2016年北京市东城区高三理科数学期末试题及答案

合集下载

北京市东城区2016届高三二模数学(理)试题【含答案】

北京市东城区2016届高三二模数学(理)试题【含答案】

1C1B1AABC北京市东城区2015-2016学年度第二学期高三综合练习(二)数学(理科)2016.5一、选择题:本大题共8小题,每小题5分,共40分,在四个选项中,选出符合题目要求的一项1.集合{}1234A =, , , ,{}3B x R x =∈≤,则A B =( )A .{}1234, , , B .{}123, , C .{}23, D .{}14, 2.已知命题:p x R ∃∈有sin 1x ≥,则p ⌝为( )A .sin 1x R x ∀∈≤,B .sin 1x R x ∃∈<,C .sin 1x R x ∀∈<,D .sin 1x R x ∃∈≤, 3.如图ABC ∆为正三角形,111////AA BB CC ,1CC ABC ⊥∆底面,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影面积为( )A .274 B .92 C .9 D .2724.若向量()10a =, ,()21b =, ,()1C x =, 满足条件3a b -与c 共线,则x 的值为( )A .1B .3-C .2-D .1- 5.成等差数列的三个正数和等于6,并且这三个数分别加上3、6、13后成为 等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( )A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=6.一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品,根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券1:若标价超过50元,则付款是减免标价的10%; 优惠券2:若标价超过100元,则付款时减免20元; 优惠券3:若标价超过100元,则超过100的部分减免18%.若顾客购买某商品后,使用优惠券1比优惠券2、优惠券3减免的都多,则他购买的商品的标价可能为( ) A .179元 B .199元 C .219元 D .239元7.已知函数()()2414xx f x f x x ⎧≥⎪=⎨+<⎪⎩,,,则()22log 3f +的值为( )A .24B .16C .12D .8 8.集合(){}A x y x y R =∈,,,若x y A ∈,,已知()11x x y =,,()22y x y =,,定义集合A 中元素间的运算x y *,称作“*”运算,此运算满足一下运算规律: ①任意x y A ∈,有x y y x *=*;②任意x y z A ∈,,有()x y z x z y z +*=*+*(其中()1212x y x x y y +=++,); ③任意x A ∈有0x x *≥,且0x x *=成立的充分必要条件是()00x =, 为向量. 如果()11x x y =,,()22y x y =,,那么,下列运算属于“*”运算正确的是( )A .11222x y x y x y *=+B .1122x y x y x y -*=C .1122+1x y x y x y *=+D .12122x y x x y y *=+二、填空题(本大题共6小题,每小题5分,共30分) 9.i 是虚数单位,复数12aii+-所对应的点在第一象限,则实数a 的取值范围为________. 10.设变量x y ,满足约束条件201x y x y y +≤⎧⎪-≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为________.11.已知直线113:24x tl y t=+⎧⎨=-⎩(t 为参数)与直线2:245l x y -=相交于点B ,又点()12A , ,则AB =_____.12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[)[)[)[)[)45555565657575858595, ,, ,, ,, ,, 由此得到频率分布直方图如图,则产品数量位于[)5565, 范围的频率为_______;这20名工人中一天生产该产品数量在[)5575, 的人数是_______.13.若点O 和点()20F 分别为双曲线()22210x y a a-=>的对称中心和左焦点,点P 为双曲线右支上的任意一点,则222+1PF OP 的取值范围为_____________.()()sin nx①()()n f x n N *∈为周期函数; ②()()nf x n N *∈有对称轴;③02⎛⎫⎪⎝⎭, π为()()n f x n N *∈的对称中心; ④()()n f x n n N *≤∈.三、解答题(本大题共6小题,共80分,解答题应写出文字说明,演算步骤或证明过程) 15.(本小题共13分)已知函数()()2111cos 2cos 0222f x x x x ⎛⎫⎛⎫⎛⎫=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ωωωω的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求()f x 在区间02⎡⎤⎢⎥⎣⎦, π上的最大值和最小值.16.(本小题共14分)如图,ABC ∆是等腰直角三角形,902o CAB AC a E F ∠==,,,分别为AC BC ,的中点,沿EF将CEF ∆折起,得到如图所示的四棱锥'C ABFE -. (Ⅰ)求证:AB ⊥平面'AEC ;(Ⅱ)当四棱锥'C ABFE -的体积取最大值时: ①若G 为'BC 中点,求异面直线GF 与'AC 所成的角;②在'.C ABFE -中AE 交BF 于点C ,求二面角'A CC B --的余弦值.17.(本小题共13分)在20152016-赛季CBA 联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数n,N表示投篮次数,n表示命中次数),假设各场比赛相互独立:根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中概率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.18.(本小题共13分)已知()()()()()22ln 211f x x x g x k x =+-+=+, (Ⅰ)求()f x 的单调区间;(Ⅱ)当2k =时,求证:对于()()1x f x g x ∀>-<,恒成立; (Ⅲ)若存在01x >-,使得当()01x x ∈-,时,恒有()()f x g x >成立,试求k 的取值范围.已知椭圆()222210x y a b a b+=>>过点)1 ,且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设()M x y ,是椭圆上的动点,()0P p , 是轴上的定点,求MP 的最小值及取最小值时点M的坐标.:C C x数列{}n a 中,定义:()21121n n n n d a a a n N a *++=+-∈=,(Ⅰ)若1222n n n d a a a +=-=,求n a ;(Ⅱ)若221n a d =-≥,,求证此数列{}n a 满足()5n a n N *≥-∈;(Ⅲ)若1,12==a d n 211n d a ==,且数列{}n a 的周期为4,即()4n n a a n N *+=∈,写出所有符合条件的{}n d .数学(理科)答案一、选择(本大题共8小题,每小题5分,共40分)15.解析:(1)2111()sin()cos()2cos ()(0),222f x x x x ωωωω=+>1cos x x ωω=++2sin()16x πω=++2, 2.T ππωω===(2)由(1)可知:()2sin(2)16f x x π=++ 当02x π≤≤时,72666x πππ≤+≤;当2,626x x πππ+==时,取最大值,max ()3f x =当72,662x x πππ+==时,取最小值,min ()0f x =16.解析:由题意可知ABC 是等腰直角三角形,90o CAB ∠= ∴AB AC ⊥即在图2中',AB AE AB EC ⊥⊥又∵'AE EC E ⋂=且',AE EC 都在面'AEC 上 ∴'AB AEC ⊥得证。

2016东城区高三数学理期末试题及答案

2016东城区高三数学理期末试题及答案

东城区2015-2016学年度第一学期期末教学统一检测本试卷共5贞.150分•芳试时K 120分钟•考住务必将答至答在答題卡上■仗试卷I:作答无效•考试结束后•将本试总和答題卞一并交何.第一部分(选择题共40分)一■选择理(共8小0 ■毎小& 5分,共40分•在毎小題列出的囚个选项中■选出符合求的一项)1 •已知集合1丿=(1・2・3出几集合A»n>3>4h B={2・4}・那么集合(CM)nB-3•设i为谨数烦位.如果复数z满足(l-2i)z=5i^那么厂的虚邪为A. - IB. IC. •D.-i4•已知刃€«0・1〉・令a = b肛2. h二4『=2-・那么之树的大小关系为A. b<c<aB. b<a<cC. a<b<cD. c<u<b5・Ci知克线/的倾斜角为i斜卒为点.那么"a>y M是7A®的A.充分而不必耍条件B.必耍而不充分条件C.充分必姿条件D.既不充分也不必耍条件高三數学(现科)第1页(共5页)高三数学(理科)2016. 1側(左)现图A.⑵B・{4}C. {1.3} I). 24}11 9 cm Jf 1i ~ +1 • 0V#£26•已知旳数x •如果关丁丄的方程/Cr〉=A有两个不同的实根•那* lnx» x>2么实数百的取值范隔2A・(l.+vo〉B・[^・ + oo) C・[e+.+8) D.[ln2・+8)7.过抛物线;/=2仇r(p>0)的魅点F的f[线交粗物线于A・B丙点•点O泉坐标原点.如架I BF| =3, | BF|>|AF| ・ZBFO=¥・那么 | AF| 的伙为、夕A. 1B.yC.2 I). |&如图所示•正方体AHCD-A f B,C,D,的梭长为1, F・F分别圧梭八人'・CC'的中点.过血线EF的平面分別与梭BB'.DD'交丁M,M设BM-小.* (0・1〉,给出以卜四个命题:①四边形MENF为平行四边形I②若四边形MENF血枳Sr /(X). x€(0,l).则/(z)冇九小侑;③若四棱锥人一MENF的体积V=-p(x). ze<0.1>.则p(“为恋瓯数;④若多而体AHCD-MENF^J体枳V = A(.r),苏I),则AQ)为单浏函数. 只中假命题为• • •A.①B•②C•③D•④高三敷爭(瓦科)第2页(拱$员)第二部分(G选择&兵110 分〉二、填空11(共6小逊■毎小JR 5分,共30分)9•在△ ABC中・a・6分别为角八•〃的对边.如果〃一30°«: - IO5S a " •那么b .0在平而向M Q.b中・已知a = (】・3)・ b=(2.y)・如果a • b = 5・那么y= ___ ;如果|a + b| = |a — b|・那么y= ____ •丁一yWlO.11. 已知『q海足约束条件1—,£2・那么的歧大值为・才$312. 如來險数/Cr)-rsiar+«的图象过点GJ〉. R /(z)-2.那么•13. 如來平面直角坐标系中的f»iAA(«-l.a+D.B(a.a)X于虫线,对称.那么直线?的方程为•M•数列{“.}満足:如和+“…>2如5>lmWN・),给出卜•述命吆*①若数列2」溝足:如 >尙・则a>“. ,(”>】・”€'•)皿立;②存在甜数c使扫a.>r(W€N->成立:③若 /> + q>m + /t(其中)•则a»+y>“.=a. i④存在席数/使得“A心? 5-】>d3€N・)郁成立.上述命題正珂的是_.(吗出所冇正晞结论的*仍〉三、解答题(共6小麵,共80分.解答虫禹出文字说明,演算步廉或证明过程)15•(本小題共13分)设S.、#一个公比为曲>0心\)的等比数列•巾,・3“八2心成等力数列.且它的询4项和S< = 15.< I〉求数列"・>的通项公式:< 11〉令6=a. + 2”・5=l・2・3……)•求敷列仏}的前肪项和.高三软竽(理科〉第3页〈共5页)16. (4-小题共13分〉已知函数/(x) = sin2x+2 73sinTcosi* —cos:^(^6 R).<I )求/4〉的皿小正周期和在Co.xZJ:的单训递减区间;(【I)若a为第四欽限角,且cosa-y,求/(f+ jf)的fft.17. (本小题典14分)如图.在P-ABCD中.底丽ABCD为正方形,PA丄底面ABCD・AB=AP.E为披PD的中点.(I )证明:AELCD;(II)求il^AE弓平而PHD所成卅的正弦值;(山)若尸为人3中点,棱PC上是否存在一点M・使得FM丄八(:・若存在.求出耀的值.若不存在,说明埋山.18. (本小題共13分〉已知桶圆$ I话=讥>〃>0》的焦点是斤・幵,H. |F,F?| = 2、离心率为*・(I >求椭B0C的方程;(II〉若过椭圆右很点丘的直线/交椭圆FA,B两点•求\AF Z\• IF屮I的取值范国.高三散学〈理科)第4页(共5贞)19. (4:小題从I I分)(2知西数/<-r) -- ----- a(.r —< [)当a亠1时.试求/(j->/t(U/(D)处的切线方程(<n)当“wo时,试求/a》的单河风何:(111)若/<x)ft(OJ)内有极(TL试求"的取值范用.20•(本小聽共13分》已知初线(・.的方程为:i^r 11〉・1・=】>.<【〉分別求出”二1・” =2时.曲线C.所冊成的图形的滴枳,< II〉若5(”€2〉衣朋曲线C.所阳成的图形的面积.求证:S.(N€N-以于”是递增的;'5)若方程上・+>*=^5A2・”W?OdwHO・没右正整数解.求证:曲线C.(W>2>M6N*〉上任一点对应的坐标(x.y). .r.y不能全尺有理数.高三做孕(理科)事5页(*S M>东城区2015-2016学年度第-学期期末教学统一检测裔三数学(理科)参考答案及评分标准2016. 1 一、选择題二■填空超9. 2 72. 10. U- ・】1・5& 12. X0. 14•①④.三、廉答1915•解:(I圈为一个公比为g(g>0・</工1)的等比数列.所以= “I矿'・心*0・因为4““3“,・2山成等矗数列.所以6g = 4® +2“)•即—34/4-2=0.H得g=2或gh】(含).乂它的询 4 项和S,工15.1!)^^- = !5(v>0.<?#l).解冯5^1.所以2・'• .......................................................................................................... 9分(II )W 为九FT.+2机所以i^ = ia. + V2; = 2- + n(w4 1)-1. ............................................................... 13 分•—1 •* I •—>16. 解” 1〉由己知 /<x)^>ii/ar4 2 ySsiiurcosx—co>\r IX>52X—2sin(2x~b所以故小正周期丁守一几3 Z由計2*n<2r-矜蓼亠2虹""•得手卜后W/W罟+及irMW龙.故旳数“ 0在[0・O上的单调递滥区间泉石7:・|■町. ...............9分<l] )W为a为第四徐琨用・H cose二g •所以0g--£・浙三啟学(仗科〉冬脅怎案第I页(*50所以 /(号讨辔〉三f -|-) = — 2sina —y. 13分17. ( I )证明:因为卩人丄磺面ABCD.CDC平A AHCD.所以”人丄(。

