岳西县高中2018-2019学年高三下学期第三次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岳西县高中2018-2019学年高三下学期第三次月考试卷数学
一、选择题
1. 设D 为△ABC
所在平面内一点,,则( )
A

B
. C

D

2. 已知等比数列{a n }的第5项是二项式(
x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18
C .24
D .36
3. 设函数()(
)2
1,1
41
x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )
A .(][],20,10-∞-
B .(][],20,1-∞-
C .(][],21,10-∞-
D .[][]2,01,10-
4. 已知f (x )
=
,g (x )
=(k ∈N *
),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )
=f (a )=g (b ),则k 的最大值为( )
A .2
B .3
C .4
D .5
5. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )
A.()||x f e x =
B.2()x x f e e =
C.2
(ln )ln f x x = D.1(ln )f x x x
=+
【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 6. 已知双曲线
(a >0,b >0)的右焦点F ,直线
x=
与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A

B

C

D

7. 数列{a n }满足a 1
=

=﹣1(n ∈N *
),则a 10=( )
A

B

C

D

8. 某几何体的三视图如图所示,该几何体的体积是( )
A
. B
. C
. D

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 已知全集为R ,集合A={x|
()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}
C .{x|0≤x <2或x >4}
D .{x|0<x ≤2或x ≥4}
10.如图是一个多面体的三视图,则其全面积为( )
A
. B
. C
. D

11
.双曲线
的焦点与椭圆
的焦点重合,则m 的值等于( )
A .12
B .20
C

D

12.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )
A
.(1,1 B
.(1)++∞ C. (1,3) D .(3,)+∞
二、填空题
13.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 14.函数f (x )
=
(x >3)的最小值为 .
15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)
16.已知(ax+1)5的展开式中x 2
的系数与
的展开式中x 3
的系数相等,则a= .
17.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .
18.已知实数x ,y
满足约束条
,则
z=
的最小值为 .
三、解答题
19.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上. (1)求证:平面AEC ⊥平面PDB ; (2)当PD=
AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.
20.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.
(Ⅰ)求证:AA 1⊥平面ABC ;
(Ⅱ)求证二面角A 1﹣BC 1﹣B 1的余弦值;
(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求
的值.
21.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2
133(21-+=
,设动点N 的轨迹为曲线C .
(1)求曲线C 的方程;
(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,
21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P
到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.
22.2
()sin 2f x x x =+
. (1)求函数()f x 的单调递减区间;
(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12
A
f =,ABC ∆的面积为.
23.已知函数g (x )=f (x )+﹣bx ,函数f (x )=x+alnx 在x=1处的切线l 与直线x+2y=0垂直.
(1)求实数a 的值;
(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;
(3)设x 1、x 2(x 1<x 2)是函数g (x )的两个极值点,若b ,求g (x 1)﹣g (x 2)的最小值.
24.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,
OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小;
(Ⅲ)求点B到平面OCD的距离.
25.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.
(1)求圆C的标准方程;
(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.
26.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.
岳西县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:由已知得到如图
由===;
故选:A.
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.
2.【答案】D
【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,
∴a3a7=a52=36,
故选:D.
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
3.【答案】A
【解析】
考点:分段函数的应用.
【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 4.【答案】B
【解析】解:∵f(x)=,g(x)=(k∈N*),
对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),
∴可得:>,对于x>1恒成立.
设h(x)=x•,h′(x)=,且y=x﹣2﹣lnx,y′=1﹣>0在x>1成立,
∴即3﹣2﹣ln3<0,4﹣2﹣ln4>0,
故存在x0∈(3,4)使得f(x)≥f(x0)>3,
∴k的最大值为3.
故选:B
【点评】本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题.
5.【答案】D.
【解析】
6.【答案】D
【解析】解:∵函数f(x)=(x﹣3)e x,
∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,
令f′(x)>0,
即(x﹣2)e x>0,
∴x﹣2>0,
解得x>2,
∴函数f(x)的单调递增区间是(2,+∞).
故选:D.
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
7.【答案】C
【解析】解:∵=﹣1(n∈N*),
∴﹣=﹣1,
∴数列是等差数列,首项为=﹣2,公差为﹣1.
∴=﹣2﹣(n﹣1)=﹣n﹣1,
∴a n=1﹣=.
∴a10=.
故选:C.
【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.
8.【答案】A
【解析】解:几何体如图所示,则V=,
故选:A.
【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.
9.【答案】C
【解析】解:∵≤1=,
∴x≥0,
∴A={x|x≥0};
又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,
∴2≤x≤4.
∴B={x|2≤x≤4},
∴∁R B={x|x<2或x>4},
∴A∩∁R B={x|0≤x<2或x>4},
故选C.
10.【答案】C
【解析】解:由三视图可知几何体是一个正三棱柱,
底面是一个边长是的等边三角形,
侧棱长是,
∴三棱柱的面积是3××2=6+,故选C.
【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.
11.【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
12.【答案】A
【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意
义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨
⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m
的范围.
二、填空题
13.. 【



