高中数学人教A版【精品习题】必修5练习:3.3.2 简单的线性规划问题(一) Word含解析

合集下载

人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

人教A版高中数学必修5《三章 不等式  3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。

如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。

2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。

4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。

(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。

(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。

(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。

(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。

在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。

类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。

(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x

7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

高中数学必修5:简单的线性规划问题  知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。

高二数学人教A必修5练习:3.3.2 简单的线性规划问题(一)

高二数学人教A必修5练习:3.3.2 简单的线性规划问题(一)

3.3.2 简单的线性规划问题(一)课时目标1.了解线性规划的意义.2.会求一些简单的线性规划问题.线性规划中的基本概念名称 意义 约束条件 由变量x ,y 组成的不等式或方程 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组 目标函数 欲求最大值或最小值所涉及的变量x ,y 的函数解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题一、选择题1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大. 由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.10 B .8 C .16 D .10答案 D解析 画出不等式组对应的可行域如下图所示: 易得A (1,1),|OA |=2,B (2,2), |OB |=22,C (1,3),|OC |=10.∴(x 2+y 2)max =|OC |2=(10)2=10.3.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧y ≥0y ≤x y ≤2-x ,区域N ={(x ,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f (t )表示,则f (t )的表达式为( )A .-t 2+t +12 B .-2t 2+2tC .1-12t 2 D.12(t -2)2答案 A 解析作出不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x所表示的平面区域.由t ≤x ≤t +1,0≤t ≤1,得f (t )=S △OEF -S △AOD -S △BFC=1-12t 2-12(1-t )2=-t 2+t +12.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0y ≥x,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB |的最小值为( )A.285 B .4 C.125 D .2 答案 B解析 如图所示.由约束条件作出可行域,得D (1,1),E (1,2),C (3,3).要求|AB |min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求.经分析,D (1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴|AB |min =4.二、填空题6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3.则目标函数z =2x +3y 的最小值为________.答案 7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)答案 (3,8)解析 由⎩⎪⎨⎪⎧-1<x +y <4,2<x -y <3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧ x +y =-1,x -y =3得⎩⎪⎨⎪⎧x =1,y =-2. 由⎩⎪⎨⎪⎧ x +y =4,x -y =2得⎩⎪⎨⎪⎧x =3,y =1.∴2×3-3×1<z =2x -3y <2×1-3×(-2), 即3<z <8,故z =2x -3y 的取值范围是(3,8). 8.已知实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx的最大值为________. 答案 2解析 画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P (x ,y )与原点的连线的斜率. A (1,2),B (3,0),∴0≤yx≤2.三、解答题9.线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下,求z =2x -y 的最大值和最小值.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B (3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1), 设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB |2=25,z min =|OC |2=5. 能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y +6)(x +y -6)≥01≤x ≤4,求x 2+y 2-2的取值范围.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方, 即|OP |2,最大值为|OA |2,其中A (4,10),|OP |=|0+0-6|12+12=62=32,|OA |=42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114, ∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值.解 由于z =y +1x +1=y -(-1)x -(-1),所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此y +1x +1的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2;z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。

高二数学人教a必修5练习:3.3.2 简单的线性规划问题(二) word版含解析

高二数学人教a必修5练习:3.3.2 简单的线性规划问题(二) word版含解析

3.3.2 简单的线性规划问题(二)课时目标1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型.1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.一、选择题1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎪⎨⎪⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎪⎨⎪⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎪⎨⎪⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎪⎨⎪⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为()A.14B.35 C .4 D.53答案 B解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元 答案 B解析 设投资甲项目x 万元,投资乙项目y 万元,可获得利润为z 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5,z =0.4x +0.6y .由图象知,目标函数z =0.4x +0.6y 在A 点取得最大值. ∴y max =0.4×24+0.6×36=31.2(万元).4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱 答案B解析 设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意可知⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.5.如图所示,目标函数z =kx -y 的可行域为四边形OABC ,点B (3,2)是目标函数的最优解,则k 的取值范围为()A.⎝⎛⎭⎫23,2B.⎝⎛⎭⎫1,53C.⎝⎛⎭⎫-2,-23D.⎝⎛⎭⎫-3,-43 答案 C解析 y =kx -z .若k >0,则目标函数的最优解是点A (4,0)或点C (0,4),不符合题意. ∴k <0,∵点(3,2)是目标函数的最优解.∴k AB ≤k ≤k BC ,即-2≤k ≤-23.二、填空题6.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元. 7.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________.答案 90 解析该不等式组表示平面区域如图阴影所示,由于x ,y ∈N *,计算区域内与点⎝⎛⎭⎫112,92最近的整点为(5,4),当x =5,y =4时,z 取得最大值为90.8.某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.答案 20 24 解析设每天生产甲产品x 吨,乙产品y 吨,总利润为S 万元, 依题意约束条件为:⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15,目标函数为S =7x +12y .从图中可以看出,当直线S =7x +12y 经过点A 时,直线的纵截距最大,所以S 也取最大值.解方程组⎩⎪⎨⎪⎧4x +5y -200=0,3x +10y -300=0,得A (20,24),故当x =20,y =24时, S max =7×20+12×24=428(万元). 三、解答题9.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.10.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大? 解 方木料(m 3) 五合板(m 2) 利润(元)书桌(个)0.1 2 80 书橱(个)0.2 1 120 (1)则⎩⎪⎨⎪⎧0.1x ≤902x ≤600z =80x⇒⎩⎪⎨⎪⎧x ≤900x ≤300⇒x ≤300. 所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤901·y ≤600z =120y⇒⎩⎪⎨⎪⎧y ≤450y ≤600⇒y ≤450. 所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元). 因此,生产书桌100张、书橱400个, 可使所得利润最大. 能力提升11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .1 答案 A解析 当a =0时,z =x .仅在直线x =z 过点A (1,1)时, z 有最小值1,与题意不符.当a >0时,y =-1a x +za .斜率k =-1a<0,仅在直线z =x +ay 过点A (1,1)时,直线在y 轴的截距最小,此时z 也最小,与目标函数取得最小值的最优解有无数个矛盾.当a <0时,y =-1a x +z a ,斜率k =-1a>0,为使目标函数z 取得最小值的最优解有无数个,当且仅当斜率-1a =k AC .即-1a =13,∴a=-3.12.要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格规模类型钢板类型A规格B规格C规格第一种钢板21 1第二种钢板12 3今需要A、B、C三种规格的成品分别至少为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解设需截第一种钢板x张,第二种钢板y张.⎩⎪⎨⎪⎧2x+y≥15x+2y≥18x+3y≥27x≥0,y≥0.作出可行域(如图):(阴影部分)目标函数为z=x+y.作出一组平行直线x+y=t,其中经过可行域内的点且和原点距离最近的直线,经过直线x+3y=27和直线2x+y=15的交点A⎝⎛⎭⎫185,395,直线方程为x+y=575.由于185和395都不是整数,而最优解(x,y)中,x,y必须都是整数,所以可行域内点⎝⎛⎭⎫185,395不是最优解.经过可行域内的整点且与原点距离最近的直线是x+y=12,经过的整点是B(3,9)和C(4,8),它们都是最优解.答要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.。