东城高三理科期末数学试题

东城高三理科期末数学试题

北京市东城区2015-2016学年第一学期期末教一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =I(A ){2} (B ){4} (C ){1,3} (D ){2,4} (2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于正(主)视图 侧(左)视图俯视图(A )32cm 3 (B )2 cm 3 (C )3 cm 3 (D )9 cm 3 (3)设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为(A )1- (B )1 (C ) i (D )i - (4)已知(0,1)m ∈,令log 2m a =,2b m =,2mc =,那么,,a b c 之间的大小关系为(A )b c a << (B )b a c << (C )a b c << (D )c a b << (5)已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“k >(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是(A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞(7)过抛物线220)y pxp =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为 ()A 1 ()B 32()C 3 (D ) 6(8)如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x ,给出以下四个命题:① 四边形MENF 为平行四边形;② 若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小 值;③ 若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④ 若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈, 则)(x h 为单调函数. 其中假.命题..为 ()A ① ()B ②()C ③(D )④二、填空题共6小题,每小题5分,共30分.(9) 在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =,那么b = .(10)在平面向量a,b 中,已知(1,3)=a ,(2,y)=b .如果5⋅=a b ,那么y = ;如果-=a +b a b,那么y = .(11)已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.(12)如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a = ;()f t -= .(13)如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为__.(14)数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+;④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立.上述命题正确的是____.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和.(16)(本小题共13分)已知函数22()sin cos cos ()f x x x x x x =+-∈R . (Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π()212f α+的值.(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值; (Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由.(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g的取值范围.(19)(本小题共14分)已知函数()(ln )xe f x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.(20)(本小题共13分)已知曲线n C 的方程为:*1()n nx y n N +=∈.(Ⅰ)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.东城区2015-2016学年第一学期期末教学统一检测参考答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 22 (10) 21;3-(11) 58 (12) 1;0 (13) 01=+-y x(14)①④三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和. 解:(Ⅰ)因为{}n a 是一个公比为(0,1)q q q >≠等比数列, 所以11n n a a q -=.因为1234,3,2a a a 成等差数列,所以213642,a a a =+即2320q q -+=.解得2,1()q q ==舍.又它的前4和415s =,得41(1)15(0,1)1a q q q q-=>≠-, 解得11a = .所以12n n a -= . …………………9分 (Ⅱ)因为2n n b a n =+, 所以11122(n 1)1n n nn i i i i i b a i n ====+=++-∑∑∑. ………………13分(16)(本小题共13分)已知函数22()sin cos cos ()f x x x x x x =+-∈R .(Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π()212f α+的值.解:(Ⅰ)由已知22()sin cos cos f x x x x x =+-2cos 2π2sin(2).6x xx =-=-所以 最小正周期2π2ππ.2T ω===由ππ3π2π22π,.262k x k k z +???得2π10πππ,36k x k k z +#+?故函数()f x 在[0,π]上的单调递减区间15π,π36⎡⎤⎢⎥⎣⎦ …………9分(Ⅱ)因为α为第四象限角,且3cos 5α=,所以4sin 5α=-. 所以7π()212f α+=7ππ2sin()2sin 66αα+-=-85=.…………………13分(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM求出PMMC的值,若不存在,说明理由. (Ⅰ)证明:因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为AD CD ⊥, 所以CD PAD ⊥面. 由于AE PAD ⊂面, 所以有CD AE ⊥.…………………4分 (Ⅱ)解:依题意,以点A 为原点建立空间直角坐标系(如图), 不妨设2AB AP ==,可得(2,0,0)B ,(2,2,0)C ,()0,2,0D ,B CA()0,0,2P .由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =uu u v向量(2,2,0)BD =-u u u r ,(2,0,2)PB =-u u r.设(,,)n x y z =r为平面PBD 的法向量,则⎩⎨⎧=⋅=⋅00PB n 即⎩⎨⎧=-=+-022022z x y x .不妨令1y =,可得=n(1,1,1)为平面PBD 的一个法向量.所以cos ,3AE EF =uu u v uu u v .所以,直线EF 与平面PBD…………………11分(Ⅲ)解:向量(2,2,2)CP =--u u r ,(2,2,0)AC =u u u r ,(2,0,0)AB =u u u r. 由点M 在棱PC 上,设,(01)CM CP λλ=≤≤u u u r u u r. 故 (12,22,2)FM FC CM λλλ=+=--u u u r u u u r u u u r.由AC FM ⊥,得0=⋅AC FM,因此,(1-2)2(2-2)20λλ⨯+⨯=,解得34λ=. 所以 13PM MC =. …………………13分(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g的取值范围. 解(Ⅰ)因为椭圆的标准方程为22221(0)x y a b a b+=>>,由题意知2221222a b c c a c ⎧=+⎪⎪=⎨⎪=⎪⎩,,解得2,a b ==所以椭圆的标准方程为22143x y +=. ……………………………5分 (Ⅱ)因为2(1,0)F ,当直线l 的斜率不存在时,3(1,)2A ,3(1,)2B -,则229||||4AF F B =g,不符合题意. 当直线l 的斜率存在时,直线l 的方程可设为(1)y k x =-.由22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消y 得2222(34)84120k x k x k +-+-= (*).设),(11y x A ,),(22y x B ,则1x 、2x 是方程(*)的两个根,所以2222834k x x k +=+,212241234k x x k -=+.所以21||1AF ==-,所以22||1F B ==-所以2221212||||(1)()1AF F B k x x x x =+-++g222224128(1)13434k k k k k-=+-+++ 229(1)34k k=++ 2229(1)3491(1).434k k k=++=++当20k =时,22||||AF F B g取最大值为3, 所以 22||||AF F B g的取值范围9,34⎛⎤ ⎥⎝⎦. 又当k 不存在,即AB x ⊥轴时,22||||AF F B g取值为94. 所以22||||AF F B g的取值范围9,34⎡⎤⎢⎥⎣⎦. …………13分 (19)(本小题共14分)已知函数e ()(ln )xf x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.解:(Ⅰ)当1a =时,/2e (1)1()1x xf x x x-=-+,/(1)0f =,(1)e 1f =-. 方程为e 1y =-. …………………4分(Ⅱ)2e (1)1()(1)x x f x a x x -'=-- 2e (1)(1)x x ax x x ---=, 2(e )(1)xa x x x --= .当0a ≤时,对于(0,)x ∀∈+∞,e 0x ax ->恒成立,所以 '()0f x > ⇒1x >;'()0f x < ⇒ 01x <<0.所以 单调增区间为(1,)+∞,单调减区间为(0,1) . …………………8分(Ⅲ)若()f x 在(0,1)内有极值,则'()f x 在(0,1)x ∈内有解.令'2(e )(1)()0x ax x f x x --== ⇒e 0xax -= ⇒e x a x= . 设e ()xg x x= (0,1)x ∈,所以 'e (1)()x x g x x-=, 当(0,1)x ∈时,'()0g x <恒成立,所以()g x 单调递减.又因为(1)e g =,又当0x →时,()g x →+∞, 即()g x 在(0,1)x ∈上的值域为(e,)+∞,所以 当e a >时,'2(e )(1)()0x ax x f x x --== 有解. 设()e x H x ax =-,则 ()e 0xH x a '=-< (0,1)x ∈,所以()H x 在(0,1)x ∈单调递减. 因为(0)10H =>,(1)e 0H a =-<,所以()e xH x ax =-在(0,1)x ∈有唯一解0x .所以有:所以 当e a >时,()f x 在(0,1)内有极值且唯一.当e a ≤时,当(0,1)x ∈时,'()0f x ≥恒成立,()f x 单调递增,不成立.综上,a 的取值范围为(e,)+∞. …………………14分(20)(本小题共13分)已知曲线n C 表示,x y 满足*1()n nx y n N +=∈的方程. (Ⅰ)求出1,2n =时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.解:(Ⅰ)当1,2n = 时, 由图可知1141122C =⨯⨯⨯=, 2πC =. …………………3分(Ⅱ)要证()n S n N *∈是关于n 递增的,只需证明:1(n )n n S S N *+<∈.由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递 增.现在考虑曲线n C 与1n C +,因为 1()(1)nnx y n N *+=∈L L 因为 111()(2)n n xyn N ++*+=∈L L在(1)和(2)中令00,(0,1)x x x =∈,当0(0,1)x ∈,存在12,(0,1)y y ∈使得011n n x y +=, 11021n n x y +++=成立,此时必有21y y >.因为当0(0,1)x ∈时100n n x x +>, 所以121n n y y +>.两边同时开n 次方有,1221n ny y y +>>.(指数函数单调性)学习必备 欢迎下载这就得到了21y y >,从而()n S n N *∈是关于n 递增的. …………………10分(III)由于(2,)n n n x y z n n N +=>∈可等价转化为()()1n n x y z z+=, 反证:若曲线*(2,)n C n n N >∈上存在一点对应的坐标(,)x y ,,x y 全是有理数,不妨设,q t x y p s ==,*,,,p q s t N ∈,且,p q 互质,,s t 互质. 则由1n n x y +=可得, 1n n q t p s+=. 即n n n qs pt ps +=.这时,,qs pt ps 就是*(2,)n n n x y z n n N +=>∈的一组解,这与方程*(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解矛盾,所以曲线*(2,)n C n n N >∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数. …………………13分。

2016年北京东城高三二模数学(理科)试题及答案解析(word版)

2016年北京东城高三二模数学(理科)试题及答案解析(word版)

北京市东城区 2015-2016学年度第二学期高三综合练习(二) 数学 (理科)一、单选题(共8小题)1.集合,,则=()A.B.C.D.2.已知命题p:x∈R有sinx1,则﹁p为()A.B.C.D.3.如图,为正三角形,,底面,若,,则多面体在平面上的投影的面积为()A.B.C.D.4.若向量,,满足条件与共线,则的值()A.B.C.D.5.成等差数列的三个正数的和等于,并且这三个数分别加上、、后成为等比数列中的、、,则数列的通项公式为()A.B.C.D.6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。

根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%;优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%。