14.【答案】 12 .
【解析】解:因为x >3,所以f (x )>0
由题意知:
=﹣
令t=∈(0,),h (t )=
=t ﹣3t 2
因为 h (t )=t ﹣3t 2
的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;
故h(t)∈(0,]
由h(t)=⇒f(x)=≥12
故答案为:12
15.【答案】相交
【分析】由已知得PQ∥A1D,PQ=A1D,从而四边形A1DQP是梯形,进而直线A1P与DQ相交.
【解析】解:∵在正方体ABCD﹣A1B1C1D1中,点P、Q分别是B1C1、CC1的中点,
∴PQ∥A1D,
∵直线A1P与DQ共面,
∴PQ=A1D,∴四边形A1DQP是梯形,
∴直线A1P与DQ相交.
故答案为:相交.
【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
16.【答案】.
【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,
与的展开式中x3的项为=5x3,x3的系数为5,
∴10a2=5,
即a2=,解得a=.
故答案为:.
【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.
17.【答案】.
【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,
∵mn﹣m﹣n=3,
∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),
∴(m﹣1)+(n﹣1)≥2,
∴m+n≥6,
则d=≥3.
故答案为:.
【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.
18.【答案】.
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z==32x+y,
设t=2x+y,
则y=﹣2x+t,
平移直线y=﹣2x+t,
由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,
此时t最小.
由,解得,即B(﹣3,3),
代入t=2x+y得t=2×(﹣3)+3=﹣3.
∴t最小为﹣3,z有最小值为z==3﹣3=.
故答案为:.
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面AEC⊥平面PDB.
(Ⅱ)解:设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE∥PD,,
又∵PD⊥底面ABCD,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
20.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
21.【答案】
【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.
(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程12432
2
=+y x 中,得
01248)34(222=-+++m kmx x k
由直线2l 与椭圆C 有且仅有一个公共点知,
0)124)(34(4642222=-+-=∆m k m k ,
整理得342
2
+=k m …………7分
且2
11||k
k m d +-=
,2
21||k
k m d ++=
1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||
2
13k
d d d -= ∴2
2
22
121213211|
|4||||)()(k
m k d d k d d d d d d d +=-=-+=+ ||1||1614
3
||42m m m m +
=+-= …………10分
∵342
2
+=k m ∴当0≠k 时,3||>
m
∴33
43
13||1||=
+>+
m m ,∴34)(321<+d d d ……11分
2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d
∴34232)(321=⨯=+d d d …………12分
综上 1、 2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分
22.【答案】(1)5,3
6k k π
πππ⎡

