初一数学上应用题

合集下载

初一上册应用题及答案

初一上册应用题及答案

初一上册应用题及答案做初一数学上学期的应用题可以使人的大脑拥有更多的知识;以下是店铺为大家整理的初一数学上册应用题带标准答案,希望你们喜欢。

以下是店铺整理的初一上册应用题及答案,仅供参考,希望能够帮助到大家。

初一上册应用题及答案篇11.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解: 1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求"两队合作的天数尽可能少",所以应该让做的快的'甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能"两队合作的天数尽可能少"。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 ,x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

初一上册数学应用题

初一上册数学应用题

初一上册数学应用题一、小明买了5支铅笔和3块橡皮,共花费10元。

已知每支铅笔比每块橡皮贵0.5元,问每支铅笔的价格是?A. 1元B. 1.5元C. 2元D. 2.5元(答案:C)二、某班级进行数学测试,平均分是75分,其中男生平均分78分,女生平均分72分,若男生人数是女生的1.5倍,问班级总人数是多少?A. 30人B. 40人C. 50人D. 60人(答案:D)三、一列火车以60km/h的速度从A地开往B地,同时另一列火车以80km/h的速度从B地开往A地,两列火车在途中相遇。

若A、B两地相距400km,问它们相遇时各自行驶了多少时间?A. 2小时B. 2.5小时C. 3小时D. 3.5小时(答案:A)四、某果园有苹果树和梨树共100棵,其中苹果树的数量是梨树的3倍多10棵。

问苹果树有多少棵?A. 60棵B. 70棵C. 75棵D. 80棵(答案:C)五、小李计划用20元买笔记本和铅笔,已知每本笔记本3元,每支铅笔1元,且买的铅笔数比笔记本数的2倍少1。

问小李最多能买几本笔记本?A. 3本B. 4本C. 5本D. 6本(答案:B)六、一个水池有甲、乙两个进水管,单独开放甲管6小时可以注满水池,单独开放乙管8小时可以注满。

若两管同时开放,问多少小时可以注满水池?A. 3小时B. 3.4小时C. 4.8小时D. 5小时(答案:C)七、小张和小王同时从家出发去学校,小张步行的速度是5km/h,小王骑自行车的速度是15km/h。

小王到校后发现忘记带作业,立即以原速返回,途中与小张相遇。

若他们家到学校的距离是6km,问他们相遇时小王已经骑行了多远?A. 9kmB. 12kmC. 15kmD. 18km(答案:A)八、某商店进行打折促销,原价为x元的商品打八折后售价为y元,则y与x的关系式为?A. y = 0.8xB. y = x - 0.8C. y = x + 0.2D. y = 0.8 - x(答案:A)。

七年级上册数学应用题及答案

七年级上册数学应用题及答案

七年级上册数学应用题及答案第一章:数的认识1.1 整数应用题 1.1.1计算:\( 3 + 5 \times 2 - 4 \div 2 \)答案:9应用题 1.1.2计算:\( 7 - 3 \times 2 + 5 \div 2 \)答案:3.51.2 分数应用题 1.2.1计算:\( \dfrac{5}{7} + \dfrac{3}{4} \) 答案:\(\dfrac{31}{28}\)应用题 1.2.2计算:\( \dfrac{7}{9} - \dfrac{1}{3} \) 答案:\(\dfrac{4}{9}\)第二章:代数式2.1 代数式的运算应用题 2.1.1计算:\( 3a - 2b + 4c \)答案:\(3a - 2b + 4c\)应用题 2.1.2计算:\( 5(a - b) + 2(b - c) \)答案:\(5a - 3b + 2c\)第三章:几何初步3.1 点、线、面的关系应用题 3.1.1已知点A(2,3),B(4,6),求线段AB的长度。

答案:\(AB = \sqrt{(4-2)^2 + (6-3)^2} = \sqrt{10}\) 3.2 角应用题 3.2.1已知直角三角形的两个锐角分别是30°和60°,求第三个角(直角)的度数。