若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为()A.179元B.199元C.219元D.239元7.已知函数则的值为()A .B.4C.D.8.集合,若,已知,定义集合中元素间的运算,称为运算,此运算满足以下运算规律:①任意有②任意有(其中)③任意,有④任意有,且成立的充分必要条件是为向量.如果,那么下列运算属于正确运算的是()A.B.C.D.9.设是虚数单位,复数所对应的点在第一象限,则实数的取值范围为___.10.设变量x,y满足约束条件,则目标函数的最大值为______11.已知直线与直线相交于点,又点,则______12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图.则产品数量位于范围内的频率为_____;这20名工人中一天生产该产品数量在的人数是______.13.若点和点分别为双曲线(a>0)的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为___.14.已知函数,关于此函数的说法正确的序号是__.①为周期函数;②有对称轴;③为的对称中心;④.15.已知函数(),且函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.16.如图,是等腰直角三角形,,分别为的中点,沿将折起,得到如图所示的四棱锥(Ⅰ)求证:;(Ⅱ)当四棱锥体积取最大值时,(i)若为中点,求异面直线与所成角;(ii)在中交于,求二面角的余弦值.17.在2015-2016赛季联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数,表示投篮次数,表示命中次数),假设各场比赛相互独立.根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.18.已知,.(Ⅰ)求的单调区间;(Ⅱ)当时,求证:对于,恒成立;(Ⅲ)若存在,使得当时,恒有成立,试求的取值范围.19.已知椭圆过点(,),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是椭圆上的动点,是轴上的定点,求的最小值及取最小值时点的坐标.20.数列中,定义:,.(Ⅰ)若,,求;(Ⅱ)若,,求证此数列满足;(Ⅲ)若,且数列的周期为4,即,写出所有符合条件的.北京市东城区 2015-2016学年度第二学期高三综合练习(二)数学 (理科)答案1.考点:集合的运算试题解析:故答案为:B答案:B2.考点:全称量词与存在性量词试题解析:因为特称命题的否定为全称命题,所以﹁p为:。

2016-2017东城高三第一学期期末数学试题及答案(理科)

2016-2017东城高三第一学期期末数学试题及答案(理科)

输出k结束开始0,0Sk 1SSk 2k k1112S否是东城区2016-2017学年度第一学期期末教学统一检测高三数学(理科)本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。

)(1)已知集合{|(1)(3)0}Ax x x ,{|24}B x x ,则A B(A ){|13}x x (B ){|14}x x (C ){|23}x x (D ){|24}x x(2)抛物线22yx 的准线方程是(A )1y(B )12y(C )1x (D )12x(3)“1k”是“直线320kxy 与圆229xy 相切”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)执行如图所示的程序框图,输出的k 值为(A )6(B )8(C )10(D )12(5)已知,x yR ,且0x y ,则(A )tan tan 0x y (B )sin sin 0x x y y (C )ln ln 0xy(D )220xy正(主)视图112俯视图2侧(左)视图510154008001200时间(天)理想实际数量(个)(6)已知()f x 是定义在R 上的奇函数,且在[0,)上是增函数,则(1)0f x 的解集为(A )(,1](B )(,1](C )[1,)(D )[1,)(7)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )23(B )43(C )2(D )83(8)数列{}n a 表示第n 天午时某种细菌的数量.细菌在理想条件下第n 天的日增长率0.6n r (*1nnnna a r n a N ,).当这种细菌在实际条件下生长时,其日增长率n r 会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率n r 的规律描述正确的是5110.0.0.时间(B )510150.20.40.6(C )日增长率时间510150.20.40.6时间(天)日增长率(D )5110.0.0.时间(天)(A )日增长率第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

北京市东城区届高三月综合练习理科数学试题二含答案

北京市东城区届高三月综合练习理科数学试题二含答案

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 52 12. 0.4;13. 13. 31,22⎛⎤+ ⎥⎝⎦14. ①②④ 三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为()3sin cos 12sin()+16f x x x x πωωω=++=+, 又()f x 的最小正周期为π,所以π2πω=,即ω=2. --------------------------------------------------------------------6分(Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+, 因为02x π≤≤, 所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=o ,E F ,分别为AC BC ,的中点, GD F EC 'CB A所以EF AE ⊥,EF C E '⊥.又因为AE C E E '⋂=,所以EF AEC '⊥平面.由于EF AB P ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线,所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE .此时AEC '∆为等腰直角三角形,ED 为中线,所以直线ED AC '⊥.又因为ED GF P ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C B F '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n uuu r uuu r 得⎩⎨⎧=-=-+002az ay az ay ax , 取y =1,得x =-1,z =1.由此得到n =(-1,1,1). zy x F E C 'CB A同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33.--------------------------------------14分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B .则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===; 22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表: X0 1 2 3 P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时,所以 2310x x ++<.解得 3522x -+-<<. 当()0f x '>时, 解得 352x -+>. 所以 ()f x 单调增区间为35(2,)2-+-,单调减区间为35(,)2-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-, 当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++, 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<. 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立, 即对于x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1).2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h (x)符号相同,当x (x 0 , +)时,t (x) < 0,h (x) < 0,h (x)单调递减.当x (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立.综上,k 的取值范围为(–, 2). -------------------------------------------------------14分 19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+b y b x . 又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=. 因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点,所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -,此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得: 2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥.令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥,所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =-具体如下表所示7452321111010325⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122L L或110011001100L L此时相应的{}n d 为 11111111----L L或11111111----L L------------------------------------------------------13分。

北京市东城区2016届高三下学期综合练习(一)数学理试题(解析版)(附答案)

北京市东城区2016届高三下学期综合练习(一)数学理试题(解析版)(附答案)

北京市东城区2016届高三下学期综合练习(一)数学理试题本试卷共5 页,共150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷 上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40 分)一、选择题(本大题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出 符合题目要求的一项)1.已知复数(1)i ai +为纯虚数,那么实数a 的值为A .-1B .0C .1D .22.集合{}|A x x a =≤,{}2|50B x x x =-<,若A B B =,则a 的取值范围是A .a ≥5B .a ≥4C .a < 5D .a <43.某单位共有职工150 名,某中高级职称45 人,中级职称90 人,初级职称15 人,现采用 分层抽样方法从中抽取容量为30 的样本,则各职称人数分别为A .9,18,3B .10,15,5C .10,17,3D .9,16,54.执行如图所示的程序框图,输出的S 值为A .12B .1C .2D .45.在极坐标系中,直线sin cos 1ρθρθ-=被曲线ρ=1截得的线段长为A .12B .2C .1D 6.一个几何体的三视图如图所示,那么该几何体的最长棱长为A .2B .C .3D7.已知三点P (5,2),F 1(-6,0),F 2 (6,0 ),那么以F 1,F 2 为焦点且过点P 的椭圆的短轴长为A .3B .6C .9D .128.已知e 1,e 2为平面上的单位向量, e 1与e 2的起点均为坐标原点O ,e 1与e 2的夹角为3π, 平面区域D 由所有满足12OP e e λμ=+的点P 组成,其中100λμλμ+≤⎧⎪≥⎨⎪≥⎩,那么平面区域D 的面积为A .12 BCD第II 卷(非选择题共110 分)二、填空题(本大题共6 小题,每小题5 分,共30 分)9.在51(2)4x x+的展开式中,x 3项的系数为 (用数字作答) 10.已知等比数列{}n a 中,2342,32a a a ==,那么a 8的值为 .11.如图,圆O 的半径为1, A , B ,C 是圆周上的三点,过点A 作圆O 的切线与OC 的 延长线交于点P .若CP =AC ,则∠COA = ; AP = .12.若sin ()4πα-=35,且(0,)4πα∈,则sin 2α的值为 . 13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如 下表:在最合理的安排下,获得的最大利润的值为.14.已知函数f (x) =|ln x|,关于x的不等式f (x) -f (x0)≥c(x-x 0)的解集为(0,+ ),c 为常数.当x0=1时,c 的取值范围是;当x 0=12时,c 的值是.三、解答题(本大题共6 小题,共80 分.解答应写出文字说明,演算步骤或证明过程)15.(本小题共13 分)在△ABC 中,BC =AC =2,且cos( A+B) 。

2016东城区高三(上)期末数学(理科)

2016东城区高三(上)期末数学(理科)