人教A版高中数学必修五练习简单的线性规划问题

人教A版高中数学必修五练习简单的线性规划问题

3.3.2 简单的线性规划问题课后篇巩固提升基础巩固1.已知某线性规划问题中的目标函数为z=3x-y ,若将其看成直线方程,则z 的几何意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的纵截距的相反数 D .该直线的横截距z=3x-y ,得y=3x-z ,在该方程中-z 表示直线的纵截距,因此z 表示该直线的纵截距的相反数.2. 目标函数z=x-y 在{2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .(12,12),当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=12,y=12时,z=0.排除选项A,B,D,故选C .3.若变量x ,y 满足约束条件{x +y ≤3,x -y ≥-1,y ≥1,目标函数为z=4x+2y ,则有( )A.z 有最大值无最小值B.z 有最小值无最大值C.z 的最小值是8D.z 的最大值是10z=4x+2y ,得y=-2x+z.作出不等式组对应的平面区域,如图阴影部分所示. 平移直线y=-2x ,当直线y=-2x+z经过点B (0,1)时,直线y=-2x+z在y 轴上的截距最小,此时z 最小,且z min =2.当直线y=-2x+z2经过点C (2,1)时,直线y=-2x+z 2在y 轴上的截距最大,此时z 最大,且z max =4×2+2×1=10.故选D .4.若直线y=2x 上存在点(x ,y )满足约束条件{x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.-1B.1C.32D.2,由{y =2x ,x +y -3=0得交点P (1,2).当直线x=m 经过点P 时,m 取到最大值1.5.已知实数x ,y 满足约束条件{x -y +4≥0,x +y ≥0,x ≤3,则z=2x+y 的最小值为 .z=2x+y ,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y 的最小值是-2.26.已知变量x ,y 满足{2x -y ≤0,x -3y +5≥0,则z=x+y-2的最大值为 .作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A 处取得最大值. 易知A (1,2),故z max =1+2-2=1.7.铁矿石A 和B 的含铁率a 、冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9万吨的铁,若要求CO 2的排放量不超过2万吨,则购买铁矿石的最少费用为 百万元.A x 万吨,铁矿石B y 万吨,购买费用为z ,则根据题意得到的约束条件为{x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z=3x+6y.画出约束条件表示的可行域,如图阴影部分所示.当直线3x+6y=z 经过点(1,2)时,z 取最小值,且z 最小值=3×1+6×2=15.8. 已知S 为平面上以A (3,-1),B (-1,1),C (1,3)为顶点的三角形区域(含三角形内部及边界).若点(x ,y )在区域S 上移动. (1)求z=3x-2y 的最值;(2)求z=y-x 的最大值,并指出其最优解.z=3x-2y 可化为y=32x-z 2=32x+b ,故求z 的最大值、最小值,相当于求直线y=32x+b 在y 轴上的截距b 的最小值、最大值,即b 取最大值,z 取最小值;反之亦然.①如图①,平移直线y=32x ,当y=32x+b 经过点B 时,b max =52,此时z min =-2b=-5;当y=32x+b 经过点A 时,b min =-112,此时z max =-2b=11.故z=3x-2y 的最大值为11,最小值为-5.(2)z=y-x 可化为y=x+z ,故求z 的最大值,相当于求直线y=x+z 在y 轴上的截距z 的最大值.如图②,平行移动直线y=x ,当直线y=x+z 与直线BC 重合时,z max =2,此时线段BC 上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1 000千克;若种甜柚,则每年每亩平均产量为1 500千克.已知脐橙成本每年每亩4 000元,甜柚成本较高,每年每亩12 000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120 000元,那么两种水果的种植面积分别为多少,才能获得最大收益?x 亩脐橙,y 亩甜柚时,能获得利润z 元.则z=(1 000×6-4 000)x+(1 500×10-12 000)y=2 000x+3 000y ,其中x ,y 满足条件{x +y ≤20,4 000x +12 000y ≤120 000,x ≥0,y ≥0,即{x +y ≤20,x +3y ≤30,x ≥0,y ≥0,作出可行域,如图中阴影部分所示.当直线y=-23x+z3 000经过点A (15,5),即种15亩脐橙,5亩甜柚时,每年收益最大,为45 000元. 能力提升1.若变量x ,y 满足约束条件{x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z=5y-x 的最大值为a ,最小值为b ,则a-b 的值是( )A.48B.30C.24D.16,如图阴影部分所示.由图可知,当直线y=x 5+z5经过点A 时,z 有最大值;经过点B 时,z 有最小值.联立方程组{x +y =8,2y -x =4,解得{x =4,y =4,即A (4,4).对x+y=8,令y=0,则x=8,即B (8,0), 所以a=5×4-4=16,b=5×0-8=-8, 则a-b=16-(-8)=24,故选C .2.已知正数x ,y 满足{2x -y ≤0,x -3y +5≥0,则z=22x+y 的最大值为( )A .8B .16C .32D .64t=2x+y ,可求得当直线t=2x+y 经过2x-y=0与x-3y+5=0的交点(1,2)时,t 取最大值4,故z=22x+y的最大值为16.3.已知x ,y 满足约束条件{x +y ≥0,x -y +1≤0,x +2y -2≤0,若z=x-3y+m 的最小值为4,则m=( )A .6B .8C .10D .12,如图中的阴影部分所示.由z=x-3y+m ,得y=13x-z 3+m 3,则由图可知z=x-3y+m 在点A (-2,2)处取得最小值,则有z=-2-3×2+m=4,所以m=12,故选D .4.已知变量x ,y 满足约束条件{y ≤2,x +y ≥1,x -y ≤1,则z=3|x|+y 的取值范围为( )A.[-1,5]B.[1,11]C.[5,11]D.[-7,11],由可行域可知,当x≥0时,z=3x+y的取值范围是[1,11];当x<0时,z=-3x+y的取值范围是(1,5].综上,z=3|x|+y的取值范围为[1,11].5.若变量x,y满足约束条件{2x-y≥0, x+2y≥0, 3x+y-5≤0,则z=x+y2的取值范围为.(△OAB及其内部),其中O(0,0),A(1,2),B(2,-1),因此当直线z=x+y2经过点A时,z取得最大值,即z max=1+22=2;当直线z=x+y2经过点O时,z取得最小值,即z min=0.所以z=x+y2的取值范围为[0,2].6.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是元.x桶,乙产品y桶,每天利润为z元,则{x+2y≤12,2x+y≤12,x≥0,y≥0,z=300x+400y.作出可行域,如图中的阴影部分所示.作直线300x+400y=0,向右上平移,当直线经过点A时,z=300x+400y取最大值.由{x+2y=12,2x+y=12得{x=4,y=4,所以A(4,4),故z max=300×4+400×4=2 800.7.已知z=2y-2x+4,其中x ,y 满足条件{0≤x ≤1,0≤y ≤2,2y -x ≥1,求z 的最大值和最小值.{0≤x ≤1,0≤y ≤2,2y -x ≥1表示的平面区域,如图中的阴影部分所示.令2y-2x=t ,则当直线2y-2x=t 经过点A (0,2)时,z max =2×2-2×0+4=8;当直线2y-2x=t 经过点B (1,1)时,z min =2×1-2×1+4=4. 故z 的最大值为8,最小值为4.8.某公司有60万元资金,计划投资甲、乙两个项目,按要求对甲项目的投资不小于对乙项目投资的23,且对每个项目的投资不能低于5万元.对甲项目每投资1万元可获得0.4万元的利润,对乙项目每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上一共可获得的最大利润是多少?x 万元,投资乙项目y 万元,可获得利润为z 万元,则{x +y ≤60,x ≥23y ,x ≥5,y ≥5,目标函数为z=0.4x+0.6y. 作出满足题意的可行域如图阴影部分所示. 由z=0.4x+0.6y ,得y=-23x+53z.由{3x -2y =0,x +y =60,得A (24,36).由图知,当直线y=-23x+53z 经过点A 时,53z 取得最大值,即z 取得最大值. 故z max =0.4×24+0.6×36=31.2(万元), 即一共可获得的最大利润为31.2万元.。

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)

人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)