答案:90°第四章:方程与不等式4.1 线性方程应用题 4.1.1解方程:\( 2x + 3 = 7 \)答案:\(x = 2\)4.2 不等式应用题 4.2.1解不等式:\( 3x - 7 > 2 \)答案:\(x > 3\)第五章:数据处理5.1 平均数应用题 5.1.1某班有5名学生,他们的成绩分别是85,90,88,87,92,求该班的平均成绩。

答案:\( \dfrac{85 + 90 + 88 + 87 + 92}{5} = 88\)5.2 概率应用题 5.2.1从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。

七年级上册数学应用题及答案大全

七年级上册数学应用题及答案大全

七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。

2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。

饭店的总收入是多少?答:饭店的总收入是 510 元钱。

3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。

二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。

2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。

3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。

三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。

2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。

3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。

四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。

2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。

3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。

初一上册数学应用题100道

初一上册数学应用题100道

初一上册数学应用题100道1.一匹跑得快的马每天走240里,另一匹跑得慢的马每天走150里。

如果慢马先走12天,快马需要几天才能追上慢马?2.有一根铁丝,第一次用去了它的一半少1米,第二次用去了剩余铁丝的一半还多1米。

结果这根铁丝还剩余2.5米。

问这根铁丝原来长多少米?3.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300mm、300mm、80mm的长方形铁盒中,正好倒满。

求圆柱形水桶中的水高?4.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米。

问这样走多少千米,就可以将耽误的时间补上?5.甲、乙、丙三位同学向贫困地区的少年儿童捐赠图书。

已知这三位同学捐赠图书的册数的比是5:6:9.如果甲、丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?6.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分追上?7.小张和小王同时骑摩托车从A地向B地出发。

小张的车速是每小时40公里,小王的车速是每小时48公里。

小王到达B地后立即向回返,又骑了15分钟后与小张相遇。

那么A地与B地之间的距离是多少公里?8.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回)。

他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村几千米?9.小张与小王从甲地去乙地,小张早出发1小时,但晚到1小时。

他每小时走4千米,小王每小时走6千米。

则甲、乙两地的距离为多少千米?10.甲、乙两人练跑步,从同一地点出发。

甲每分钟跑250米,乙每分钟跑200米。

甲比乙晚出发3分钟,结果两人同时到达终点。

求两人所跑的路程。

(用方程解答)11.甲、乙两班学生共有80名。

如果乙班学生去甲班5名,那么甲、乙两班人数的比正好是1:1.原来甲、乙两班各有学生多少名?12.甲班和乙班都为灾区捐款,捐款总数相同,均在300元到400元之间。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。