2016东城区高三(上)期末数学(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},那么集合(∁U A)∩B=()A.{2}B.{4}C.{1,3}D.{2,4}2.(5分)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于()A.cm3B.2cm3C.3cm3D.9cm33.(5分)设i为虚数单位,如果复数z满足(1﹣2i)z=5i,那么z的虚部为()A.﹣1 B.1 C.i D.﹣i4.(5分)已知m∈(0,1),令a=log m2,b=m2,c=2m,那么a,b,c之间的大小关系为()A.b<c<a B.b<a<c C.a<b<c D.c<a<b5.(5分)已知直线l的倾斜角为α,斜率为k,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是()A.(1,+∞)B.C. D.[ln2,+∞)7.(5分)过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,点O是原点,如果|BF|=3,|BF|>|AF|,,那么|AF|的值为()A.1 B.C.3 D.68.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈(0,1),给出以下四个命题:①四边形MENF为平行四边形;②若四边形MENF面积s=f(x),x∈(0,1),则f(x)有最小值;③若四棱锥A﹣MENF的体积V=p(x),x∈(0,1),则p(x)为常函数;④若多面体ABCD﹣MENF的体积V=h(x),x∈(,1),则h(x)为单调函数;其中假命题为()A.①B.②C.③D.④二、填空题共6小题,每小题5分,共30分.9.(5分)在△ABC中,a、b分别为角A、B的对边,如果B=30°,C=105°,a=4,那么b=.10.(5分)在平面向量,中,已知=(1,3),=(2,y).如果•=5,那么y=;如果| +|=|﹣|,那么y=.11.(5分)已知x,y满足满足约束条件,那么z=x2+y2的最大值为.12.(5分)如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a=;f(﹣t)=.13.(5分)如果平面直角坐标系中的两点A(a﹣1,a+1),B(a,a)关于直线L对称,那么直线L 的方程为.14.(5分)数列{a n}满足:a n﹣1+a n+1>2a n(n>1,n∈N*),给出下述命题:(n>1,n∈N*)成立;①若数列{a n}满足:a2>a1,则a n>a n﹣1②存在常数c,使得a n>c(n∈N*)成立;③若p+q>m+n(其中p,q,m,n∈N*),则a p+a q>a m+a n;④存在常数d,使得a n>a1+(n﹣1)d(n∈N*)都成立.上述命题正确的.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)设q(q>0,q≠1)是一个公比为q(q>0,q≠1)等比数列,4a1,3a2,2a3成等差数列,且它的前4项和s4=15.(Ⅰ)求数列b n=,(n=1,2,3…)的通项公式;(Ⅱ)令b n=a n+2n,(n=1,2,3…),求数列{b n}的前n项和.16.(13分)已知函数.(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;(Ⅱ)若α为第四象限角,且,求的值.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD 的中点.(Ⅰ)证明:AE⊥CD;(Ⅱ)求直线AE与平面PBD所成角的正弦值;(Ⅲ)若F为AB中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出的值,若不存在,说明理由.18.(13分)已知椭圆=1(a>b>0)的焦点是F1、F2,且|F1F2|=2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过椭圆右焦点F2的直线l交椭圆于A,B两点,求|AF2|•|F2B|的取值范围.19.(14分)已知函数f(x)=﹣a(x﹣lnx).(Ⅰ)当a=1时,试求f(x)在(1,f(1))处的切线方程;(Ⅱ)当a≤0时,试求f(x)的单调区间;(Ⅲ)若f(x)在(0,1)内有极值,试求a的取值范围.20.(13分)已知曲线C n的方程为:|x|n+|y|n=1(n∈N*).(Ⅰ)分别求出n=1,n=2时,曲线C n所围成的图形的面积;(Ⅱ)若S n(n∈N*)表示曲线C n所围成的图形的面积,求证:S n(n∈N*)关于n是递增的;(Ⅲ)若方程x n+y n=z n(n>2,n∈N),xyz≠0,没有正整数解,求证:曲线C n(n>2,n∈N*)上任一点对应的坐标(x,y),x,y不能全是有理数.参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.【解答】集合U={1,2,3,4},集合A={1,3,4},B={2,4},∴∁U A={2},∴(∁U A)∩B={2}.故选:A.2.【解答】由三视图可知,该三棱锥的底面为直角三角形,两个侧面和底面两两垂直,∴V=××3×1×3=.故选A.3.【解答】由(1﹣2i)z=5i,得.∴z的虚部为1.故选:B.4.【解答】∵m∈(0,1),则a=log m2<0,b=m2∈(0,1),c=2m>1,那么a,b,c之间的大小关系为a<b<c.故选:C.5.【解答】直线l的倾斜角为α,斜率为k,当>,∴k=tanα>;当时,k=tanα<0.∵“”是“”的必要而不充分条件,故选:B.6.【解答】作函数f(x)=与y=k的图象如下,,∵ln2,∴结合图象可知,k≥;故选:B.7.【解答】如图,作BN⊥准线l,AM⊥l,AC⊥BN,∴|BF|=|BN|,|AF|=|AM|,∵,∴cos∠BCF==,∵|BF|=3,∴|AF|=1,故选:A.8.【解答】①∵平面ADD′A′∥平面BCC′B′,∴EN∥MF,同理:FN∥EM,∴四边形EMFN为平行四边形,故正确;②MENF的面积s=f(x)=(EF×MN),当M为BB′的中点时,即x=时,MN最短,此时面积最小.故正确;③连结AF,AM,AN,则四棱锥则分割为两个小三棱锥,它们以AEF为底,以M,N分别为顶点的两个小棱锥.因为三角形AEF的面积是个常数.M,N到平面AEF的距离和是个常数,所以四棱锥C'﹣MENF的体积V为常数函数,故正确.=为常数函数,故错误;④多面体ABCD﹣MENF的体积V=h(x)=V ABCD﹣A′B′C′D′故选:D.二、填空题共6小题,每小题5分,共30分.9.【解答】在△ABC中,∵B=30°,C=105°,∴A=45°.由正弦定理可得:,∴b====,故答案为:2.10.【解答】∵•=5,∴1×2+3y=5,解得y=1.∵|+|=|﹣|,∴⊥,∴1×2+3y=0,解得y=﹣.故答案为.11.【解答】由约束条件作出可行域如图,联立方程组,解得:A(3,7);联立方程组,解得:B(6,4).|OA|=,|OB|=.坐标原点O到直线x+y=10的距离d=.∴z=x2+y2的最大值为58.故答案为:58.12.【解答】∵函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2,∴,解得a=1,t2sint=1,∴f(﹣t)=t2sin(﹣t)+a=﹣t2sint+1=﹣1+1=0.故答案为:1,0.13.【解答】∵k AB==﹣1,线段AB的中点为,两点A(a﹣1,a+1),B(a,a)关于直线L对称,∴k L=1,其准线方程为:y﹣=x﹣,化为:x﹣y+1=0.故答案为:x﹣y+1=0.14.【解答】由a n﹣1+a n+1>2a n(n>1,n∈N*),得a n+1﹣a n>a n﹣a n﹣1(n>1,n∈N*)或a n﹣1﹣a n>a n﹣a n+1(n>1,n∈N*).即数列函数{a n}为增函数,且连接相邻两点连线的斜率逐渐增大,或数列函数{a n}为减函数,且连接相邻两点连线的斜率逐渐减小.对于①,若a2>a1,则数列函数{a n}为增函数,∴a n>a n(n>1,n∈N*)成立,正确;﹣1对于②,若数列函数{a n}为减函数,则命题错误;对于③,若数列函数{a n}为减函数,则命题错误;对于④,若数列函数{a n}为减函数,则命题错误.故答案为:①.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)∵q(q>0,q≠1)是一个公比为q(q>0,q≠1)的等比数列,∴.∵4a1,3a2,2a3成等差数列,∴6a2=4a1+2a3,即q2﹣3q+2=0.解得q=2,q=1(舍).又它的前4和S4=15,得,解得a1=1.∴.(Ⅱ)∵b n=a n+2n=2n﹣1+2n,∴数列{b n}的前n项和=+=2n﹣1+n(n+1).16.【解答】(Ⅰ)由已知=.∴最小正周期;由,得.故函数f(x)在[0,π]上的单调递减区间;(Ⅱ)∵α为第四象限角,且,∴.∴==.17.【解答】(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD.因为AD⊥CD,AD∩AP=A,所以CD⊥面PAD.由于AE⊂面PAD,所以有CD⊥AE.…(4分)(Ⅱ)解:依题意,以点A为原点建立空间直角坐标系(如图),不妨设AB=AP=2,可得B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2).由E为棱PD的中点,得E(0,1,1).=(0,1,1)向量,.设为平面PBD的法向量,则=0,即∫﹣2x+2y=0.不妨令y=1,可得=(1,1,1)为平面PBD的一个法向量.设直线AE与平面PBD所成角为θ,则sinθ===,所以,直线AE与平面PBD所成角的正弦值为.…(11分)(Ⅲ)解:向量,,.由点M在棱PC上,设.故.由FM⊥AC,得=0,因此,(1﹣2λ)×2+(2﹣2λ)×2=0,解得.所以.…(13分)18.【解答】(Ⅰ)因为椭圆的标准方程为,由题意知解得.所以椭圆的标准方程为.…(5分)(Ⅱ)因为F2(1,0),当直线的斜率不存在时,,,则,不符合题意.当直线y=k(x﹣1)的斜率存在时,直线y=k(x﹣1)的方程可设为y=k(x﹣1).由消(3+4k2)x2﹣8k2x+4k2﹣12=0得(3+4k2)x2﹣8k2x+4k2﹣12=0(*).设,,则、是方程(*)的两个根,所以,.所以,所以所以==当k2=0时,|AF2|•|F2B|取最大值为3,所以|AF2|•|F2B|的取值范围.又当k不存在,即AB⊥x轴时,|AF2|•|F2B|取值为.所以|AF2|•|F2B|的取值范围.…(13分)19.【解答】(Ⅰ)当a=1时,,f′(1)=0,f(1)=e﹣1.∴方程为y=e﹣1.(Ⅱ)==.当a≤0时,对于∀x∈(0,+∞),e x﹣ax>0恒成立,令f′(x)>0⇒x>1,令f′(x)<0⇒0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增;(Ⅲ)若f(x)在(0,1)内有极值,则f′(x)==0在(0,1)内有解,∴e x﹣ax=0在(0,1)内有解,即y=e x和y=ax在(0,1)上有交点,如图示:,x=1时,y=e x=e,故a>e或a<0.20.【解答】(Ⅰ)解:当n=1,2时,曲线C1、C2的方程分别为|x|+|y|=1和x2+y2=1,其图象分别如图:由图可知,S 2=π;(Ⅱ)证明:要证是关于n递增的,只需证明:.由于曲线C n具有对称性,只需证明曲线C n在第一象限的部分与坐标轴所围成的面积递增.,现在考虑曲线C n与C n+1∵|x|n+|y|n=1(n∈N*)…①,∵|x|n+1+|y|n+1=1(n∈N*)…②,在①和②中令x=x0,x0∈(0,1),当x0∈(0,1),存在y1,y2∈(0,1)使得,成立,此时必有y2>y1.∵当x0∈(0,1)时,∴.两边同时开n次方有,.(指数函数单调性)这就得到了y2>y1,从而是关于n递增的;(Ⅲ)证明:由于x n+y n=z n(n>2,n∈N)可等价转化为,反证:若曲线上存在一点对应的坐标(x,y),x,y全是有理数,不妨设,p,q,s,t∈N*,且p,q互质,s,t互质.则由|x|n+|y|n=1可得,.即|qs|n+|pt|n=|ps|n.这时qs,pt,ps就是x n+y n=z n(n>2,n∈N*)的一组解,这与方程x n+y n=z n(n>2,n∈N*),xyz≠0,没有正整数解矛盾,∴曲线上任一点对应的坐标(x,y),x,y不能全是有理数.。

北京市东城区2016届高三上学期期末考试理数试题(解析版)

北京市东城区2016届高三上学期期末考试理数试题(解析版)