3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。

人教版高中数学必修五优化练习:第三章3.3.2简单的线性规划问题

人教版高中数学必修五优化练习:第三章3.3.2简单的线性规划问题

[ 课时作业 ][A组基础稳固 ]1.在△ ABC 中,三极点分别为A(2,4), B(- 1,2), C(1,0),点 P(x, y)在△ABC 内部及其边界上运动,则 m=y- x 的取值范围为 ()A . [1,3]B . [-3,1]C. [- 1,3] D .[-3,- 1]分析:直线 m= y- x 的斜率 k = 1≥k =2,且 k = 1<kAC= 4,∴直线经过点C(1,0)时 m 最1AB31小,为- 1,经过点 B(-1,2)时 m 最大,为 3.答案:Cx+ y≥12.若变量 x、 y 知足拘束条件y- x≤1,则 z= 2x- y 的最小值为 ()x≤1A.- 1 B . 0C. 1 D .2分析:由拘束条件作出可行域如下图,由图可知,目标函数在点 A 处获得最小值.联立x+ y= 1 y- x= 1,解得x= 0y= 1,∴ A(0,1),因此z= 2x- y 在点 A 处获得最小值为2×0- 1=- 1.答案: Ax-y+ 5≥0,3.已知 x,y 知足 x≤3,且 z= 2x+ 4y 的最小值为- 6,则常数 k= ()x+y+ k≥ 0.A . 2B . 9C.3 10 D .0分析:由题意知,当直线z= 2x+ 4y 经过直线 x= 3 与 x+ y+ k=0 的交点 (3,- 3- k)时, z 最小,因此- 6= 2×3+ 4×(- 3- k),解得 k= 0.答案: Dx- 2y+ 4≤0,4.已知变量 x, y 知足 x≥2,则 x2+ y2的取值范围是 ()x+ y- 8≤0,A . [13,40]B . [13,40)C. (13,40) D .(13,40]分析:作出可行域如图暗影部分所示.x2+ y2能够当作点 (0,0)与点 (x,y)距离的平方,联合图形可知,点 (0,0)与可行域内的点 A(2,3) 连线的距离最小,即 x2+y2最小,最小值为 13;点 (0,0) 与可行域内的点 B(2,6)连线的距离最大,即 x2+ y2最大,最大值为40.因此 x2+ y2的取值范围为[13,40] .答案:A5.已知 ?ABCD 的三个极点为A(- 1,2), B(3,4) ,C(4,- 2),点 (x, y)在 ?ABCD 的内部,则z=2x- 5y 的取值范围是()A . (- 14,16)B . (-14,20)C. (- 12,18) D .(-12,20)分析:如图,由 ?ABCD 的三个极点A(- 1,2), B(3,4),C(4,- 2)可知 D 点坐标为 (0,- 4),由 z= 2x- 5y 知2z,y=5x-52z∴当直线y=5x-5过点 B(3,4)时,z min=- 14.2z当直线 y=5x-5过点 D (0,- 4)时, z max= 20.∵点 (x, y)在 ?ABCD 的内部不包含界限,∴z的取值范围为 (- 14,20).答案:B6.某公司生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨、 B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨、B 原料 3 吨.销售每吨甲产品可获取收益 5 万元、每吨乙产品可获取收益 3 万元,该公司在一个生产周期内耗费 A 原料不超出13 吨、 B 原料不超出18吨,那么该公司可获取的最大收益是________万元.分析:设生产甲产品x 吨、乙产品y 吨,则获取的收益为z= 5x+3y.由题意得x≥0,y≥0,3x+ y≤13,2x+ 3y≤18,可行域如图暗影所示.由图可知当x、 y 在 A 点取值时, z 获得最大值,此时 x= 3,y= 4, z= 5×3+ 3×4= 27(万元 ).答案:27x+ y-2≤07.若 x, y 知足拘束条件x- 2y+1≤0,则 z= 3x+ y 的最大值为 ________.2x- y+2≥0分析:作出可行域如图中暗影部分所示,作出直线l 0: 3x+y= 0,平移直线l0,当直线l : z= 3x+ y 过点A 时, z 取最大值,由x+ y- 2=0解得 A(1,1),∴ z=3x+ y 的最大值为 4.x- 2y+1= 0答案: 4x≥1,8.已知 x,y 知足拘束条件x- y+1≤0,则 x2+y2的最小值是 ________.2x- y- 2≤0,分析:画出知足条件的可行域如图中暗影部分所示,依据x2+ y2表示可行域内一点到原点的距离,可知x2+ y2的最小值是 |AO|2. 由x= 1,得 A(1,2),因此 |AO |2= 5.x- y+ 1= 0,答案:5y≤2x9.已知实数x, y 知足y≥- 2x.x≤3(1)求不等式组表示的平面地区的面积;(2)若目标函数为 z=x- 2y,求 z 的最小值.分析:画出知足不等式组的可行域如下图:(1)易求点 A、 B 的坐标为:A(3,6), B(3,- 6),因此三角形OAB 的面积为:1S△OAB=2×12×3= 18.1 1(2)目标函数化为: y=2x-2z,作图知直线过 A 时 z 最小,可得 A(3,6),∴z min=- 9.10.某工厂制造 A 种仪器 45 台, B 种仪器 55 台,现需用薄钢板给每台仪器配一个外壳.已知钢板有甲、乙两种规格:甲种钢板每张面积 2 m2,每张可作 A 种仪器外壳 3 个和 B 种仪器外壳 5 个,乙种钢板每张面积 3 m2,每张可作 A 种仪器外壳 6 个和B 种仪器外壳 6 个,问甲、乙两种钢板各用多少张才能用料最省?( “用料最省”是指所用钢板的总面积最小)分析:设用甲种钢板x 张,乙种钢板y 张,x, y∈N *依题意3x+ 6y≥45,5x+ 6y≥55钢板总面积z= 2x+ 3y.作出可行域如下图.由图可知当直线z= 2x+3y 过点 P 时,最小.3x+ 6y= 45,x= 5由方程组得.5x+ 6y= 55,y= 5因此,甲、乙两种钢板各用 5 张.[B 组能力提高]x2+ y2- 2x- 2y+ 1≥0,→→1.设 O 为坐标原点,A(1,1),若点B(x, y)知足1≤x≤2,则OA·OB获得最1≤y≤2,小值时,点 B 的个数是 ()A . 1B . 2C. 3 D .无数个分析:如图,暗影部分为点B(x, y)所在的地区.→ →∵OA·OB= x+y,令 z= x+ y,则 y=- x+ z.由图可知,当点 B 在 C 点或 D 点时, z 取最小值,故点 B 的个数为 2.答案: B2.已知 a, b 是正数,且知足2<a+ 2b<4.那么 a2+ b2的取值范围是 ()416B . (4,16)A.( ,5)55 C. (1,16)16, 4) D.( 52<a+ 2b分析:原不等式组等价为,做出不等式组对应的平面地区如图暗影部分,a+ 2b<4a2+ b2表示地区内的动点P(a, b)到原点距离的平方,由图象可知当P 在 D 点时, a2+ b2最大,此时 a2+b2= 42= 16,原点到直线 a+ 2b- 2= 0 的距离最小,即d= |- 2|2=2,因此1+25 222422422a+ b=d =,即 a+ b的取值范围是 <a + b <16,选 B.55答案: B3.已知实数x, y 知足不等式组x- y+ 2≥0,x+ y- 4≥0,目标函数z= y- ax(a∈ R).若取最大值时的独一最优解是(1,3),则实数a 2x- y- 5≤0,的取值范围是 ________.分析:如下图,依题意直线x+ y- 4=0 与x- y+2= 0 交于A(1,3),此时取最大值,故a>1.答案: (1,+∞)x+ 4y≥4,4.给定地区 D : x+ y≤4,令点集 T= {( x0, y0 )∈D |x0, y0∈ Z ,(x0, y0)是 z= x+ y 在 D x≥0,上获得最大值或最小值的点} ,则 T 中的点共确立 ________条不一样的直线.分析:画出平面地区 D ,如图中暗影部分所示.作出 z = x + y 的基本直线l 0: x + y = 0.经平移可知目标函数z = x + y 在点A(0,1) 处获得最小值,在线段BC处获得最大值.而会合T 表示z = x +y 获得最大值或最小值时的整点坐标,在取最大值时线段 BC 上共有5 个整点,分别为 (0,4), (1,3), (2,2) , (3,1), (4,0),故 T 中的点共确立 6 条不一样的直线.答案:6x - y + 2≥0,5.已知 x + y - 4≥0,求:2x - y - 5≤0,(1) z = x 2+ y 2- 10y +25 的最小值;y + 1(2) z = 的范围.分析 :作出可行域如图,并求出极点的坐标 A(1,3)、 B(3,1)、 C(7,9).(1) z = x 2+ (y - 5)2 表示可行域内任一点 (x , y)到定点 M(0,5)的距离的平方,过 M 作直线 AC的垂线,易知垂足N 在线段 AC 上,故 z 的最小值是 |MN|2= 9.2(2) z =y --表示可行域内任一点 ( x , y)与定点 Q(-1,- 1)连线的斜率,由于k QA = 2,x - -1k QB = ,故 z 的范围为 12, 2 .6.已知- 1< x + y < 3,且 2< x -y < 4,求 2x + 3y 的范围.分析:在直角坐标系中作出直线x+ y= 3, x+ y=- 1, x- y= 4,x- y= 2,则不等式组-1< x+y< 3表示的平面地区是矩形ABCD 地区内的部分.2< x- y<4设 2x+ 3y= z,变形为平行直线系l :2zy=-3x+3.由图可知,当 l 趋近于 A、C 两点时,截距z趋近于最大值与最小值,即z 趋近于最大值与最3小值.x- y= 2,51由求得点 A( , ).x+ y= 3,22因此 z<5113 2×+3×=2.22x- y= 4,35由求得点 C(,-).x+ y=- 1,22因此 z>35)=-9. 2×+3×(-2 22因此-9< 2x+ 3y<13 2 2.。

