人教版高中数学必修1全册
(共34套)人教版高中数学必修一(全册)配套教学课件汇总

二、数学为什么难学? 1.高度的抽象性 2.严密的逻辑性 3.应用的广泛性
三、高中学哪些数学?
1.必修课程:5个模块
2.选修课程:4个系列 系列1:2个模块(文科选修) 系列2:3个模块(理科选修) 系列3:6个专题(自主选修) 系列4:10个专题(自主选修)
四、高中数学要获多少学分?
文科学生:必修课程(10个学分); 选修系列1(4个学分); 选修系列3(2个学分); 共16个学分.
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的表示
问题提出
1.集合中的元素有哪些特征?确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的,如 “在平面直角坐标系中以原点为圆心,2 为半径的圆周 上的点”组成的集合,那么,我们可以用什么方式表示 集合呢?
例4 已知集合A={1,2,3},B={1,2},设集合
C=x | x a b, a A,b B ,试用列举法表示集合C.
C={-1,0,1,2}
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的含义
问题提出
“集合”是日常生活中的一个常用词,现代汉语解释为: 许多的人或物聚在一起.
人教版高中数学必修1全套PPT课件

并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载

2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
高中数学必修一全册课件人教版(共99张PPT)

四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
人教A版高中数学必修1全册练习题

人教A版高中数学必修1全册练习题高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。
⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。
⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。
例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。
例4.用列举法和描述法表示方程组的解集。
典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。
题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。
若aA,bB,试判断a+b与A,B的关系。
2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。
3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。
⑵若A中至多有一个元素,求a的取值范围。
题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。
人教版高中数学必修1全套课件

函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题
人教版高中数学必修一全套PPT课件

点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
2024/1/25
31
直线、平面平行的判定及其性质
直线平行的判定
同一平面内,不相交的两条直线互相平行。
平面平行的判定
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个 平面平行。
。
幂函数增长模型
函数值随自变量幂次增长,增 长速度介于线性和指数之间,
如幂函数。
2024/1/25
19
函数模型的应用实例
经济学中的应用
利用函数模型研究成本、收益 、利润等经济问题。
2024/1/25
物理学中的应用
利用函数模型描述物体的运动 规律、波动现象等。
工程学中的应用
利用函数模型进行工程设计、 优化等问题。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
2024/1/25
1
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
2024/1/25
2
PART 01
高中数学必修一概述
2024/1/25
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。
球
半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/1/25
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。
新教材人教B版高中数学必修第一册全册精品教学课件 共723页

(empty set),记作 ∅ .
知识点五 集合的分类 (1)有限集; (2)无限集. 知识点六 几个常用数集的固定字母表示
知识点七 集合的表示方法
集合常见的表示方法有: 自然语言
、列举法 、 描述法 、
“区间” (以及后面将要学习的维恩图法和数轴表示法等直观表示方
法). (1)列举法:把集合中的元素 一一列举
[解析] ①能构成集合.其中的元素需满足三条边相等. ②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成 集合. ③不能构成集合.因“比较接近 1”的标准不明确,所以元素不确定, 故不能构成集合. ④能构成集合.其中的元素是“高一年级的全体女生”. ⑤能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”.
2.集合的三个特性 (1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的 “点”“线”“面”等概念一样都只是描述性的说明. (2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义, 因此一些对象一旦组成了集合,这个集合就是这些对象的总体. (3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可 以是人或物,甚至一个集合也可以是某集合的一个元素.
第一章 集合与常用逻辑用语
1.1.1 集合及其表示方法 1.1.2 集合的基本关系 1.1.3 集合的基本运算 1.2.1 命题与量词 1.2.2 全称量词命题与存在量词命题的否定 1.2.3 充分条件、必要条件
第二章 等式与不等式
2.1.1 等式的性质与方程的解集 2.1.2 一元二次方程的解集及其根与系数的关系 2.1.3 方程组的解集 2.2.1 不等式及其性质 2.2.2 不等式的解集 2.2.3 一元二次不等式的解法 2.2.4 均值不等式及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
∈ 例如:1∈N, -5 Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
练习题
1、下列命题: 重点考察对空集的理解!
(1)空集没有子集;
(2)任何集合至少有两个子集;
(3)空集是任何集合的真子集;
(4)若 A,则A .其中正确的有(
)
A.0个
B.1个 C.2个
D.3个
2.设x ,y
R,A
{(x,y) |
y
-
3
x
-
2},B
{(x,y) |
y x
-
3 2
1},
则A,B的关系是 ______.
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
BA
2、真子集:
3、空集:
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
3.已知A {x | 2 x 5},B {x | a 1 x 2a 1},B A, 求实数 a的取值范围 .
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.
高中数学课件
人教版必修一精品ppt
永一切隔数形数焉数
,
,
——
远体莫离形少无能与
联 忘分结数形分形
华系 几家合时时作本
罗莫 庚分
离
何万百难少两是 代事般入直边相 数休好微觉飞倚
统
依
第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
集合的含义与表示
一、请关注我们的生活,会发现………
6、设集合A {x | x2 4x 0},B {x | x2 2(a 1)x a2 - 1 0,a R}, 若B A,求实数a的值.
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集,通 常记作U。
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
思考:
1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}