一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =I ( )A.{2}B.{4} C,{1,3} D.{2,4} 【答案】A. 【解析】试题分析:={2}U C A ,∴(){2}U C A B =,故选A .考点:集合的运算.2.已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于( )A.32 cm3 B.3 cm 3 C.3 cm 3 D.9 cm 3【答案】A.【解析】试题分析:由三视图可知,直观图为底面积为133122S =⨯⨯=,高3h =的三棱锥,所以体积为113333322V Sh ==⨯⨯=,故选A .考点:空间几何体的三视图与直观图.3.设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为( ) A.1- B.1 C.i D.i - 【答案】B. 【解析】 试题分析:5212iz i i==-+-,虚部为1,故选B . 考点:复数综合运算.4.已知(0,1)m ∈,令log 2m a =,2b m =,2m c =,那么,,a b c 之间的大小关系为( ) A.b c a << B.b a c << C.a b c << D.c a b << 【答案】C. 【解析】试题分析:∵(0,1)m ∈,∴log 20m a =<,2(0,1)b m =∈,21m c =>,即a b c <<,故选C . 考点:对数函数与指数函数.5.已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“k > )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】B. 【解析】 试题分析:当2παπ<<时,0k <,当k >32ππα<<,所以“3πα>”是“k >不充分条件,故选B . 考点:充分必要条件.6.已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是( )A. (1,)+∞B.3[,)2+∞ C.32[,)e +∞ D.[ln 2,)+∞【答案】B. 【解析】试题分析:在同一坐标系内作出函数与的图象(如图),关于x 的方程()f x k =有两个不同的实,等价于直线y k =与图象有两个不同的交点,所以k 的取值范围是3[,)2+∞,故选B . 考点:零点与方程.7.过抛物线220)y px p =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为( ) A.1 B.32C. 3D.6 【答案】A.【解析】由已知直线的斜率为k =)2p y x =-,联立方程2)22p y x y px⎧=-⎪⎨⎪=⎩得2233504x px p -+=,即(23)(6)0x p x p -+=,∵||||BF AF >,所以32B x p =,6A p x =, 依题意232B p x p +==,所以32p =,则2123A p AF x p =+==,故选A .考点:抛物线的标准方程及其性质.8.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x ,给出以下四个命题: ① 四边形MENF 为平行四边形;② 若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小值;③ 若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④ 若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈,则)(x h 为单调函数. 其中假命题...为( ) A. ① B.②C.③D.④【答案】D.过M 作平面'''//MF N E 平面ABCD ,分别交'CC ,'DD ,'AA 于'F ,'N ,'E , 则多面体ABCD MENF -的体积为'''''''ABCD MF N E M E N NE M F FNN V V V V ---=++, 而''11ABCD MF N E V x -=⋅⋅,''11111(12)11()32222M E N NE V x x x -=⨯-+-⋅⋅=-, ''11111(12)11()32222M F FMN V x x x -=⨯-+-⨯⨯=-,所以1122V x x =+-=,常数,错, 所以错误命题的序号为④,故选D . 考点:立体几何综合.二、填空题(本大题共6小题,每小题5分,共30分.)9.在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =,那么b =_____.【答案】【解析】试题分析:4A B C ππ=--=,由正弦定理sin sin a bA B=,所以sin sin a B b A === 考点:解三角形.10.在平面向量a,b 中,已知(1,3)=a ,(2,y)=b ,.如果5⋅=a b ,那么y =_____;如果-=a +b a b ,那么y =______ 【答案】1,23-. 【解析】试题分析:因为1235a b y ⋅=⨯+=,所以1y =,因为||||a b a b +=- ,所以22||||a b a b +=-,即22a b a b ⋅=-⋅,所以0a b ⋅=,即1230y ⨯+=,所以23y =-.考点:数量积及其应用.11.已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.【答案】58. 【解析】试题分析:做出可行域如图,22z x y =+的几何意义为可行域内的点到原点的距离的平方,当点P 位于点(3,7),此时OP取得最大值所以z 的最大值为258OP =.考点:线性规划.12.如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a = ;()f t -= . 【答案】1,0. 【解析】试题分析:由已知2()sin 1f a a πππ=+==,所以1a =,所以2()sin 1f x x x =+ ,而2()sin 12f t t t =+=,所以2sin 1t t =,所以22()()sin()1sin 1110f t t t t t -=--+=-+=-+=. 考点:函数的奇偶性.13.如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为_. 【答案】10x y -+=. 【解析】试题分析:直线AB 斜率为111a aa a+-=---,所以l 斜率为1,设直线方程为y x b =+,由已知直线过点(1,)a a -,所以1a a b =-+,即1b =, 所以直线方程为1y x =+,即10x y -+=. 考点:直线方程.14.数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题: ①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立. 上述命题正确的是____.(写出所有正确结论的序号) 【答案】①④.考点:数列综合应用.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =. (1)求数列{}n a 的通项公式;(2)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和.【答案】(1)12n n a -=;(2)2(1)1nn n ++-. 【解析】试题分析:(1)根据条件列出关于1a ,q 的方程组,从而求解;(2)n b 可以看作一个等差数列与等比数列的组合,分组求和即可.试题解析:(1)因为{}n a 是一个公比为(0,1)q q q >≠等比数列,所以11n n a a q -=, 因为14a ,23a ,32a 成等差数列,所以213642a a a =+,即2320q q -+=,解得2q =或1(舍),又它的前4和415S =,得41(1)151a q q-=-,解得11a = 所以12n n a -=;(2)因为2n n b a n =+, 所以11122(1)1n n nniii i i b a i n n ====+=++-∑∑∑.考点:等比数列与等差数列的综合运用.16.(本小题共13分)已知函数22()sin cos cos ()f x x x x x x =+-∈R . (1)求()f x 的最小正周期和在[0,π]上的单调递减区间; (2)若α为第四象限角,且3cos 5α=,求7π()212f α+的值.【答案】(1)5[,]36ππ;(2)85. 【解析】试题分析:(1)对()f x 的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得sin α的值后即可求解.试题解析:(1)由已知22()sin cos cos 2cos 22sin(2)6f x x x x x x x x π=+-=-=-,所以最小正周期2T ππω==, 由3222,262k x k k Z πππππ+≤-≤+∈, 得5,36k x k k Z ππππ+≤≤+∈, 故函数()f x 在[0,]π上的单调递减区间5[,]36ππ;(2)因为α为第四象限角,且3cos 5α=,所以4sin 5α=-,所以78()2sin 2125f απα+=-=.考点:三角函数综合. 17.(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点. (1)证明:AE CD ⊥;(2)求直线AE 与平面PBD 所成角的正弦值;(3)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由.【答案】(1)详见解析;(23)13PM MC =. 【解析】试题分析:(1)根据条件可证明CD ⊥平面PAD ,再根据线面垂直的性质即可求解;(2)建立空间直角坐标系后求得平面PBD 的一个法向量后即可求解;(3)设(01)CM CP λλ=≤≤,利用空间向量建立关于λ的方程即可求解.试题解析:(1)因为PA ⊥底面ABCD , 所以PA CD ⊥,因为AD CD ⊥,所以CD ⊥平面PAD ,由于AE ⊂平面PAD ,所以有CD AE ⊥;(2)依题意,以点A 为原点建立空间直角坐标系(如图), 不妨设2AB AP ==,可得(2,0,0)B ,(2,0,0)C ,(0,2,0)D ,(0,0,2)P ,由E 为棱PD 的中点,得(0,1,1)E , (0,1,1)AE =, 向量(2,2,0)BD =-,(2,0,2)PB =-,设(,,)n x y z =为平面PBD 的法向量,则n BD n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,不妨令1y =,可得(1,1,1)n =为平面PBD 的一个法向量.所以 6cos ,AE EF <>=所以,直线EF 与平面PBD 3)向量(2,2,2)CP =--,(2,2,0)AC =,(2,0,0)AB =. 由点M 在棱PC 上,设(01)CM CP λλ=≤≤,故 (12,22,2)FM FC CM λλλ=+=--,由FM AC ⊥,得0FM AC ⋅=, 因此(12)2(22)20λλ-⨯+-⨯=,解得34λ=,所以13PM MC =. 考点:立体几何综合.18.(本小题共13分)已知椭圆22221x y a b+=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(1)求椭圆C 的方程;(2)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g 的取值范围.【答案】(1)22143x y +=;(2)9[,3]4.【解析】试题分析:(1)建立关于..a b c 的方程组即可求解;(2)联立直线方程与椭圆方程,利用韦达定理建立22||||AF F B g 的函数关系式,从而求解.试题解析:(1)因为椭圆的标准方程为22221(0)x y a b a b +=>>,由题意知2221222a b c c a c ⎧=+⎪⎪=⎨⎪=⎪⎩解得2a =,b =,所以椭圆的标准方程为22143x y +=;(2)因为2(1,0)F ,当直线l 的斜率不存在时,3(1,)2A ,3(1,)2B -, 则229||||4AF F B ⋅=,不符合题意.当直线l 的斜率存在时,直线l 的方程可设为(1)y k x =-, 由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,消y 得2222(34)84120k x k x k +-+-=(*).设11(,)A x y ,22(,)B x y ,则1x ,2x 是方程(*)的两个根,所以2122834k x x k +=+,212241234k x x k-=+,所以21|||1|AF x =-,所以22|||1|F B x =-,所以2221212291||||(1)|()1|(1)434AF F B k x x x x k⋅=+-++=++, 当0k =时,22||||AF F B ⋅取最大值为3,所以22||||AF F B ⋅的取值范围9(,3]4. 又当k 不存在,即AB x ⊥轴时,22||||AF F B ⋅取值为94, 所以22||||AF F B ⋅的取值范围9[,3]4. 考点:圆锤曲线综合. 19.(本小题共14分)已知函数()(ln )xe f x a x x x=--.(1)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (2)当0a ≤时,试求()f x 的单调区间;(3)若()f x 在(0,1)内有极值,试求a 的取值范围.【答案】(1)1y e =-;(2)单调增区间为(1,)+∞,单调减区间为(0,1);(3)(,)e +∞. 【解析】试题分析:(1)求导,利用导数的几何意义求解;(2)求导,研究导函数的取值情况即可求解;(3)问题等价于'()0f x =有解,求导后分析其取值情况即可.试题解析:(1)当1a =时,2(1)1'()1x e x f x x x -=-+,'(1)0f =,(1)1f e =-.方程为1y e =-;(2)022(1)1()(1)'()(1)x x e x e ax x f x a x x x---=--=,当0a ≤时,对于(0,)x ∀∈+∞,0xe ax ->恒成立,所以'()0f x >,1x >;'()0f x <,01x <<,所以单调增区间为(1,)+∞,单调减区间为(0,1);(3)若()f x 在(0,1)内有极值,则'()0f x =在(0,1)x ∈内有解,令2()(1)'()0x e ax x f x x --==,0xe ax -=,x e a x =,设()x e g x x =,(0,1)x ∈,所以(1)'()x e x g x x-=, 当(0,1)x ∈时,'()0g x <恒成立,所以()g x 单调递减,又因为(1)g e =,又当0x →时,()g x →∞,即()g x 在(0,1)x ∈上的值域为(,)e +∞,所以当a e >时,2()(1)'()0x e ax x f x x --== 有解.设()x H x e ax =-,则'()x H x e a =-,(0,1)x ∈,所以()H x 在(0,1)x ∈单调递减, 因为(0)10H =>,(1)0H e a =-<, 所以()0H x =在(0,1)x ∈有唯一解0x , 所以有:所以当a e >时,()f x 在(0,1)内有极值且唯一,当a e ≤时,当(0,1)x ∈时,'()0f x ≥恒成立,()f x 单调递增,不成立,综上,a 的取值范围为(,)e +∞. 考点:导数的综合运用. 20.(本小题共13分)已知曲线n C 的方程为:*1()nnx y n N +=∈.(1)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(2)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(3)若方程(2,)nnnx y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.【答案】(1)π;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)画出对应n 的取值的图形,根据图形即可求解;(2)由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递增,再根据式子推导;(3)根据条件中给出的结论利用反证法推导.试题解析:(1)当1,2n = 时, 由图可知1141122C =⨯⨯⨯=,2C π=;(2)要证(*)n S n N ∈是关于n 递增的,只需证明:*1()n n S S n N +<∈,由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递增,现在考虑曲线n C 与1n C +,因为*||||1()nnx y n N +=∈(1)因为 11*||||1()n n x y n N +++=∈,在(1)和(2)中令0x x =,0(0,1)x ∈,当0(0,1)x ∈,存在1y ,2(0,1)y ∈使得011n n x y +=,11011n n x y +++=成立,此时必有21y y >,因为当0(0,1)x ∈时100n n x x +>, 所以121n ny y +>,两边同时开n 次方有,1221n ny y y +>>.(指数函数单调性)这就得到了21y y >,从而*()n S n N ∈是关于n 递增的;(3)由于(2,)n n n x y z n n N +=>∈可等价转化为()()1n n x y zz+=, 反证:若曲线*(2,)n C n n N >∈上存在一点对应的坐标(,)x y ,x ,y 全是有理数, 不妨设q x p =,t y s=,*,,,p q s t N ∈,且,p q 互质,,s t 互质,则由||||1n nx y +=可得, ||||1n n q tp s+=,即||||||n n n qs pt ps +=,这时qs ,pt ,ps 就是(2,)n n n x y z n n N +=>∈的一组解, 这与方程(2,)nnnx y z n n N +=>∈,0xyz ≠,没有正整数解矛盾, 所以曲线*(2,)n C n n N >∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数. 考点:数列综合运用.:。

北京市东城区高三数学下学期综合练习试题(一)理(含解析)

北京市东城区高三数学下学期综合练习试题(一)理(含解析)

东城区2015-2016 学年度第二学期高三综合练习(一)数学(理科)本试卷共5 页,共150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷 上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40 分)一、选择题(本大题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出 符合题目要求的一项)1.已知复数(1)i ai +为纯虚数,那么实数a 的值为A .-1B .0C .1D .22.集合{}|A x x a =≤,{}2|50B x x x =-<,若A B B =,则a 的取值范围是A .a ≥5B .a ≥4C .a < 5D .a <43.某单位共有职工150 名,某中高级职称45 人,中级职称90 人,初级职称15 人,现采用 分层抽样方法从中抽取容量为30 的样本,则各职称人数分别为A .9,18,3B .10,15,5C .10,17,3D .9,16,54.执行如图所示的程序框图,输出的S 值为A .12B .1C .2D .45.在极坐标系中,直线sin cos 1ρθρθ-=被曲线ρ=1截得的线段长为A .12B .2C .1D 6.一个几何体的三视图如图所示,那么该几何体的最长棱长为A .2B .C .3D 7.已知三点P (5,2),F 1(-6,0),F 2 (6,0 ),那么以F 1,F 2 为焦点且过点P 的椭圆的短轴长为A .3B .6C .9D .128.已知e 1,e 2为平面上的单位向量, e 1与e 2的起点均为坐标原点O ,e 1与e 2的夹角为3π, 平面区域D 由所有满足12OP e e λμ=+的点P 组成,其中100λμλμ+≤⎧⎪≥⎨⎪≥⎩,那么平面区域D 的面积为A .12 BCD第II 卷(非选择题共110 分)二、填空题(本大题共6 小题,每小题5 分,共30 分)9.在51(2)4x x+的展开式中,x 3项的系数为 (用数字作答) 10.已知等比数列{}n a 中,2342,32a a a ==,那么a 8的值为 .11.如图,圆O 的半径为1, A , B ,C 是圆周上的三点,过点A 作圆O 的切线与OC 的 延长线交于点P .若CP =AC ,则∠COA = ; AP = .12.若sin ()4πα-=35,且(0,)4πα∈,则sin 2α的值为 . 13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如 下表:在最合理的安排下,获得的最大利润的值为 .14.已知函数 f (x ) =|ln x |,关于x 的不等式f (x ) -f (x 0 )≥c (x -x 0)的解集为(0,+∞),c 为常数.当x 0=1时,c 的取值范围是 ;当x 0=12时, c 的值是 . 三、解答题(本大题共6 小题,共80 分.解答应写出文字说明,演算步骤或证明过程)15.(本小题共13 分)在△ABC 中,BC =AC =2,且 cos( A +B)=-2。