高中数学 第三章 不等式 3.3.2 简单的线性规划问题(第

高中数学 第三章 不等式 3.3.2 简单的线性规划问题(第

3.3.2《简单的线性规划问题》(第1课时)一、选择题:1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( )A .该直线的截距B .该直线的纵截距C .该直线的横截距D .该直线的纵截距的相反数 【答案】B【解析】把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距. 2.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1) 【答案】A【解析】对直线y =x +b 进行平移,注意b 越大,z 越小.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-32,6B.⎣⎢⎡⎦⎥⎤-32,-1 C.[]-1,6 D.⎣⎢⎡⎦⎥⎤-6,32【答案】A【解析】利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3. 由图象知当直线y =3x -z 经过点A (2,0)时z 取最大值6,当直线y =3x -z 经过点B (12,3)时,z 取最小值-32. ∴z =3x -y 的取值范围为[-32,6].故选A.4.设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55 【答案】D【解析】根据题意画出不等式组表示的平面区域,然后求值.不等式组表示的区域如图所示,所以过点A (5,15)时2x +3y 的值最大,此时2x +3y =55.5.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞) 【答案】C【解析】⎩⎪⎨⎪⎧x -y +1≤0,x >0所表示的可行域如下图.而y x表示可行域内任一点与坐标原点连线的斜率,过点O 与直线AB 平行的直线l 的斜率为1,l 绕点O 逆时针转动必与AB 相交,直线OB 的倾斜角为90°,因此y x的范围为(1,+∞).6.已知以x ,y 为自变量的目标函数ω=kx +y (k >0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( )A .1 B.32 C .2 D .4【答案】A【解析】目标函数可变形为y =-kx +ω,又∵k >0,结合图象可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.二、填空题:7.若实数x ,y 满足⎩⎪⎨⎪⎧x ≥2,y ≥2,x +y ≤6,则目标函数z =x +3y 的取值范围是________.【答案】[8,14]【解析】画出可行域,如图所示.作直线x +3y =0,并平移,由图象可知当直线经过A (2,2)时,z 取最小值,则z min =2+3×2=8.当直线经过C (2,4)时,z 取最大值z max =2+3×4=14. 所以z =x +3y 的取值范围是[8,14].8.已知x ,y 满足⎩⎪⎨⎪⎧ y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 取最大值时点的坐标为________.【答案】(2,-1)【解析】不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1所表示的可行域如图所示.当平行直线系z =2x +y 经过点A (2,-1)时,目标函数z =2x +y 取得最大值.9.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0,且z =2x +4y 的最小值为-6,则常数k =________.【答案】0【解析】由条件作出可行域如下图.根据图象知,目标函数过x +y +k =0与x =3的交点(3,-3-k )时取最小值,代入目标函数得-6=2×3+4×(-3-k ),∴k =0. 三、解答题10.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D ,若指数函数y =a x的图象上存在区域D 上的点,试求a 的取值范围. 【答案】见解析【解析】 区域D 如下图所示,其中A (2,9).当y =a x恰过点A 时,a =3.因此当1<a ≤3时,y =a x的图象上存在区域D 上的点.故a 的取值范围为(1,3]. 11.设z =2x +y ,式中变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y≤-3,3x +5y≤25,x≥1,求z 的最大值和最小值.【答案】见解析【解析】 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0得B 点坐标为(1,1),所以z max =2×5+2=12,z min =2×1+1=3.12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4下,当3≤s ≤5时,求目标函数z =3x +2y 的最大值的变化范围.【答案】见解析【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,如图得交点为A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4),令z =0,得l 0:3x +2y =0,当l 0向上平移时z 值逐渐增大.(1)当3≤s <4时可行域为四边形OABC ,此时l 0平移到B 点时z 取最大值,z max =3×(4-s )+2(2s -4)=s +4. ∵3≤s <4,∴7≤z max <8.(2)当4≤s <5时,可行域是△OAC ′,此时l 0过C ′点时z 取最大值,z max =3×0+2×4=8.综上所述,z max ∈[7,8].。