++
⎢⎥⎣

(k ∈Z );(2)【解析】
试题分析:(1)根据32222
6
2
k x k π
π
π
ππ+≤-
≤+
可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫
= ⎪⎝⎭
可得3
A π
=
,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1
试题解析:(1)111()cos 22sin(2)2262
f x x x x π=
-+=-+, 令3222262k x k πππππ+≤-≤+,解得536
k x k ππ
ππ+≤≤+,k Z ∈,
∴()f x 的单调递减区间为5[,]36
k k ππ
ππ++(k Z ∈).
考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 23.【答案】
【解析】解:(1)∵f (x )=x+alnx ,
∴f ′(x )=1+,
∵f (x )在x=1处的切线l 与直线x+2y=0垂直, ∴k=f ′(x )|x=1=1+a=2, 解得a=1.
(2)∵g (x )=lnx+x 2
﹣(b ﹣1)x ,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
即x++1﹣b<0有解,
∵定义域x>0,
∴x+≥2,
x+<b﹣1有解,
只需要x+的最小值小于b﹣1,
∴2<b﹣1,
解得实数b的取值范围是{b|b>3}.
(3)∵g(x)=lnx+x2﹣(b﹣1)x,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
x1+x2=b﹣1,x1x2=1,
∵x>0,设μ(x)=x2﹣(b﹣1)x+1,
则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]
=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)
=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)
=ln﹣(﹣),
∵0<x1<x2,
∴设t=,0<t<1,
令h(t)=lnt﹣(t﹣),0<t<1,
则h′(t)=﹣(1+)=<0,
∴h(t)在(0,1)上单调递减,
又∵b≥,∴(b﹣1)2≥,
由x1+x2=b﹣1,x1x2=1,
可得t+≥,
∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,
∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,
故g(x1)﹣g(x2)的最小值为﹣2ln2.
【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.
24.【答案】
【解析】解:方法一(综合法)
(1)取OB中点E,连接ME,NE
∵ME∥AB,AB∥CD,∴ME∥CD
又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD
(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)
作AP⊥CD于P,连接MP
∵OA⊥平面ABCD,∴CD⊥MP
∵,∴,,

所以AB与MD所成角的大小为.
(3)∵AB∥平面OCD,
∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,
∵AP⊥CD,OA⊥CD,
∴CD⊥平面OAP,∴AQ⊥CD.
又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,

,,
∴,所以点B到平面OCD的距离为.
方法二(向量法)
作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:
A(0,0,0),B(1,0,0),,,
O(0,0,2),M(0,0,1),
(1),

设平面OCD的法向量为n=(x,y,z),则•=0,•=0

取,解得
∵•=(,,﹣1)•(0,4,)=0,
∴MN∥平面OCD.
(2)设AB与MD所成的角为θ,

∴,
∴,AB与MD所成角的大小为.
(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,
由,得d==
所以点B到平面OCD的距离为.
【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.
25.【答案】
【解析】解:(1)由圆C与直线l1:y=﹣x的一个交点的横坐标为2,
可知交点坐标为(2,﹣2),
∴(2﹣a)2+(﹣2)2=a2,解得:a=2,
所以圆的标准方程为:(x﹣2)2+y2=4,
(2)由(1)可知圆C的圆心C的坐标为(2,0)
由直线l2与直线l1垂直,直线l1:y=﹣x可设直线l2:y=x+m,
则圆心C到AB的距离d=,
|AB|=2=2
所以S△ABC=|AB|•d=•2•=2
令t=(m+2)2,化简可得﹣2t2+16t﹣32=﹣2(t﹣4)2=0,
解得t=(m+2)2=4,
所以m=0,或m=﹣4
∴直线l2的方程为y=x或y=x﹣4.
26.【答案】
【解析】解:根据题意画出图形,如图所示:
当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,
由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,
∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),
在直角三角形ABC
中,根据勾股定理得:AC1=2,
1
则圆C1方程为:(x﹣2)2+(y﹣2)2=8;
当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,
由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),
在直角三角形A′B′C
中,根据勾股定理得:A′C2=2,
2
则圆C1方程为:(x+2)2+(y+2)2=8,
∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.
【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.
第21 页,共21 页。

相关文档
最新文档