高三试卷—2016年2016北京东城高三上期末数学理(含解析)

高三试卷—2016年2016北京东城高三上期末数学理(含解析)

北京市东城区2015—2016学年度高三年级第一学期期末统一考试数学试卷(理科)2016.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4U =,集合{}1,3,4A =,{}2,4B =,那么集合()U A B = ð().A .{}2B .{}4C .{}1,3D .{}2,42.已知某三棱锥的三视图(单位:cm )如图所示,那么该三棱锥的体积等于().A .23cm2B .22cmC .23cmD .29cm 3.设i 为虚数单位,如果复数z 满足(12i)5i z -=,那么z 的虚部为().A .1-B .1C .iD .i-4.已知(0,1)m ∈,令log 2m a =,2b m =,2m c =,那么a ,b ,c 之间的大小关系为().A .b c a<<B .b a c<<C .a b c <<D .c a b <<5.已知直线l 的倾斜角为α,斜率为k ,那么“π3α>”是“k >的().A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知函数()11,02ln ,2x f x x x x ⎧+<⎪=⎨⎪>⎩≤,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是().A .()1,+∞B .3,2⎡⎫+∞⎪⎢⎣⎭C .32e ,⎡⎫+∞⎪⎢⎣⎭D .[)ln 2,+∞7.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,如果3BF =,BF AF >,2π3BFO ∠=,那么AF 的值为().A .1B .32C .2D .528.如图所示,正方体''''ABCD A B C D -的棱长为1,E ,F 分别是棱'AA ,'CC 的中点,过直线EF 的平面分别与棱'BB ,'DD 交于M ,N ,设BM x =,(0,1)x ∈,给出以下四个命题①四边形MENF 为平行四边形;②若四边形MENF 面积()S f x =,(0,1)x ∈,则()f x 有最小值;③若四棱锥A MENF -的体积()V p x =,(0,1)x ∈,则()p x 为常函数;④若多面体ABCD MENF -的体积()V h x =,1(,1)2x ∈,则()h x 为单调函数.其中假命题为().A .①B .②C .③D .④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.在ABC △中,a ,b 分别为角A ,B 的对边,如果30B =︒,105C =︒,4a =,那么b =__________.10.在平面向量a r ,b r 中,已知(1,3)a =r ,(2,)b y =r .如果5a b ⋅=r r,那么y =__________;如果a b a b +=-r r r r ,那么y =__________.11.已知x ,y 满足约束条件1023x y x y x +⎧⎪-⎨⎪⎩≤≤≥,那么22z x y =+的最大值为__________.12.如果函数2()sin f x x x a =+的图像过点(π,1),且()2f t =,那么a =__________;()f t -=__________.13.如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为__________.14.数列{}n a 满足:112(1n n n a a a n -++>>,*)n ∈N ,给出下述命题:①若数列{}n a 满足:21a a >,则1n n a a ->成立;②存在常数c ,使得n a c >()n ∈*N 成立;③若p q m n +>+(其中p ,q ,m ,n ∈*N ),则p q m n a a a a +>+;④存在常数d ,使得1(1)n a a n d >+-()n ∈*N 都成立.上述命题正确的是__________.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本题满分13分)设{}n a 是一个公比为q (0q >,1)q ≠的等比数列,14a ,23a ,32a 成等差数列,且它的前4项和415S =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n b a n =+,(1,2,3)n =LL .求数列{}n b 的前n 项和.16.(本题满分13分)已知函数22()sin cos cos f x x x x x =+-()x ∈R .(Ⅰ)求()f x 的最小正周期和在[]0,π上的单调递减区间;(Ⅱ)若α为第四想象角,且3cos 5α=,求7π()212f α+的值.17.(本题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由.18.(本题满分13分)已知椭圆22221(0)x y a b ab +=>>的焦点是1F ,2F ,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点.求12AF F B ⋅的取值范围.19.(本题满分14分)已知函数e ()(ln )xf x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程;(Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.20.(本题满分13分)已知曲线n C 的方程为:1()nnx y n +=∈*N .(Ⅰ)分别求出1n =,2n =时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n ∈*N 表示曲线n C 所围成的图形的面积,求证:()n S n ∈*N 关于n 是递增的;(Ⅲ)若方程n n n x y z +=(2n >,)n ∈N ,0xyz ≠,没有正整数解,求证:曲线n C (2n >,)n *∈N 上任一点对应的坐标(,)x y ,x ,y 不能全是有理数.北京市东城区2015—2016学年度高三第一学期期末统一考试数学答案及解析(理工类)2016.1一、选择题1.已知集合{}1,2,3,4U =,集合{}1,3,4A =,{}2,4B =,那么集合()U A B = ð().A .{}2B .{}4C .{}1,3D .{}2,4【答案】A【解析】∵{}1,2,3,4U =,{}1,3,4A =,∴{}2U A =ð,又∵{}2,4B =,∴(){}2U A B = ð.故选A .2.已知某三棱锥的三视图(单位:cm )如图所示,那么该三棱锥的体积等于().A .23cm2B .22cmC .23cmD .29cm【答案】A【解析】三视图的直观图如下:∴1131333322ABC V S DC ⨯=⋅=⨯⨯=△.故选A .3.设i 为虚数单位,如果复数z 满足(12i)5i z -=,那么z 的虚部为().A .1-B .1C .iD .i-【答案】B【解析】由题可得,5i5i(12i)5i 10i 212i (12i)(12i)5z +-====---+,∴虚部为1.故选B .4.已知(0,1)m ∈,令log 2m a =,2b m =,2m c =,那么a ,b ,c 之间的大小关系为().A .b c a <<B .b a c <<C .a b c <<D .c a b<<【答案】C【解析】∵(0,1)m ∈,∴log 2log 10m m a =<=,2(0,1)b m =∈,0221m c =>=,∴a b c <<.故选C .5.已知直线l 的倾斜角为α,斜率为k ,那么“π3α>”是“k >的().A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】由题意得[)0,πα∈,当k >ππ(,)32α∈,∵ππ(,32是π(,π)3的真子集,∴“π3α>”是“k >的必要不充分条件.故选B .6.已知函数()11,02ln ,2x f x xx x ⎧+<<⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是().A .()1,+∞B .3,2⎡⎫+∞⎪⎢⎣⎭C .32e ,⎡⎫+∞⎪⎢⎣⎭D .[)ln 2,+∞【答案】B【解析】由题可得,函数图像如下:由图像可得,当3,2k ⎡⎫∈+∞⎪⎢⎣⎭时,有两个不同实数根.故选B .7.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,如果3BF =,BF AF >,2π3BFO ∠=,那么AF 的值为().A .1B .32C .2D .52【答案】A【解析】如图:∵2π3BFO ∠=,∴π3AFO ∠=,∴226BM BE BE ===,∴F 为MB 中点,∴32BEBFFG ===,∴MA AN MF GF =,∴3332AF AF -=,∴1AF =.故选A .8.如图所示,正方体''''ABCD A B C D -的棱长为1,E ,F 分别是棱'AA ,'CC 的中点,过直线EF 的平面分别与棱'BB ,'DD 交于M ,N ,设BM x =,(0,1)x ∈,给出以下四个命题①四边形MENF 为平行四边形;②若四边形MENF 面积()S f x =,(0,1)x ∈,则()f x 有最小值;③若四棱锥A MENF -的体积()V p x =,(0,1)x ∈,则()p x 为常函数;④若多面体ABCD MENF -的体积()V h x =,1(,1)2x ∈,则()h x 为单调函数.其中假命题为().A .①B .②C .③D .④【答案】D【解析】对于正方体''''ABCD A B C D -,因为平面''ABB A I 平面MENF ME =,平面''DCC D I 平面MENF NF =,平面''ABB A ∥平面''DCC D ,所以ME NF ∥,同理MF NE ∥,故四边形MENF 是平行四边形,①正确;易证四边形MENF 是菱形,所以12S MN EF =⋅=,其中当M ,N 分别为'BB ,'DD 的中点时,MN 取最小值.故()S f x =有最小值,②正确;1122236A MENF A NEF F AME AME V V V S BC ---===⋅⋅⋅=△,③正确;多面体ABCD MENF -与多面体''''A B C D MENF -关于正方体中心对称,二者大小形状一致,故12V =,④错误.故选D .二、填空题9.在ABC △中,a ,b 分别为角A ,B 的对边,如果30B =︒,105C =︒,4a =,那么b =__________.【答案】【解析】由正弦定理得:sin sin a bA B =,∴sin(π)sin a b B C B =--,即sin 45sin 30a b =︒︒,sin 30sin 45a b ︒==︒10.在平面向量a r ,b r 中,已知(1,3)a =r ,(2,)b y =r .如果5a b ⋅=r r,那么y =__________;如果a b a b +=-r r r r ,那么y =__________.【答案】1,23-【解析】∵1235a b y ⋅=⨯+=r r,∴1y =.∵a b a b +=-r r r r ,∴222222a b a b a b a b ++⋅=+-⋅r r r r r r r r,∴40a b ⋅=r r ,即230y +=,解得23y =-.11.已知x ,y 满足约束条件1023x y x y x +⎧⎪-⎨⎪⎩≤≤≥,那么22z x y =+的最大值为__________.【答案】58【解析】由约束条件画出可行域如下图:22z x y =+表示可行域内的点到原点的距离的平方.由图知,当3x =,7y =时z 取得最大值58.12.如果函数2()sin f x x x a =+的图像过点(π,1),且()2f t =,那么a =__________;()f t -=__________.【答案】1,0【解析】∵函数图像过点(π,1),∴(π)1f a ==,又∵2()sin 12f t t t =+=,∴2sin 1t t =,∴2()sin 10f t t t -=-+=.13.如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为__________.【答案】1y x =+【解析】由题可得,111AB a ak a a+-==---,∴l 的斜率为1,又l 过AB 中点2121(,22a a -+,∴1y x =+.14.数列{}n a 满足:112(1n n n a a a n -++>>,*)n ∈N ,给出下述命题:①若数列{}n a 满足:21a a >,则1n n a a ->成立;②存在常数c ,使得n a c >()n ∈*N 成立;③若p q m n +>+(其中p ,q ,m ,n ∈*N ),则p q m n a a a a +>+;④存在常数d ,使得1(1)n a a n d >+-()n ∈*N 都成立.上述命题正确的是__________.(写出所有正确结论的序号)【答案】①④【解析】由112n n n a a a -++>得:1112210n n n n n n a a a a a a a a +---->->->>->L ,∴1n n a a ->,①正确;令ln n a n =-,此时n a 单调递减且无下界,②错误;令2n a n =-,1m n ==,1p >,1q >,此时恒有p q m n a a a a +<+,③错误;设21a a d -=,则111221n n n n n n a a a a a a a a d +---->->->>-=L ,累加得1(1)n a a n d ->-,即1(1)n a a n d >+-,④正确.三、解答题15.设{}n a 是一个公比为q (0q >,1)q ≠的等比数列,14a ,23a ,32a 成等差数列,且它的前4项和415S =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n b a n =+,(1,2,3)n =LL .求数列{}n b 的前n 项和.解:(Ⅰ)因为{}n a 是一个公比为(0q q >,1)q ≠等比数列,所以11n n a a q-=.因为14a ,23a ,32a 成等差数列,所以213642a a a =+,即2320q q -+=.解得2q =,1q =(舍).又它的前4项和415S =,得41(1)15(01a q q q-=>-,1)q ≠,解得11a =,所以12n n a -=.(Ⅱ)因为2n n b a n =+,所以11122(n 1)1nnnn i i i i i b a i n ====+=++-∑∑∑.16.已知函数22()sin cos cos f x x x x x =+-()x ∈R.(Ⅰ)求()f x 的最小正周期和在[]0,π上的单调递减区间;(Ⅱ)若α为第四想象角,且3cos 5α=,求7π()212f α+的值.解:(Ⅰ)由已知22()sin cos cos f x x x x x=+-2cos 2x x=-π2sin(2)6x =-.所以最小正周期2π2ππ2T ω===.由ππ3π2π22π262k x k +-+≤≤,k ∈Z .得2π10πππ36k x k ++≤≤,k ∈Z .故函数()f x 在[]0,π上的单调递减区间15π,π36⎡⎤⎢⎥⎣⎦.(Ⅱ)因为α为第四象限角,且3cos 5α=,所以4sin 5α=-.所以7π7ππ()2sin()2sin 21266f ααα+=+-=-85=.17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由.解析:(Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA CD ⊥.因为AD CD ⊥,所以CD ⊥面PAD .由于AE ⊂面PAD ,所以有CD AE ⊥.(Ⅱ)解:依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P .由E 为棱PD 的中点,得(0,1,1)E .(0,1,1)AE =向量(2,2,0)BD =- ,(2,0,2)PB =-.设(,,)n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎪⎨⋅=⎪⎩r uuu r r uur即220220x y x z -+=⎧⎨-=⎩.不妨令1y =,可得(1,1,1)n =r为平面PBD 的一个法向量.所以cos ,AE EF = .所以,直线EF 与平面PBD(Ⅲ)解:向量(2,2,2)CP =-- ,(2,2,0)AC = ,(2,0,0)AB =.由点M 在棱PC 上,设CM CP λ=,(01)λ≤≤.故(12,22,2)FM FC CM λλλ=+=--.由FM AC ⊥,得0FM AC ⋅=uuur uuu r,因此,(12)2(22)20λλ-⨯+-⨯=,解得34λ=.所以13PM MC =.18.已知椭圆22221(0)x y a b a b+=>>的焦点是1F ,2F ,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点.求12AF F B ⋅的取值范围.解:(Ⅰ)因为椭圆的标准方程为22221(0)x y a b a b +=>>,由题意知2221222a b c c a c ⎧=+⎪⎪=⎨⎪⎪=⎩,解得2a =,b =所以椭圆的标准方程为22143x y +=.(Ⅱ)因为2(1,0)F ,当直线l 的斜率不存在时,3(1,)2A ,3(1,2B -,则229||||4AF F B ⋅=,不符合题意.当直线l 的斜率存在时,直线l 的方程可设为(1)y k x =-.由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,消y 得2222(34)84120k x k x k +-+-=(*).设11(,)A x y ,22(,)B x y ,则1x 、2x 是方程(*)的两个根,所以2222834k x x k +=+,212241234k x x k -=+.所以21||1AF =-,所以22||1F B ==-,所以2221212||||(1)()1AF F B k x x x x ⋅=+-++222224128(1)13434k k k k k -=+-+++229(1)34k k =++229(1)34k k =++291(1)434k =++当20k =时,22||||AF F B ⋅取最大值为3,所以22||||AF F B ⋅的取值范围9,34⎛⎤⎥⎝⎦.又当k 不存在,即AB x ⊥轴时,22||||AF F B ⋅取值为94.所以22||||AF F B ⋅的取值范围9,34⎡⎤⎢⎥⎣⎦.19.已知函数e ()(ln )xf x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程;(Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.解:(Ⅰ)当1a =时,2e (1)1()1x x f x x x-'=-+,(1)0f '=,(1)e 1f =-.方程为e 1y =-.(Ⅱ)2e (1)1()(1)x x f x a x x -'=--2e (1)(1)x x ax x x ---=,2(e )(1)x ax x x --=.当0a ≤时,对于(0,)x ∀∈+∞,e 0x ax ->恒成立,所以()01f x x '>⇒>;()001f x x '<⇒<<.所以单调增区间为(1,)+∞,单调减区间为(0,1).(Ⅲ)若()f x 在(0,1)内有极值,则()f x '在(0,1)x ∈内有解.令2(e )(1)()0xax x f x x --'==⇒e 0xax -=⇒e x a x =.设e ()xg x x=,(0,1)x ∈,所以e (1)()x x g x x-'=,当(0,1)x ∈时,()0g x '<恒成立,所以()g x 单调递减.又因为(1)e g =,又当0x →时,()g x →+∞,即()g x 在(0,1)x ∈上的值域为(e,)+∞,所以当e a >时,'2(e )(1)()0x ax x f x x --==有解.设()e x H x ax =-,则()e 0x H x a '=-<,(0,1)x ∈,所以()H x 在(0,1)x ∈单调递减.因为(0)10H =>,(1)e 0H a =-<,所以()e x H x ax =-在(0,1)x ∈有唯一解0x .所以有:x0(0,)x 0x 0(,1)x ()H x +0-()f x '-+()f x 极小值所以当e a >时,()f x 在(0,1)内有极值且唯一.当e a ≤时,当(0,1)x ∈时,()0f x '≥恒成立,()f x 单调递增,不成立.综上,a 的取值范围为(e,)+∞.20.已知曲线n C 的方程为:1()nnx y n +=∈*N .(Ⅰ)分别求出1n =,2n =时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n ∈*N 表示曲线n C 所围成的图形的面积,求证:()n S n ∈*N 关于n 是递增的;(Ⅲ)若方程n n n x y z +=(2n >,)n ∈N ,0xyz ≠,没有正整数解,求证:曲线n C (2n >,)n *∈N 上任一点对应的坐标(,)x y ,x ,y 不能全是有理数.解:(Ⅰ)当1n =,2时,由图可知1141122C =⨯⨯⨯=,2πC =.(Ⅱ)要证*()n S n ∈N 是关于n 递增的,只需证明:*1(n )n n S S +<∈N .由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递增.现在考虑曲线n C 与1n C +,因为*1()(1)n nx y n +=∈N 因为11*1()(2)n n xyn +++=∈N 在(1)和(2)中令0x x =,0(0,1)x ∈,当0(0,1)x ∈,存在1y ,2(0,1)y ∈使得011n n x y +=,11021n n x y +++=成立,此时必有21y y >.因为当0(0,1)x ∈时100n n x x +>,所以121n n y y +>.两边同时开n 次方有,1221n ny yy +>>.(指数函数单调性)这就得到了21y y >,从而*()n S n ∈N 是关于n 递增的.(Ⅲ)由于(2n n n x y z n +=>,)n ∈N 可等价转化为()(1n nx y zz +=,反证:若曲线(2n C n >,*)n ∈N 上存在一点对应的坐标(,)x y ,x ,y 全是有理数,不妨设q x p =,ty s=,p ,q ,s ,*t ∈N ,且p ,q 互质,s ,t 互质.则由1nnx y +=可得,1nnq tps +=.即nnnqs pt ps +=.这时qs ,pt ,ps 就是(2n n n x y z n +=>,*)n ∈N 的一组解,这与方程(2n n n x y z n +=>,*)n ∈N ,0xyz ≠,没有正整数解矛盾,所以曲线(2n C n >,*)n ∈N 上任一点对应的坐标(,)x y ,x ,y 不能全是有理数.。