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_67

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_67

3.2简单的线性规划问题预习课本P87~91,思考并完成以下问题(1)约束条件,目标函数,可行解,线性规划问题是如何定义的?(2)如何求解线性目标函数的最值问题?[新知初探]线性规划的有关概念(2)目标函数与线性目标函数的概念不同,线性目标函数在变量x,y的次数上作了严格的限定:一次解析式,即目标函数包括线性目标函数和非线性目标函数.(3)可行解必须使约束条件成立,而可行域是所有的可行解组成的一个集合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)可行域是一个封闭的区域()(2)在线性约束条件下,最优解是唯一的()(3)最优解一定是可行解,但可行解不一定是最优解()(4)线性规划问题一定存在最优解()解析:(1)错误.可行域是约束条件表示的平面区域,不一定是封闭的.(2)错误.在线性约束条件下,最优解可能有一个或多个,也可能有无数个,也可能无最优解,故该说法错误.(3)正确.满足线性约束条件的解称为可行解,但不一定是最优解,只有使目标函数取得最大值或最小值的可行解,才是最优解,所以最优解一定是可行解.(4)错误.线性规划问题不一定存在可行解,存在可行解也不一定存在最优解,故该说法是错误的.答案:(1)× (2)× (3)√ (4)×2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z 2的几何意义为直线在y 轴上的截距,当直线y =-12x +z 2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.3.若⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则z =x -y 的最大值为( )A .-1B .1C .2D .-2解析:选B 根据题意作出不等式组所表示的可行域如图阴影部分所示.令z =0,作直线l :y -x =0.当直线l 向下平移时,所对应的z =x -y 的函数值随之增大,当直线l 经过可行域的顶点M 时,z =x -y 取得最大值.顶点M 是直线x +y =1与直线y =0的交点,解方程组⎩⎪⎨⎪⎧x +y =1,y =0,得顶点M 的坐标为(1,0),代入z =x -y ,得z max =1.4.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么PO 的最小值等于________,最大值等于________.解析:如图所示,线性区域为图中阴影部分,PO 指线性区域内的点到原点的距离,所以最短为12+12=2,最长为12+32=10.答案:2 10求线性目标函数的最大(小)值[典例] 设z =2x +y ,变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.解线性规划问题的基本步骤(1)画:画出线性约束条件所表示的可行域.(2)移:在线性目标函数所表示的一组平行线中,用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(3)求:通过解方程组求出最优解.(4)答:根据所求得的最优解得出答案.[活学活用]1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )A .0B .1C .2D .3解析:选C 作出满足条件的可行域(如图),由目标函数t =x -2y ,得直线y =12x -12t 在点⎝⎛⎭⎫2,a -22处取得最大值,即t max =2-2×a -22=4-a =2,得a =2,故选C.2.(2017·全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析:画出不等式组⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的可行域如图中阴影部分所示,由可行域知,当直线y =32x -z 2过点A 时,在y 轴上的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +2y =1,2x +y =-1, 解得⎩⎪⎨⎪⎧x =-1,y =1.∴z min =-5.答案:-5题点一:距离型最值1.设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.求u =x 2+y 2的最大值与最小值.解:画出满足条件的可行域如图所示,x2+y2=u(除原点)表示一组同心圆(圆心为原点O),且对同一圆上的点x2+y2的值都相等,由图可知:当(x,y)在可行域内取值时,当且仅当圆O过C点时,u最大.取(0,0)时,u最小.又C(3,8),所以u max=73,u min=0.题点二:斜率型最值2.在题点一的条件下,求v =yx-5的最大值与最小值.解:v=yx-5表示可行域内的点P(x,y)与定点D(5,0)连线的斜率,由图可知,k BD最大,k CD最小,又C(3,8),B(3,-3),所以v max=-33-5=32,v min=83-5=-4.非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有:①x2+y2表示点(x,y)与原点(0,0)的距离;(x-a)2+(y-b)2表示点(x,y)与点(a,b)的距离.②yx表示点(x,y)与原点(0,0)连线的斜率;y-bx-a表示点(x,y)与点(a,b)连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.线性规划的实际应用[典例](2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? [解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧ 70x +60y ≤600,5x +5y ≥30,x≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图中的阴影部分中的整数点. (2)设总收视人次为z 万,则目标函数为z =60x +25y . 考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(1)解答此类问题,在按解决线性规划实际问题的步骤进行解题时,应注意以下几点: ①在线性规划问题的应用中,常常是题中的条件较多,因此认真审题非常重要. ②线性约束条件中有无等号要依据条件加以判断.③结合实际问题,判断未知数x ,y 等是否有限制,如x ,y 为正整数、非负数等. (2)寻找整点最优解的两个方法①平移找解法:先打网格,描整点,平移直线l ,最先经过或最后经过整点便是最优整点解,这种方法应充分利用非整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.②调整优值法:先求出整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛选出整点最优解.[活学活用]一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件解析:选D 设甲商品x 件,乙商品y 件,所赚钱数为z ,则目标函数为z =x +1.8y ,约束条件为⎩⎪⎨⎪⎧4x +7y ≤50,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图所示,由z =x +1.8y ,得y =-59x +5z 9,斜率为-59>-47,所以,由图可知直线过点A ⎝⎛⎭⎫0,507时,z 取得最大值.又x ,y ∈N ,所以点A 不是最优解.点(0,7),(2,6),(9,2)都在可行域内,逐一验证可得,当x =2,y =6时,z 取得最大值,故选D.层级一 学业水平达标1.(2017·北京高考)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .9解析:选D 不等式组所表示的可行域如图中阴影部分所示,是以点A (1,1),B (3,3),C (3,-1)为顶点的三角形及其内部.设z =x +2y ,当直线z =x +2y 经过点B 时,z 取得最大值,所以z max =3+2×3=9. 2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧ x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈N z =20x +40yB.⎩⎪⎨⎪⎧ x +y ≥10,2x +y ≥10,x +y ≤6,x ,y ∈N z =20x +40yC.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6z =20x +40yD.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈Nz =40x +20y解析:选A 由题意知A 正确.3.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则yx 的取值范围是( )A.⎣⎡⎦⎤95,6 B.⎝⎛⎦⎤-∞,95∪[6,+∞) C .(-∞,3]∪[6,+∞)D .(3,6]解析:选A 作出可行域,如图中阴影部分所示,yx 可理解为可行域中一点与原点的连线的斜率,又B ⎝⎛⎭⎫52,92,A (1,6),故yx 的取值范围是⎣⎡⎦⎤95,6.4.某学校用800元购买A ,B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A ,B 两种用品应各买的件数为()A .2,4B .3,3C .4,2D .不确定解析:选B 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N *.求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3). 5.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A .1B .2C .3D .4解析:选B 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,所以a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.6.若点P (m ,n )在由不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -2y +5≤0,2x -y +1≥0,所确定的区域内,则n -m 的最大值为________.解析:作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为A (1,3),B (2,5),C (3,4),设目标函数为z =y -x ,则y =x +z ,其纵截距为z ,由图易知点P 的坐标为(2,5)时,n -m 的最大值为3.答案:37.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是________.解析:画出满足条件的可行域(如图),根据x 2+y 2表示可行域内一点到原点的距离,可知x 2+y 2的最小值是|AO |2.由⎩⎪⎨⎪⎧x =1,x -y +1=0, 得A (1,2),所以|AO |2=5. 答案:58.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:2万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买铁矿石A ,B 分别为x ,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y .由⎩⎪⎨⎪⎧ 0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域,如图所示.当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值,且最小值为zmin =3×1+6×2=15.答案:159.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2. 故所求a 的取值范围为(-4,2).10.某人承担一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m 2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m 2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使得总用料面积最小.解:设需要甲种原料x 张,乙种原料y 张,则可做文字标牌(x +2y )个,绘画标牌(2x +y )个,由题意可得⎩⎪⎨⎪⎧2x +y ≥5,x +2y ≥4,x ≥0,y ≥0,x ,y ∈N ,所用原料的总面积为z =3x +2y , 作出可行域如图.在一组平行直线3x +2y =z 中,经过可行域内的点且到原点距离最近的直线. 过直线2x +y =5和直线x +2y =4的交点(2,1), ∴最优解为x =2,y =1,∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.层级二 应试能力达标1.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值范围是[-3,2]. 2.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =mx -y (m ≠0)取得最大值时的最优解有无穷多个,则实数m 的值为( )A .1 B.12C .-12D .-1解析:选A 作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由图可知当直线y =mx -z (m ≠0)与直线2x -2y +1=0重合,即m =1时,目标函数z =mx -y 取最大值的最优解有无穷多个,故选A.3.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A.⎣⎡⎦⎤53,5 B .[0,5] C .[0,5)D.⎣⎡⎭⎫53,5解析:选C 作出满足约束条件的可行域,如图中阴影部分所示.令u =2x -2y -1,当直线2x -2y -1-u =0经过点A (2,-1)时,u =5,经过点B ⎝⎛⎭⎫13,23时,u =-53, 则-53≤u <5,所以z =|u |∈[0,5),故选C.4.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,2y -x +2≥0,2x -y +2≥0,若z =y -2ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .1或-12C .2或1D .2或-1解析:选B 作出可行域,如图中阴影部分所示.由z =y -2ax ,得y =2ax +z .当2a =2或2a =-1,即a =1或a =-12时,z =y -2ax 取得最大值的最优解不唯一,故选B.5.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x+2y的最小值是________.解析:不等式组表示的可行域如图阴影部分所示, 设t =x +2y , 则y =-12x +t 2,当x =0,y =0时,t 最小=0. z =3x+2y的最小值为1.答案:16.某公司计划用不超过50万元的资金投资A ,B 两个项目,根据市场调查与项目论证,A ,B 项目的最大利润分别为投资的80%和40%,而最大的亏损额为投资的40%和10%,若要求资金的亏损额不超过8万元,且使利润最大,投资者应投资A 项目________万元,投资B 项目________万元.解析:设投资者对A ,B 两个项目的投资分别为x ,y 万元,则由题意得约束条件为 ⎩⎪⎨⎪⎧x +y ≤50,0.4x +0.1y ≤8,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤50,4x +y ≤80,x ≥0,y ≥0.投资者获得的利润设为z ,则有z =0.8x +0.4y .作出可行域如图所示,由图可知,当直线经过点B 时,z 取得最大值.解⎩⎪⎨⎪⎧x +y =50,4x +y =80,得B (10,40). 所以,当x =10,y =40时,获得最大利润,最大利润为24万元. 答案:10 407.某运输公司每天至少要运送180 t 货物,公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,且有10名驾驶员.A 型卡车每天可往返4次,B 型卡车每天可往返3次,每辆A 型卡车每天花费320元,每辆B 型卡车每天花费504元,如何合理调用车辆,才能使公司每天花费最少?解:设每天调用A 型卡车x 辆,B 型卡车y 辆,每天花费z 元.则⎩⎪⎨⎪⎧0≤x ≤8,x ∈N0≤y ≤4,y ∈N x +y ≤10,24x +30y ≥180,即⎩⎪⎨⎪⎧0≤x ≤8,x ∈N0≤y ≤4,y ∈Nx +y ≤10,4x +5y ≥30,目标函数z =320x +504y .作出可行域,如图中阴影部分所示.当直线320x +504y =z 经过直线4x +5y =30与x 轴的交点(7.5,0)时,z 有最小值.又(7.5,0)不是整点,由分析知,经过可行域内的整点,且与原点距离最近的直线是直线320x +504y =2 560,经过的整点是(8,0),它是最优解.所以要使公司每天花费最少,每天应调用A 型卡车8辆,B 型卡车0辆.8.在如图所示的坐标平面的可行域内(阴影部分),目标函数z =x +ay 取得最小值时的最优解有无数个,求yx -a的最大值.解:由题意,知当直线y =-1a x +z a 与直线AC 重合时,z 取得最小值时的最优解有无数个,∴-1a =2-14-1,∴a =-3, ∴y x -a =y x +3=k PD ≤k DC =24-(-3)=27(其中D (-3,0),P (x ,y )为可行域中任意一点), ∴y x -a的最大值为27.。

人教A版数学高三简单的线性规划问题精选试卷练习(含答案)1

人教A版数学高三简单的线性规划问题精选试卷练习(含答案)1
y 0
30.已知
x,
y
满足约束条件
1 x 1
y 2x
3, y
2.则 x2 y2 的最大值为___________.
试卷第 4页,总 7页
31.设函数
f
(x)
x 2, x ex , x 1
1
,D
是由
x
轴和曲线
y
f
x 及该曲线在 x
0处
的切线所围成的封闭区域,则 z x 2 y 在 D 上的最大值为________.
煤 t
电 kW h
A
3
9
4
B
10
4
5
已知生产1t A 产品的利润是 7 万元,生产1t B 产品的利润是12 万元.现因条件限制,企 业仅有劳动力 300 个,煤 360t ,并且供电局只能供电 200kW h ,则企业生产 A 、B 两
种产品各多少吨,才能获得最大利润?
50.已知关于 x 的一元二次函数 f (x) ax2 4bx 1.
y2
的最大值是_______
y 3
x 2y 1
35.设实数
x,y
满足
x
y
0
,则 z x 4 y 的最小值为______.
y 5
2x y 2 0
36.设 x, y 满足约束条件 8x y 4 0 x 0, y 0