原价为500元,打8折,即支付原价的80%。

计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。

2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。

答案:长方形的面积可以通过长乘以宽来计算。

计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。

3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。

根据题意,男生和女生的总人数为40人。

我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。

4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。

求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。

已知距离是2公里,速度是每小时5公里。

计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。

5. 问题:一个数的3倍加上4等于20,求这个数。

答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。

初一上册数学有理数应用题

初一上册数学有理数应用题

初一上册数学有理数应用题1、题目:小明家离学校的距离是4公里,他骑自行车以每小时12公里的速度从家出发去学校。

如果他已经骑了15分钟,那么他还有多远的距离到达学校?解答:小明每小时骑行的距离是12公里,因此15分钟(即1/4小时)骑行的距离是:12/4=3 公里。

小明家到学校的总距离是4公里,所以他还有4−3=1 公里的距离到学校。

2、题目:一个温度计显示的室内温度是20°C。

夜间温度下降了12°C,那么夜间的室内温度是多少度?解答:室内温度原来是20°C,下降了12°C后,温度变为 20−12=8°C。

3、题目:在一次测验中,小华得到了80分,这次成绩比上一次提高了20%。

请问小华上一次测验的分数是多少?解答:将提高的20%表示为小华上次成绩的百分比,设上次成绩为 x 分,则 x×20%=x ×0.2 分是成绩提高的分数。

由于这次成绩是80分,所以 x+x×0.2=80,解这个方程得1.2x=80,所以 x= 80/1.2=66.67(约等于67分)。

4、题目:一条河流的水位在连续下雨后上升了1.5米,而随后两天的水位分别下降了0.4米和0.3米。

请问两天后河流的水位比之前上升了多少米?解答:水位总共上升的量是 1.5−0.4−0.3=0.8 米。

5、题目:一个储蓄罐里有50个硬币,其中1元硬币和5角硬币的数量之和是50,但1元硬币的数量是5角硬币数量的两倍。

请问储蓄罐里各有多少个1元和5角硬币?解答:设1元硬币的数量是 x,5角硬币的数量是 y。

根据题目条件,有两个方程:x+y=50 和 x=2y。

将第二个方程代入第一个方程,得到 2y+y=50,解得 y=50/3≈16.67(约等于17个),所以 x=2×17=34。

所以储蓄罐里有大约34个1元硬币和17个5角硬币。

七年级上册数学20道应用题及答案

七年级上册数学20道应用题及答案

七年级上册数学20道应用题及答案1、有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?解设:这根铁丝原来长X米.X-[1/2(1/2X-1)+1]=2.5X=42、将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高? 解设:高为Xmm100·100·Л·X=300·300·80X=720Л3、列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?解设:走X千米X/50=[X-(40·6/60)]/40X=44、某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?解甲:打9折后球拍为:22.5元/只球为1.8元/只球拍22.5·2=45元球:(90-45)÷1.8=25(只)乙: 25·2=50(元){送两只球}需要买的球:(90-50)÷2=20(只)一共的球:20+2=22(只)甲那里可以买25只,而乙只能买22只.所以,甲比较合算.5、甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?解设:每份为X甲:5X 乙:6X 丙:9X5X+9X=6X·2+12X=6所以:甲:5·6=30(本)乙:6·6=36(本)丙:9·6=54(本)6、整理一批数据,由一个人做需80小时完成任务。

初一数学应用题60题

初一数学应用题60题

初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。

请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。

那么面包车的数量为600辆-200辆-150辆=250辆。

2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。

所以小明最终花的钱为160元×80%=128元。

3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。

男生人数为40名同学-30人=10人。

所以男生占总人数的十分之一。

4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。

请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。

5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。

然后再减去20元。

所以最后的售价为160元×30%-20元=28元。

6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。

所以还剩下的重量为5千克的一半=2.5千克(或2500克)。

7. 甲乙两个人一起行走,甲每走30步,乙走5步。

假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。

所以乙走的步数为180步÷30步×5步=30步。

8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。

七年级数学上册应用题及答案

七年级数学上册应用题及答案

七年级数学上册应用题及答案1.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还需要运几次才能完成运输?答:还需要运7次才能完成运输。

解析:剩余煤的重量为29.5-3*4=17.5吨,而每次用2.5吨的货车运输,所以还需要运17.5÷2.5=7次。

2.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是多少米?答:它的高是10米。

解析:根据梯形的面积公式,(上底+下底)×高÷2=90,代入已知数据得到(7+11)×高÷2=90,解得高为10米。

3.某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划。

这9天中平均每天生产多少个?答:这9天中平均每天生产500个。

解析:设这9天中每天平均生产x个,则有9x+908=5480,解得x=500.4.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

已知甲每小时行45千米,乙每小时行多少千米?答:乙每小时行40千米。

解析:设乙每小时行x千米,则有45*3+x*3=272-17,解得x=40.5.某校六年级有两个班,上学期数学平均成绩是85分。

已知六1班40人,平均成绩为87.1分;六2班有42人,平均成绩是多少分?答:六2班的平均成绩是83分。

解析:设六2班的平均成绩为x分,则有40*87.1+42x=85*82,解得x=83.6.学校买来10箱粉笔,用去250盒后,还剩下550盒。

平均每箱多少盒?答:平均每箱80盒。

解析:设平均每箱x盒,则有10x=250+550,解得x=80.7.四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?答:平均每组32人。