东城区2016-2017第二学期(理)2.0答案

东城区2016-2017第二学期(理)2.0答案

东城区2016-2017学年度第二学期高三综合练习(一)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)B (4)D (5)B (6)D (7)C (8)B 二、填空题(共6小题,每小题5分,共30分) (9(10)40 (11)6(12)己巳 (13)32 (14)11,0,2()10,0.2x g x x x 或⎧≤<⎪⎪=⎨⎪<≥⎪⎩ 4三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设22225c a b ab a ab =++=+,得2b a =.由正弦定理sin sin a b A B =,sin sin b Ba A=, 得sin 2sin BA=. ……………………………6分 (Ⅱ)由(Ⅰ)知3A B π∠+∠=. sin sin sin sin()3A B A A π⋅=⋅-1sin (cos sin )22A A A =⋅-112cos 2444A A =+- 11sin(2)264A π=+-. 因为03A π<∠<, 所以当6A π∠=,sin sin A B ⋅取得最大值14.…………………13分(16)(共13分)解:(Ⅰ)5a =.由表1知使用Y 共享单车方式人群的平均年龄的估计值为:Y 方式:2020%3055%+4020%+505%=31?创?.答:Y 共享单车方式人群的平均年龄约为31岁. ……………5分(Ⅱ)设事件i A 为“男性选择i 种共享单车”,12,3i =, 设事件i B 为“女性选择i 种共享单车”,12,3i =,设事件E 为“男性使用单车种类数大于女性使用单车种类数”. 由题意知,213132E A B A B A B = . 因此213132()()()()P E P A B P A B P A B =++0.58=.答:男性使用共享单车种类数大于女性使用共享单车种类数的概率为0.58.……11分(Ⅲ)此结论不正确. ……………………………13分 (17)(共14分)解:(Ⅰ)在直角三角形ABC 中,因为45ABC ? ,D 为AB 中点,所以CD AB ⊥.因为平面PAB ⊥平面ABC ,CD Ì平面ABC ,所以CD ⊥平面PAB . 因为AE ⊂平面PAB , 所以CD ⊥AE .在等边△PAD 中,AE 为中线, 所以AE PD ⊥. 因为PD DC D =I ,所以AE ⊥平面PCD . ……………………………5分 (Ⅱ)在△PAB 中,取AD 中点O ,连接PO ,所以PO AB ^.在平面ABC 中,过O 作CD 的平行线,交AC 于G . 因为平面PAB ⊥平面ABC , 所以PO ⊥平面ABC . 所以PO OG ^.因为,,OG OB OP 两两垂直,如图建立空间直角坐标系O xyz -. 设4AB a =,则相关各点坐标为:(0,,0)A a -,(0,3,0)B a ,(2,,0)C a a,)P ,(0,,0)D a ,(0,)2a E ,(,)2a Fa .(2,2,0)AC a a =u u u r ,(0,,)PA a =-u u r.设平面PAC 的法向量为(,,)x y z =n ,则0,0,ACPA ⎧⋅=⎪⎨⋅=⎪⎩uuu r uu rn n ,即0,0.x y y+=⎧⎪⎨=⎪⎩ 令1z =,则y =x =. 所以=n .平面PAB 的法向量为(2,0,0)DCa=, 设,DC n 的夹角为α,所以cos α=由图可知二面角B PA C --为锐角,所以二面角B PA C --的余弦值为7.…………………………10分 (Ⅲ)设M 是棱PB 上一点,则存在[0,1]λ∈使得PM PB λ=uuu r uu r.因此点(0,3(1))M a λλ-,(2,(3(1))CM a a λλ=---u u u r.由(Ⅰ)知CD ⊥平面PAB ,AE ⊥PD . 所以CD ⊥PD . 因为EF ∥CD , 所以EF PD ⊥. 又AE EF E =, 所以PD ^平面AEF . 所以PD 为平面AEF 的法向量.(0,,)PD a =u u u r.因为CM ⊄平面AEF ,所以CM ∥平面AEF 当且仅当0CM PD ⋅=u u u r u u u r,即(2,(31(1))(0,,)0a a a λλ---⋅=.解得23λ=. 因为2[0,1]3λ=∈,所以在棱PB 上存在点M ,使得CM ∥平面AEF , 此时23PM PB λ==. …………………………14分 (18)(共13分)解:(Ⅰ))(x f 的定义域为(0,)+∞.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x=-+. 因为(1)2f =且'(1)2f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为20x y -=.…………4分 (Ⅱ)若函数)(x f 在(0,)+∞上为单调递减,则'()0f x ≤在(0,)+∞上恒成立. 即2210m x x --≤在(0,)+∞上恒成立. 即221x m x -≤在(0,)+∞上恒成立. 设221()(0)g x x x x=->, 则max [()]m g x ≥. 因为22211()(1)1(0)g x x x x x=-=--+>, 所以当1x =时,()g x 有最大值1.所以m 的取值范围为[1,)+∞. ……………………9分(Ⅲ)因为b a <<0,不等式ln ln b ab a -<-ln ln b a -<.即lnb a <(1)t t >,原不等式转化为12ln t t t <-.令1()2ln h t t t t=+-, 由(Ⅱ)知1()2ln f x x x x=+-在(0,)+∞上单调递减,所以1()2ln h t t t t=+-在(1,)+∞上单调递减. 所以,当1t >时,()(1)0h t h <=. 即当1t >时,12ln 0t t t+-<成立. 所以,当时b a <<0,不等式ln ln b a b a -<-13分 (19)(共14分)解:(Ⅰ)由题意得2222,b caa b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得2,a b == 所以椭圆C 的方程为22142x y +=. …………………………5分(Ⅱ)设点00(,)P x y ,11(,)M x y ,22(,)N x y .①11(,)M x y ,22(,)N x y 在x 轴同侧,不妨设12120,0,0,0x x y y ><>>. 射线OM 的方程为002y y x x =+,射线ON 的方程为002yy x x =-, 所以01102y y x x =+,02202y y x x =-,且2200142x y +=. 过,M N 作x 轴的垂线,垂足分别为'M ,'N , ΔΔ'Δ'''OMN OMM ONN MM N N S S S S =--四边形 121211221=[()()]2y y x x x y x y +--+02011221120011()()2222y x y x x y x y x x x x =-=??-+ 0012121222000441112422y y x x x x x x x y y =⋅=⋅=-⋅--. 由221101101,42,2x y y y x x ⎧+=⎪⎪⎨⎪=⎪+⎩得2201102()42y x x x +=+, 即2220010222200004(2)4(2)2(2)2(2)4x x x x x y x x ++===+++++-,同理2202x x =-,所以,2222120042x x x y =-=,即120x x =,所以,OMN S ∆=② 11(,)M x y ,22(,)N x y 在x 轴异侧,方法同 ①.综合①②,△OMN………………14分(20)(共13分)解:(Ⅰ)由于{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,所以{6,7,8,9,10}N =,{5,6,7,8,9}N =,{4,5,6,7,8}N ={3,4,5,6,7}N =,{2,3,4,5,6}N =,回答其中之一即可 ………3分(Ⅱ)若集合12{,,,}n A a a a =L ,如果集合A 中每个元素加上同一个常数t ,形成新的集合12{,,,}n M a t a t a t =+++L . ……………5分根据1()||j i i j nT A a a ≤<≤=-∑定义可以验证:()()T M T A =. ……………6分取1nii C a t n=-=∑,此时11112{,,,}nnniiii i i n C a C a C a B a a a nnn===---=---∑∑∑L .通过验证,此时()()T B T A =,且1nii b C ==∑. ……………8分(Ⅲ)由于2m ³21314121()()()()()m T A a a a a a a a a =-+-+-++-L324222()()()m a a a a a a +-+-++-L4323()()m a a a a +-++-LM221()m m a a -+-121212=(21)(23)(23)(21)m m m mm a m a a a m a m a +-------+++-+-L L 212121=(21)()(23)()()m m m m m a a m a a a a -+--+--++-L2121=(21)()(23)()()m m m m b a m a a a a -+--+--++-L ………11分由于2120m a a b a -<-<-,2230m a a b a -<-<-, 2340m a a b a -<-<-,M10m m a a b a +<-<-.所以2(21)()()()m b a T A m b a --<<-.………13分。