3y 2x
9 1
的取值范围为____________.
2x 1
,则目标函数
z
4x
3y
的最小值为_____.
y
1
x
4
2
2x y 3
40.已知实数
x,

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

3.3.2简单的线性规划【教学过程】 2.讲授新课1.引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。

当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z 取得最大值。

因此,问题可以转化为当直线233zy x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,使直线经过点P 时截距3z最大。

(5)获得结果:由上图可以看出,当实现233zy x =-+经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。

人教版A版高中数学必修5:3.3.2 简单的线性规划问题

人教版A版高中数学必修5:3.3.2 简单的线性规划问题
y=x
y 1
A
Zmin=-3
y=-1
B:(-1,-1) C:(2,-1)
O B
2x+y=0
x C
Zmax=3
课堂小结:
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域;
(2)移:在线性目标函数所表示的一组平行线中, 利用平移的方法找出与可行域有公共点且纵截距 最大或最小的直线
x2y 8
y2x z 33
x2y 8
44xBiblioteka y 16 12
x

0
y 0
像这样关于x,y的一次不等式组的约束 条件称为线性约束条件
Z=2x+3y称为目标函数,(因这里目标函数为关于x,y的 一次式,所以又称为线性目标函数)。
在线性约束下求线性目标函数的最值问题,统称为线 性规划问题。
第三章 不等式
3.3.2 简单的线性规划问题
问题: 某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲种
产品使用4个A配件耗时1h,每生产一件乙种产品使用4个B配件 耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件, 按每天工作8h计算,该厂所有可能的日生产安排是什么?
资源
A种配件 B种配件 所需时间
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
三导练习册达标 训练二十八1,2
为 z 的直线。 3
当点P在可允许的取值范围变化时,
求截距
z 的最值,即可得z的最值. 3
问题:求利润z=2x+3y的最大值.
y
x 2y 8
44
x y

16 12
4 3

2020年高二数学人教A必修5练习:3.3.2 简单的线性规划问题(二) Word版含解析

2020年高二数学人教A必修5练习:3.3.2 简单的线性规划问题(二) Word版含解析

3. 3.2 简单的线性规划问题(二)课时目标1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型.1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.一、选择题1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎪⎨⎪⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎪⎨⎪⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎪⎨⎪⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎪⎨⎪⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( )A.14B.35 C .4 D.53答案 B解析由y=-ax+z知当-a=k AC时,最优解有无穷多个.∵k AC=-35,∴a=35.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()A.36万元B.31.2万元C.30.4万元D.24万元答案 B解析设投资甲项目x万元,投资乙项目y万元,可获得利润为z万元,则⎩⎪⎨⎪⎧x+y≤60,x≥23y,x≥5,y≥5,z=0.4x+0.6y.由图象知,目标函数z=0.4x+0.6y在A点取得最大值.∴y max=0.4×24+0.6×36=31.2(万元).4.某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为()A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱答案 B解析设甲车间加工原料x箱,乙车间加工原料y箱,由题意可知⎩⎪⎨⎪⎧x+y≤70,10x+6y≤480,x≥0,y≥0.甲、乙两车间每天总获利为z=280x+200y.画出可行域如图所示.点M(15,55)为直线x+y=70和直线10x+6y=480的交点,由图象知在点M(15,55)处z 取得最大值.5.如图所示,目标函数z=kx-y的可行域为四边形OABC,点B(3,2)是目标函数的最优解,则k的取值范围为()A.⎝⎛⎭⎫23,2 B.⎝⎛⎭⎫1,53C.⎝⎛⎭⎫-2,-23 D.⎝⎛⎭⎫-3,-43答案 C解析y=kx-z.若k>0,则目标函数的最优解是点A(4,0)或点C(0,4),不符合题意.∴k<0,∵点(3,2)是目标函数的最优解.∴k AB≤k≤k BC,即-2≤k≤-23.二、填空题6.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为________元.答案 2 300解析设需租赁甲种设备x台,乙种设备y台,则⎩⎪⎨⎪⎧5x+6y≥50,10x+20y≥140,x∈N*,y∈N*.目标函数为z=200x+300y.作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2 300元.7.某公司招收男职员x名,女职员y名,x和y需满足约束条件⎩⎪⎨⎪⎧5x-11y≥-22,2x+3y≥9,2x≤11,则z=10x+10y的最大值是________.答案90解析该不等式组表示平面区域如图阴影所示,由于x,y∈N*,计算区域内与点⎝⎛⎭⎫112,92最近的整点为(5,4),当x=5,y=4时,z取得最大值为90.8.某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.答案2024解析设每天生产甲产品x吨,乙产品y吨,总利润为S万元,依题意约束条件为:⎩⎪⎨⎪⎧9x+4y≤300,4x+5y≤200,3x+10y≤300,x≥15,y≥15,目标函数为S=7x+12y.从图中可以看出,当直线S=7x+12y经过点A时,直线的纵截距最大,所以S也取最大值.解方程组⎩⎪⎨⎪⎧4x+5y-200=0,3x+10y-300=0,得A(20,24),故当x=20,y=24时,S max=7×20+12×24=428(万元).三、解答题9.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解原料/10 g蛋白质/单位铁质/单位甲510乙7 4费用3 2设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.10.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大? 解 方木料(m 3) 五合板(m 2) 利润(元) 书桌(个) 0.1 2 80 书橱(个) 0.2 1 120(1)则⎩⎪⎨⎪⎧0.1x ≤902x ≤600z =80x⇒⎩⎪⎨⎪⎧x ≤900x ≤300⇒x ≤300. 所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤901·y ≤600z =120y⇒⎩⎪⎨⎪⎧y ≤450y ≤600⇒y ≤450. 所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x张,书橱y个,利润总额为z元,则⎩⎪⎨⎪⎧0.1x+0.2y≤902x+y≤600x≥0y≥0⇒⎩⎪⎨⎪⎧x+2y≤900,2x+y≤600,x≥0,y≥0.z=80x+120y.在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l:80x+120y=0,即直线l:2x+3y =0.把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,此时z=80x+120y 取得最大值.由⎩⎪⎨⎪⎧x+2y=900,2x+y=600解得点M的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.能力提升11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为()A.-3 B.3 C.-1 D.1答案 A解析当a=0时,z=x.仅在直线x=z过点A(1,1)时,z有最小值1,与题意不符.当a>0时,y=-1a x+za.斜率k=-1a<0,仅在直线z=x+ay过点A(1,1)时,直线在y轴的截距最小,此时z也最小,与目标函数取得最小值的最优解有无数个矛盾.当a<0时,y=-1a x+za,斜率k=-1a>0,为使目标函数z取得最小值的最优解有无数个,当且仅当斜率-1a=k AC.即-1a=13,∴a=-3.12.要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规模类型钢板类型A规格B规格C规格第一种钢板21 1第二种钢板12 3今需要A、B、C三种规格的成品分别至少为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解设需截第一种钢板x张,第二种钢板y张.⎩⎪⎨⎪⎧2x+y≥15x+2y≥18x+3y≥27x≥0,y≥0.作出可行域(如图):(阴影部分)目标函数为z=x+y.作出一组平行直线x+y=t,其中经过可行域内的点且和原点距离最近的直线,经过直线x+3y=27和直线2x+y=15的交点A⎝⎛⎭⎫185,395,直线方程为x+y=575.由于185和395都不是整数,而最优解(x,y)中,x,y必须都是整数,所以可行域内点⎝⎛⎭⎫185,395不是最优解.经过可行域内的整点且与原点距离最近的直线是x+y=12,经过的整点是B(3,9)和C(4,8),它们都是最优解.答要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

