在水平面上同一点发生相向碰撞(机械能无损失).求:(1)小球Q自由释放时,距地面高度h2是多少?(2)P、Q两球在BC面上碰撞的位置在何处?(3)小球Q的质量m2是多少?
组织学生认真读题.
(1)提问:本题所涉及的物理过程有什么特点?
启发学生自己发现:两球不断在同一地点相向碰撞,说明本题所涉及的物理过程是一个周期性的返复运动过程.
(2)提问:就一个周期而言,运动可分为几个阶段,各阶段的运动特点是什么?应该用什么规律去解决?
总结归纳学生的答案,得到如下结论:
①就一个周期而言,运动可分为三个阶段,第一阶段是由两小球各自自由释放到相遇而未碰撞之前,第二阶段是两小球发生碰撞,第三阶段是由碰撞之后两小球各自返回(因以后每次发生的都是相向碰撞)直到又回到初始斜面上并且速度减为零时为止.
②显然第一、第三阶段,两小球的机械能各自守恒.第二阶段两小球作为一个系统,水平方向动量守恒.
③第一、第三阶段,可用机械能守恒定律去解决,第二个阶段可用动量守恒定律去解决.
(3)请学生在黑板上板书表述上述三个阶段的规律性方程如下:
第一阶段:
第二阶段:
对P、Q系统:m1v1-m2v2=-m1v1'+m2v2'.③
第三阶段:
其中v1、v2;v1'、v2'分别为小球P、Q碰前、碰后即时速度,h1'、h2'分别为小球P、Q返回的最大高度,动量守恒方程是在以水平向右为正的规定下列出的.
(4)请学生数一下未知量的个数与方程的个数,答案分别为8个和5个,显然无法求解,引导学生继续寻找并建立辅助方程.
(5)辅助性方程要根据题目的特殊条件来建立,而题目中很多特殊条件是隐含着给出的,这就需要认真读题,抓住关键性词语;进一步挖掘过程的特殊性,从而寻找反映这些特殊性的关联关系.
启发学生再次认真读题,得到特殊关系为:
①两小球同时进入水平面.并且在斜面上都做匀加速直线运动,所以可得关系式为:
②由于每次碰撞情况完全相同,所以每次碰后速度大小不改变,仅为方向相反.由此而得关系为:
v1'=-v1;v2'=-v2.⑦⑧
并且每次返回最大高度也应与初始高度相同,所以又有:
h1'=h1;h2'=h2.⑨⑩
③由于题目要求求出碰撞位置,设碰撞处距B点为x,因为在水平面上,两球均做匀速直线运动,且同时进入水平面,运动时间相同,因此有:
(6)教师板书上述辅助方程后,再引导学生检查一下未知量以及方程的个数.显然未知量共计9个,而方程共计11个.这时,教师再引导学生考虑,在将⑦、⑧、⑨、⑩式所示关系分别代入到方程①、②、④、⑤中后,则①与④,②与⑤便完全相同,因而减少2个.这样,9个未知量刚好与9个方程相互吻合,题目可解.
2.展示投影片2,其内容如下:
质量为M的圆形薄板(不计厚度)与质量为m的小球(可视为质点)间用轻绳连接.开始时,板与球紧挨着,在它们正下方h=0.2m处,有一固定支架C,架上有一半径为R'的圆孔,且R'小于薄板的半径R.圆孔与薄板中心均在同一竖直线上,如图所示.现让球与薄板同时下落(不计空气阻力),当薄板落到固定支架上时,与支架发生无机械能损失的碰撞,碰后球与薄板即分离,直到轻绳绷紧.在绷紧后的瞬间,板与球具有共同速度v p(绷紧瞬间绳作用力远大于重力),则在以下条件时,轻绳的长度满足什么条件可使轻绳绷紧瞬间后板与球的共同速度v p的方向竖直
组织学生认真读题.
(1)提问:薄板与小球的运动可分为几个阶段,各阶段的特点是什么?可用什么规律来解决?
引导并启发学生进行分析,在学生回答的基础上总结如下:
①第一阶段,薄板与小球共同做自由落体运动,下落高度为h,运动过程中机械能守恒,可用机械能守恒定律来解决.
②第二阶段,薄板与支架C发生碰撞,碰撞中动量守恒,无机械能损失,可用动量守恒定律及机械能守恒定律来解决问题.
因此阶段时间极其短暂,小球仍只受重力作用,其速度及加速度都未发生变化.
③第三阶段,薄板做竖直上抛运动,小球做竖直下抛运动,其间距离增大,直至绳子被拉直时为止.此阶段中,无论对簿板还是对小球,匀变速直线运动公式及冲量定理的公式均可应用.
④第四阶段,绳子突然绷紧,薄板与小球的速度在瞬间变为一致,即为v p,相当二者之间发生了完全非弹性碰撞,动量守恒定律可用.
(2)根据上述过程特点及规律,我们可以列出规律性方程(一个学生在黑板上写方程,其他同学在本上写方程),教师加以确认后,列出方程如下:
9个未知量,7个方程,显然还需补充辅助方程或关系式.
(3)引导学生再次读题,找到题目中的特殊要求及关键词语.要求学生回答,并总结归纳为:
①v1'、v2'为绳子刚好拉直时的瞬时速度,与其相对应的L1、L2之和应恰好等于绳长L.
L1+L2=L.⑧
②质量M、m之间的关系是:
③对绷紧后共同速度v p的要求是:
v p>0.(以向下为正) ⑩
带领学生检查一下,加上绳长L共计10个未知量,规律性加辅助性方程(或不等式)也是10个,因此题目可解.
(4)引导学生思考.
①绳子绷紧后板与球共同速度向下,说明绷紧之前的瞬间,系统合动量什么方向?(向下)
②无论k为何值都能保证合动量方向向下,只有薄板动量满足什么条件才能做到?(动量为零或动量方向向下)
③由以上分析可知,显然薄板速度为零是使v p在任何k值情况下都向下的临界条件.此时对应的绳长是多少呢?(计算结果为L=0.8m)
④此值是满足题设要求的最大值还是最小值?(因薄板下落过程中速度总是比小球速度小,因此间距增大,若绳在薄板下落过程中被绷直,显然L>0.8m)
(三)课堂小结
解决力学综合问题的程序是:
1.分析物理过程,按特点划分阶段.
2.选用相应规律解决不同阶段的问题,列出规律性方程.
3.找出关键性问题,挖掘隐含条件,根据具体特点,列出辅助性方程.
4.检查未知量个数与方程个数是否匹配.
5.解方程组.。

相关文档
最新文档