2016年高考北京理科数学试题与答案(word解析版)

2016年高考北京理科数学试题与答案(word解析版)
y=In x的性质,In x In y = In xy,当x.y.0时,xy.0不一定有In xy.0,所以D错,故
D考查的是
点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力
题.
(6)12016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为
(A)-(B)-(C)-
=sin2x的图象上,则()
.3
(B)t■-,s的最小值为
2
(D)t3,s的最小值为
2
长度得到点
(A)
(C)
答案】A
P,若P位于函数y
,s的最小值为
,s的最小值为3
fn)f
解析】点P4,t在函数y=sin 2x
-訂上,所以t=sin[2b-
7t
fn\
,然后y=sin2x-3向左平
/3.丿
1nnn
移s个单位,即y二sin 2(x • s)…-sin2x,所以s-+kn,kZ,所以s的最小值为,故选a.
2016
(北京卷)
数学(理科)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中
项.
,选出符合题目要求的一
(1)12016年北京,理1,5分】已知集合A=1x|x<:2l,「:—1,0,1,2,3?,则B二( (A)「0,11(B)10,1,2)(C)1-1,0,1;
(D)
)^-1,0,1,2?
k值为
()
(A)1
答案】B
(B)2
(C)3
(D)
解军析】开始a=1,k=0;第一次循环
第二次循环a=-2
,k=2,第三次循环
结束
-1
"I1

2016年北京市东城区高三理科上学期人教A版数学期末考试试卷

2016年北京市东城区高三理科上学期人教A版数学期末考试试卷

2016年北京市东城区高三理科上学期人教A版数学期末考试试卷一、选择题(共8小题;共40分)1. 函数的定义域是A. B.C. D. 或2. 抛物线的准线方程是A. B. C. D.3. “”是“直线与圆相切”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 执行如图所示的程序框图,输出的值为A. B. C. D.5. 已知,且,则A. B.C. D.6. 已知是定义在上的奇函数,且在上是增函数,则的解集为A. B. C. D.7. 某三棱锥的三视图如图所示,则该三棱锥的体积为A. B. C. D.8. 数列表示第天午时某种细菌的数量.细菌在理想条件下第天的日增长率.当这种细菌在实际条件下生长时,其日增长率会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量随时间的变化规律.那么,对这种细菌在实际条件下日增长率的规律描述正确的是A. B.C. D.二、填空题(共6小题;共30分)9. 若复数是纯虚数,则实数.10. 若,满足则的最大值为.11. 若点到双曲线的一条渐近线的距离为,则.12. 在中,若,,,则;若,则.13. 在所在平面内一点,满足,延长交于点,若,则.14. 关于的方程的实根个数记为.若,则;若(),存在使得成立,则的取值范围是.三、解答题(共6小题;共78分)15. 已知是等比数列,满足,,数列是首项为,公差为的等差数列.(1)求数列和的通项公式;(2)求数列的前项和.16. 已知函数部分图象如图所示.(1)求的最小正周期及图中的值;(2)求在区间上的最大值和最小值.17. 如图,在四棱锥中,底面为矩形,平面平面,,,,为中点.(1)求证: 平面;(2)求二面角的余弦值;(3)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.18. 设函数.(1)若为的极小值,求的值;(2)若对恒成立,求的最大值.19. 已知椭圆经过点,离心率为,,是椭圆上两点,且直线,的斜率之积为,为坐标原点.(1)求椭圆的方程;(2)若射线上的点满足,且与椭圆交于点,求的值.20. 已知集合.,,,其中.定义.若,则称与正交.(1)若,写出中与正交的所有元素;(2)令.若,证明:为偶数;(3)若,且中任意两个元素均正交,分别求出时,中最多可以有多少个元素.答案第一部分1. D 【解析】根据题意知解得且.2. D3. A4. B5. D6. C7. B8. B 【解析】由图象可知,第一天到第六天,实际情况与理想情况重合,为定值,而实际情况在第天后增长率是降低的,并且降低的速度是变小的.第二部分9.10.11.12. ,13.【解析】根据题意,不妨设是等腰直角三角形,且腰长,建立直角坐标系,如图所示,则,,,所以,;所以,所以;设点,则,由,共线,得,所以,,当时,.14. ,第三部分15. (1)设等比数列的公比为.,得,.所以.又数列是首项为,公差为的等差数列,所以.从而.(2)由(Ⅰ)知.数列的前项和为.数列的前项和为.所以,数列的前项和为.16. (1)因为函数,所以函数的最小正周期为.因为点在的图象上,所以,又因为,所以,令,解得,所以.(2)由()知,因为,所以,当,即时,取得最大值;当,即时,取得最小值.17. (1)设与的交点为,连接.因为为矩形,所以为的中点.在中,由已知为中点,所以.又平面,平面,所以 平面.(2)取中点,连接.因为是等腰三角形,为的中点,所以.又因为平面平面,平面,所以平面.取中点,连接,由题设知四边形为矩形,所以.所以.如图建立空间直角坐标系,则,,,,,,.,.设平面的法向量为,则令,得.平面的法向量为.设,的夹角为,所以.由图可知二面角为锐角,所以二面角的余弦值为.(3)设是棱上一点,则存在使得.因此点,,.由,得,解得.因为,所以在棱上存在点,使得.此时,.18. (1)的定义域为,因为,所以,因为为的极小值,所以,即,所以,此时,,当时,,单调递减;当时,,单调递增.所以在处取得极小值,所以.(2)由()知当时,在上为单调递增函数,所以,所以对恒成立.因此,当时,,对恒成立.当时,,所以,当时,,因为在上单调递减,所以,所以当时,并非对恒成立.综上,的最大值为.19. (1)由题意得解得.所以椭圆的方程为.(2)设,,,因为点在直线上且满足,所以.因为,,三点共线,所以.所以,即解得因为点在椭圆上,所以.所以.即,因为,在椭圆上,所以,.因为直线,的斜率之积为,所以,即.所以,解得.所以.20. (1)中所有与正交的元素为,,,,,.(2)对于,存在,,,其中.使得.令,;当时,,当时,.那么.所以为偶数.(3)个,个.时,不妨设,.在考虑时,共有四种互相正交的情况即:,,,分别与,搭配,可形成种情况.所以时,中最多可以有个元素.时,不妨设个,个个,则与正交.令,,且它们互相正交.设,,相应位置数字都相同的共有个,除去这个外,,相应位置数字都相同的共有个,,相应位置数字都相同的共有个.则.所以,同理.可得.由于,可得,矛盾.所以任意三个元素都不正交.综上,时,中最多可以有个元素.。

东城区理科数学试卷定稿.docx

东城区理科数学试卷定稿.docx

东城区2015-2016学年第一学期期末教学统一检测高三数学(理科) 2016.1学校 ___________ 班级 _____________ 姓名 ____________ 考号 ___________本试卷共5页,150分。

考试吋长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将木试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合U = {1,2,3,4},集合力={1,3,4}, B = {2,4},那么集合{C k ;A )(}B =A. {2}B. {4}C. {1, 3}D. {2, 4}2. 己知某三棱锥的三视图(单位:cm )如图所示,那么该三棱锥的体积等于3. 设7为虚数单位,如果复数z 满足(1-27)2 = 57,那么z 的虚部为4. 已知〃疋(0,1),令a = log /H 2 , h = m 2 , c = 2m ,那么Q , b, cZ 间的大小关系为5. 已知直线/的倾斜角为s 斜率为「那么是你〉巧”的 3A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 已知函数/(x )=7 + 1, 0<X ^2,如果关于X 的方程°” >0有两个不同的实根,那么实数斤的収值In x, x > 2范围是A.B •2 cm' C- 3cm3 D. 9 cm 3B. 1C. iD. -i A. b<c<aB. b<a<cC. a<b<c D ・ c<a<b侧(左)视图7. 过抛物线y 2=2pxCp>0)的焦点F 的直线交抛物线于3两点,点0是原点,如果|^F| = 3, \BF\>\AF\f ZBFO =—f 那么 的值为33 A. 1 B •三 C. 3 D. 6 28. 如图所示,正方体f(x) = --a(x-lnx)的棱长为1, E, F 分别是棱儿f , CC'的中点,过直线「FX XXX 的平面分别与棱 BB‘ . f(x) = — - a(x - In x)交于 f(x) = --a(x-\n x),设 f(x) = — - a(x - In x), x 兀 xX€(O,1),给出以下四个命题:① 四边形MENF 为平行四边形;② 若四边形MNF 面积s = /(x), xw(O,l),则/(x)有最小值;③ 若四棱锥A-MENF 的体积V = P(x), xe(O, 1),则p(x)常函数;X / 1 \④ 若多面体ABCD - MENF 的体积/(x) = ---«(x-lnx), XE 1 ,则加对为单调函数.x 12丿其中假命题为 • • •A •①B •②C •③D •④第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 在△/BC 中,G 、〃分别为角/、B 的对边,如果3 = 30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档