人教版高中数学高二人教A版必修5练习 .1简单的线性规划问题

人教版高中数学高二人教A版必修5练习 .1简单的线性规划问题

第三章不等式3.3 二元一次不等式(组)与简单的线性规划问题3.3.2 简单的线性规划问题第1课时简单的线性规划问题A级基础巩固一、选择题1.若变量x,y满足约束条件⎩⎪⎨⎪⎧y≤x,x+y≤1,y≥-1,且z=2x+y的最大值和最小值分别为m和n,则m-n=()A.5 B.6 C.7 D.8解析:画出可行域,如图阴影部分所示.由z=2x+y,得y=-2x+z.由⎩⎨⎧y=x,y=-1,得⎩⎨⎧x=-1,y=-1,所以A(-1,-1).由⎩⎨⎧x+y=1,y=-1,得⎩⎨⎧x=2,y=-1,所以B(2,-1).当直线y=-2x+z经过点A时,z min=2×(-1)-1=-3=n,当直线y=-2x+z经过点B时,z max=2×2-1=3=m,故m-n=6.答案:B2.设变量x,y满足约束条件⎩⎪⎨⎪⎧x+2y≥2,2x+y≤4,4x-y≥-1,则目标函数z=3x -y的取值范围是()A.⎣⎢⎡⎦⎥⎤-32,6 B.⎣⎢⎡⎦⎥⎤-32,-1C.[]-1,6 D.⎣⎢⎡⎦⎥⎤-6,32解析:作出可行域如图所示.l o:3x-y=0,在可行域内平移l0,可知在A点处z取最小值为-32,在B点处z取最大值为6.答案:A3.已知实数x,y满足条件⎩⎪⎨⎪⎧x≥0,y≤1,2x-2y+1≤0,若目标函数z=mx -y(m≠0)取得最大值时的最优解有无穷多个,则实数m的值为()A.1 B.12C.-12D.-1解析:作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由图可知当直线y=mx-z(m≠0)与直线2x-2y+1=0重合,即m=1时,目标函数z=mx-y取最大值的最优解有无穷多个.答案:A4.若实数x,y满足不等式组⎩⎪⎨⎪⎧x-2≤0,y-1≤0,x+2y-a≥0,目标函数t=x-2y 的最大值为2,则实数a的值是()A.0 B.1 C.2 D.3解析:作出满足条件的可行域(如图),由目标函数t=x-2y,得直线y=12x-12t在点(2,a-22)处取得最大值,即t max=2-2·a-22=4-a=2,得a=2.答案:C5.设关于x,y的不等式组⎩⎪⎨⎪⎧2x-y+1>0,x+m<0,y-m>0表示的平面区域内存在点P(x0,y0),满足x0-2y0=2.求得m的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,43 B.⎝ ⎛⎭⎪⎫-∞,13 C.⎝ ⎛⎭⎪⎫-∞,-23 D.⎝ ⎛⎭⎪⎫-∞,-53 解析:由线性约束条件可画出如图所示的阴影区域,要使区域内存在点P (x 0,y 0),使x 0-2y 0=2成立,只需点A (-m ,m )在直线x -2y -2=0的下方即可,即-m -2m -2>0,解得m <-23,故选C.答案:C 二、填空题6.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x +2y 的最小值是________.解析:不等式组表示的可行域如图阴影部分所示,设t =x +2y ,则y =-12x +t2,当x =0,y =0时,t min =0,z =3x +2y 的最小值为1.答案:17.已知x,y满足约束条件⎩⎪⎨⎪⎧x≥1,x-y+1≤0,2x-y-2≤0.则x2+y2的最小值是________.解析:画出满足条件的可行域(如图),根据x2+y2表示可行域内一点到原点的距离,可知x2+y2的最小值是|AO|2.由⎩⎨⎧x=1,x-y+1=0,得A(1,2),所以|AO|2=5.答案:58.若点P(m,n)在由不等式组⎩⎪⎨⎪⎧x+y-7≤0,x-2y+5≤0,2x-y+1≥0所确定的区域内,则n-m的最大值为________.解析:作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为(1,3),(2,5),(3,4),设目标函数为z=y-x.则y=x+z,其纵截距为z,由图易知点P的坐标为(2,5)时,n-m的最大值为3.答案:3 三、解答题9.已知f (x )=(3a -1)x +b -a ,x ∈[0,1],若f (x )≤1恒成立,求a +b 的最大值.解:因为f (x )≤1在[0,1]上恒成立,所以⎩⎨⎧f (0)≤1,f (1)≤1,即⎩⎨⎧b -a -1≤0,2a +b -2≤0,将a ,b 对应为平面aOb 上的点(a ,b ),则其表示的平面区域如图所示,其中A ⎝⎛⎭⎪⎫13,43,求a +b 的最大值转化为在约束条件下,目标函数z =a +b 的最值的线性的规划问题,作直线a +b =0,并且平移使它通过可行域内的A 点,此时z =a +b 取得的最大值为53.10.某工厂有甲、乙两种产品,计划每天各生产量不少于15吨.已知生产甲产品1吨需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨需煤4吨,电力5千瓦时,劳力10个.甲产品每1吨利润7万元,乙产品每1吨利润12万元,但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天各生产甲、乙两种产品多少,能使利润总额达到最大?解:设每天生产甲、乙两种产品分别为x吨、y吨,利润总额为z万元,那么⎩⎪⎪⎨⎪⎪⎧9x+4y≤300,4x+5y≤200,3x+10y≤300,x≥15,y≥15.z=7x+12y.作出以上不等式组的可行域,如下图所示.目标函数为z=7x+12y,变为y=-712x+z12,得到斜率为-712,在y轴上截距为z12,且随z变化的一簇平行直线.由图可以得到,当直线经过可行域上点A时,截距z12最大,z最大.解方程组⎩⎨⎧4x+5y=200,3x+10y=300得点A坐标为(20,24).所以z max =7×20+12×24=428(万元).即生产甲、乙两种产品分别为20吨,24吨时,利润最大,最大值为428万元.B 级 能力提升1.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A .5B .4 C. 5 D .2解析:法一:线性约束条件所表示的可行域如图所示.由⎩⎨⎧x -y -1=0,2x -y -3=0,解得⎩⎨⎧x =2,y =1,所以z =ax +by 在A (2,1)处取得最小值,故2a +b=25,a 2+b 2=a 2+(25-2a )2=(5a -4)2+4≥4.法二:画出满足约束条件的可行域知,当目标函数过直线x -y -1=0与2x -y -3=0的交点(2,1)时取得最小值,所以有2a +b =2 5.又因为a 2+b 2是原点(0,0)到点(a ,b )的距离的平方,故当a 2+b 2为原点到直线2a+b-25=0的距离时最小,所以a2+b2的最小值是|-25|22+12=2,所以a2+b2的最小值是4,故选B.答案:B2.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是____________.解析:画可行域如图所示,设目标函数z=ax+y,即y=-ax+z,要使1≤z≤4恒成立,则a>0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a+1≤4,1≤a≤4即可,解得1≤a≤32.所以a的取值范围是1≤a≤32.答案:⎣⎢⎡⎦⎥⎤1,323.若x,y满足约束条件⎩⎪⎨⎪⎧x+y≥1,x-y≥-1,2x-y≤2.(1)求目标函数z=12x-y+12的最值;(2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.解:(1)作出可行域如图所示,可求得A (3,4),B (0,1),C (1,0),平移初始直线y =12x ,过A (3,4)时z 取得最小值-2,过C (1,0)时,z 取得最大值1.所以z 的最大值为1,最小值为-2.(2)由ax +2y =z ,得y =-a 2x +z2,因为直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a的取值范围为(-4,2).。

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题
【思路分析】 这是一类流传很广的题目,其常见的错误 解法是由f(1)、f(2)的范围,去求a,c的范围,连续多次运用同向 不等式相加这一性质,导致范围扩大.实际上,可以看做关于 a、c的线性规划问题.
第30页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
【解析】 由-4≤f(1)≤-1,得-4≤a-c≤-1.
A.-7 C.-5
B.-6 D.-3
第18页
第三章 3.3 3.3.2 第一课时
高考调研
【解析】
新课标A版 ·数学 ·必修5
第19页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
如图所示,约束条件所表示的区域为图中的阴影部分,而
目标函数可化为y=
2 3
x-
z 3
,先画出l0:y=
高考调研
新课标A版 ·数学 ·必修5
课后巩固
第35页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
x+2y≥2,
1.已知x、y满足3x≥x+0y,≥1, 则z=2x+y(
)
y≥0,
A.有最大值1
B.有最小值1
C.有最大值4
D.有最小值4
答案 B
第36页
第三章 3.3 3.3.2 第一课时
高考调研
Байду номын сангаас
新课标A版 ·数学 ·必修5
第三章 不等式
第1页
第三章 不等式
高考调研
新课标A版 ·数学 ·必修5
3.3 二元一次不等式(组)与简单的线性规划问题
第2页
第三章 不等式