解析:设男生平均每组x人,则有5x+80=200,解得x=32.8.食堂运来150千克大米,比运来的面粉的3倍少30千克。

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。

在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。

这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。

这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。

后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价。

知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。

若在市场上直接销售,每吨利润为1000元。

经粗加工后销售,每吨利润可达4500元。

经精加工后销售,每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨。

该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行。

受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。

为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。

初一数学应用题

初一数学应用题

初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。

如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。

如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。

女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。

如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。

如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。

如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。

7年级上册数学应用题

7年级上册数学应用题

7年级上册数学应用题
1. 小明一共有56 元钱,他买了一本书花了其中的18 元,然后又花了其中的三分之一,剩下多少钱?
2. 如果一箱苹果共有24 个,小红买了其中的四分之一,那么她买了几个苹果?
3. 有一个四边形,其中一个角是90 度,另外三个角是等角,那么其他三个角的角度分别是多少?
4. 一个三角形的底是6 厘米,高是8 厘米,这个三角形的面积是多少平方厘米?
5. 如果一个正方体的体积是64 立方厘米,那么它的棱长是多少厘米?
6. 小明每天早上跑步2.5 公里,他连续跑步了5 天,那么他一共跑了多少公里?
7. 一条绳子长36 米,小红将这条绳子剪成了相等长度的9 段,每段绳子有多长?
8. 一个三角形的三条边分别是5 厘米、12 厘米和13 厘米,这个三角形是什么三角形?
9. 甲班的学生有36 人,乙班的学生有45 人,如果每个班级的学生都站在一个组成的等腰梯形里,问这个等腰梯形的周长是多少?
10. 一个矩形的长是15 厘米,宽是9 厘米,如果它的面积是135 平方厘米,求这个矩形的周长。