高二数学人教A必修5练习:3.3.2 简单的线性规划问题 Word版含解析

高二数学人教A必修5练习:3.3.2 简单的线性规划问题 Word版含解析

课时训练18简单的线性规划问题一、求线性目标函数的最值1.(2015广东湛江高二期末,10)若实数x,y满足-若z=x+2y,则z的最大值为()A.1B.2C.3D.4答案:B解析:作出不等式组对应的平面区域,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A(0,1)时,直线y=-x+的截距最大,此时z最大,代入目标函数得z=2.故选B.2.(2015河南郑州高二期末,7)设变量x,y满足约束条件---则目标函数z=2x+3y的最小值为() A.6 B.7C.8D.23答案:B解析:画出不等式---表示的可行域,如图,让目标函数表示直线y=-在可行域上平移,知在点B处目标函数取到最小值,解方程组-得(2,1).所以z min=4+3=7.故选B.3.设变量x,y满足约束条件-则z=x-3y的最小值为.答案:-8解析:作出可行域如图阴影部分所示.可知当x-3y=z经过点A(-2,2)时,z有最小值,此时z的最小值为-2-3×2=-8.二、求非线性目标函数的最值4.若实数x,y满足-则的取值范围是()A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)答案:C解析:实数x,y满足-的相关区域如图中的阴影部分所示.表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,的取值范围为(1,+∞).5.在平面直角坐标系xOy中,M为不等式组--所表示的区域上一动点,则|OM|的最小值是.答案:解析:由约束条件可画出可行域如图阴影部分所示.由图可知OM的最小值即为点O到直线x+y-2=0的距离,即d min=.三、求线性规划中的参数6.x,y满足约束条件----若z=y-ax取得最大值的最优解不唯一...,则实数a的值为()A.或1B.2或C.2或1D.2或-1答案:D解析:作出可行域,如图中阴影部分所示.由y=ax+z知z的几何意义是直线在y轴上的截距,故当a>0时,要使z=y-ax取得最大值的最优解不唯一,则a=2,当a<0时,要使z=y-ax取得最大值的最优解不唯一,则a=-1.7.(2015山东潍坊四县联考,15)已知a>0,x,y满足-若z=2x+y的最小值为1,则a=.答案:解析:因为a>0,作出不等式组-表示的平面区域,得到如图的△ABC及其内部,其中A(1,2),B(1,-2a),C(3,0).由z=2x+y得y=-2x+z,将直线y=-2x进行平移,可得当经过点B时,目标函数z达到最小值,此时z=1,即2-2a=1,解得a=.8.当实数x,y满足---时,1≤ax+y≤4恒成立,则实数a的取值范围是.答案:解析:画出可行域,如图中阴影部分所示,设目标函数z=ax+y,则y=-ax+z,要使1≤z≤4恒成立,则a>0,数形结合知满足即可,解得1≤a≤,所以a的取值范围是.四、线性规划中的实际应用9.(2015河南南阳高二期中,20)某人上午7:00乘汽车以v1 km/h(30≤v1≤100)匀速从A地出发到相距300 km的B地,在B地不作停留,然后骑摩托车以v2 km/h(4≤v2≤20)匀速从B地出发到相距50 km 的C地,计划在当天16:00至21:00到达C地,设乘汽车、骑摩托车的时间分别是x,y小时.如果已知所需的经费p=100+3(5-x)+2(8-y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?解:由题意得,x=,y=,∵30≤v1≤100,4≤v2≤20,∴3≤x≤10,≤y≤.由题设中的限制条件得9≤x+y≤14,于是得约束条件目标函数p=100+3(5-x)+2(8-y)=131-3x-2y,作出可行域(如图),设z=3x+2y,当y=-x+平移到过(10,4)点时在y轴上的截距最大,此时p最小.所以当x=10,y=4,即v1=30,v2=12.5时,p min=93元.(建议用时:30分钟)1.已知点(x,y)构成的平面区域如图所示,z=mx+y(m为常数)在平面区域内取得最大值的最优解有无数多个,则m的值为()A.-B.C.D.或答案:B解析:观察平面区域可知直线y=-mx+z与直线AC重合,则--解得m=.2.设变量x,y满足约束条件----则目标函数z=y-2x的最小值为()A.-7B.-4C.1D.2 答案:A解析:作约束条件----所表示的可行域,如图所示,z=y-2x可化为y=2x+z,z表示直线在y轴上的截距,截距越大z越大,作直线l0:y=2x,平移l0,当l0过点A(5,3)时,z取最小值,且为-7,选A.3.若A为不等式组-表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为()A. B.1 C. D.2答案:C解析:如图所示,区域A表示的平面区域为△OBC内部及其边界组成的图形,当a从-2连续变化到1时扫过的区域为四边形ODEC所围成的区域.S四边形ODEC=S△OBC-S△BDE=2-.4.如果点P在平面区域---上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为()A.-1B.-1C.2-1D.-1答案:A解析:由图可知不等式组确定的区域为阴影部分(包括边界),点P到点Q的最小距离为点(-1,0)到点(0,-2)的距离减去半径1,|PQ|min=-1=-1.5.已知x,y满足条件(k为常数),若目标函数z=x+3y的最大值为8,则k=()A.-16B.-6C.-D.6答案:B解析:由z=x+3y得y=-x+.先作出的图象,因为目标函数z=x+3y的最大值为8,所以x+3y=8与直线y=x的交点为C,解得C(2,2),代入直线2x+y+k=0,得k=-6,选B.则z=x-2y的最大值为.6.若变量x,y满足约束条件--答案:3解析:线性约束条件对应的平面区域如图所示,由z=x-2y,得y=,当直线y=在y轴上的截距最小时,z取得最大值.由图知,当直线通过点A时,在y轴上的截距最小,由--解得A(1,-1).所以z max=1-2×(-1)=3.7.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a的取值范围是.答案:解析:作出如图所示的可行域,且A(0,4),B(1,1).又∵直线y=a(x+1)过点C(-1,0),而k BC=,k AC=4.从而直线y=a(x+1)与D有公共点时,a∈.8.已知变量x,y满足--则z=x+y-2的最大值为.答案:1解析:作出可行域,如图所示的阴影部分,由图知,目标函数z=x+y-2在点A处取最大值.又A(1,2),∴z max=1+2-2=1.9.设z=2y-2x+4,式中x,y满足-求z的最大值和最小值.解:作出满足条件-的可行域如图:作直线l:2y-2x=t,当l过点A(0,2)时,z max=2×2-2×0+4=8.当l过点B(1,1)时,z min=2×1-2×1+4=4.所以,z的最大值为8,最小值为4.10.某公司计划在甲、乙两个电视台做总时间不超过300 min的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/min和200元/min,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别是0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲、乙两个电视台做广告的时间分别是x min,y min,总收益为z万元,由题意得:目标函数为z=3 000x+2 000y.作出二元一次不等式组所表示的区域,即可行域,如图:作直线l,即3 000x+2 000y=0,即3x+2y=0.平移直线l,从图中可知,当直线l过点M时,目标函数取得最大值.由解得即M(100,200).则z max=3 000x+2 000y=700 000(元),即该公司在甲电视台做100 min广告,在乙电视台做200 min广告,公司收益最大,最大收益是70万元.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2 简单的线性规划问题(一)
课时目标
1.了解线性规划的意义.
2.会求一些简单的线性规划问题.
线性规划中的基本概念
名称意义
约束条件由变量x,y组成的不等式或方程
线性约束条件由x,y的一次不等式(或方程)组成的不等式组
目标函数欲求最大值或最小值所涉及的变量x,y的函数解析式
线性目标函数关于x,y的一次解析式
可行解满足线性约束条件的解(x,y)
可行域所有可行解组成的集合
最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题
一、选择题
1
1 1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +3y -3≥0,2x -y -3≤0,x -y +1≥0,
则x +y 的最大值为( ) A .9
B.15
7 C .1 D.7
15
答案 A
解析 画出可行域如图:
当直线y =-x +z 过点A 时,z 最大.
由⎩⎪⎨⎪⎧ 2x -y -3=0,
x -y +1=0得A (4,5),∴z max =4+5=9.
2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧
x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( ) A.10 B .8 C .16 D .10
答案 D。

相关文档
最新文档