七年级上册数学题应用题

七年级上册数学题应用题

七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。

由于两人是相向而行,总路程为20千米,所以可列方程。

合并同类项得,解得。

2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。

解析:设轮船在静水中的速度为千米/时。

顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。

根据两个码头间的距离不变,可列方程。

去括号得,移项得,合并同类项得,解得。

二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。

甲的工作效率为,乙的工作效率为。

两人合作4天的工作量为。

剩下的工作量为。

乙单独完成剩下部分需要的时间为天。

2. 某工程队承建一项工程,要用12天完成。

如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。

如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。

正常情况下工作效率为。

甲、乙交换工作内容后,工作效率为。

两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。

当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。

设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。

如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。

三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。

数学应用题初一30题

数学应用题初一30题

数学应用题初一30题数学是一门非常重要的学科,它不仅能够帮助我们掌握计算技巧,还能够帮助我们提高思维能力和解决实际问题的能力。

初一的数学学习中,应用题是非常重要的一部分,下面就来看看初一数学应用题30题。

1. 小明家里有6颗苹果,他和小红一人拿了3颗苹果,还剩几颗苹果?答案:0颗苹果。

2. 一个小组有12个人,其中有1/4的人是男生,男生有几个?答案:3个男生。

3. 一个篮球比赛,甲队得了35分,乙队得了24分,甲队比乙队多得了几分?答案:11分。

4. 小红买了一件衣服,原价是100元,打7折,她需要支付多少钱?答案:70元。

5. 小明有5元钱,他想买一瓶饮料,饮料卖3元,他还能剩下多少钱?答案:2元。

6. 一根绳子长度是12米,如果要把它剪成3段,每段长度相等,每段长度是多少?答案:4米。

7. 一个三角形的底边长度是5厘米,高是3厘米,它的面积是多少?答案:7.5平方厘米。

8. 小明有200元钱,他想买一本书,书的价格是50元,他还能买几本?答案:4本。

9. 一辆车行驶了200公里,它的油耗是每百公里消耗10升油,它需要多少油?答案:20升。

10. 一组数据有5个数,它们的平均数是10,其中最小的数是5,最大的数是多少?答案:15。

11. 一份工作需要5个人共同完成,如果已经有3个人在做,还需要几个人?答案:2个人。

12. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少?答案:30厘米。

13. 在一个班级里,有30个学生,其中20个学生是男生,男生占总人数的几分之几?答案:2/3。

14. 一支铅笔的长度是15厘米,它的一半是多少?答案:7.5厘米。

15. 一件衣服原价是120元,现在打8折,它的现价是多少?答案:96元。

16. 一个三角形的底边长度是6厘米,高是4厘米,它的面积是多少?答案:12平方厘米。

17. 小明有50元钱,他想买一本书,书的价格是30元,他还能买几本?答案:1本。

18. 一辆车行驶了300公里,它的油耗是每百公里消耗8升油,它需要多少油?答案:24升。

七年级上册数学应用题专项训练

七年级上册数学应用题专项训练

七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。

甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。

根据时间 = 路程÷速度,可得时间为公式分钟。

2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。

返回时速度为每小时80千米,那么返回的时间为公式小时。

二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。

现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。

甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。

甲、乙合作3天完成的工作量为公式先算括号里的公式。

再乘以3得到公式。

剩下的工作量为公式。

乙单独做需要的时间为公式天。

2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。

如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。

甲管每小时的注水量是公式,乙管每小时的注水量是公式。

甲、乙两管同时开每小时的注水量为公式。

注满水池的公式需要的时间为公式小时。

三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。

那么最低售价应该是公式元。

设打公式折,根据标价×折扣=售价,可得公式。

解方程公式,得公式,所以最低可以打7折。

2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。

七年级上数学应用题70道

七年级上数学应用题70道

七年级上数学应用题(1)小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。

已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?(2)甲每分钟行80米,乙每分钟行50米,在下午1:30时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在什么时间追上乙?(3)某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

问这种鞋的标价是多少元?优惠价是多少?(4)小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%)?(5)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(6)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?(7)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?(8)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?(9)某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。

问每个仓库各有多少粮食?(10)一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。

(11)如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?(12)已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?(13)甲乙两人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

初一数学上册应用题大全

初一数学上册应用题大全

初一数学上册应用题大全1.某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。

如果一个用电户四月费的电费平均每度0.5元,那么该用电户四月份应缴电费多少元?2.某大商场家电部的送货人员与销售人员人数之比为1:8.今年夏天,由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。

结果,送货人员与销售人数之比为2:5.求这个商场家电部原来各有多少名送货人员和销售人员?3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?4.甲、乙两种商品的原单价和为100元。

因市场变化,甲商品降价10%,乙商品提价5%。

调价后,两商品的单价和比原单价和提高2%。

甲、乙两商品原单价各是多少?5.甲车间人数比乙车间人数的4/5少30人。

如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4.求原来每个车间各有多少人?6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进。

已知两人在上午8时同时出发,到上午10时,两人还相距36千米;到中午12时,两人又相距36千米。

求A、B两地间的路程?7.甲、乙两车长度均为180米。

若两列车相向行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒。

二车的速度不变,求甲、乙两车的速度。

8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时。

停电时,同时点燃两根蜡烛,来电时同时吹灭。

粗的蜡烛是细的长度的2倍。

求停电的时间X。

9.某工厂今年共生产某种机器2300台。

与去年相比,上半年增加25%,下半年减少15%。

问今年下半年生产了多少台?10.两人都均速前进。

已知两人在上午8时同时出发,到上午10时,两人还相距36千米;到中午12时,两人又相距36千米。

求A、B两地间的路程?11.跑得快的马每天走240里,跑得慢的马每天走150里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?
32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?
26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?
19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?
20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。
34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?
23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?
27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?
28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?
29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)
30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。
13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?
17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?
18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.
8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
相关文档
最新文档