余弦定理-【优选】苏教版高中数学必修第二册教学PPT课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合 作
三角形的元素.
课
探
时
究
(2)已知三角形的几个元素求_其__他__元__素_的过程叫作解三角形.
分 层
释
作
疑
业
难
返 首 页
·
12
·
情
课
景
堂
导
小
学 探
1.在△ABC 中,若 b=1,c= 3,A=6π,则 a=________.
·
结 提
新
素
知
养
1 [a= b2+c2-2bccos A=1.]
合
作
·
新
素
知 船位于中国南海的 A 处,与我国海岛 B 相距 s n mile.据观测得知有一 养
合 作
外国探油船位于我国海域 C 处进行非法资源勘探,这艘中国海监船
课
探
时
究
奉命以 v n mile/小时的速度前去驱逐.假如能测得∠BAC=α,BC=
分 层
释
作
疑 难
m n mile,你能根据上述数据计算出它赶到 C 处的时间吗?
返
首
页
·
·
21
已知三边解三角形
情
课
景
堂
导
小
学
结
·
探
提
新
素
知
【例 2】 在△ABC 中,已知 a=2 6,b=6+2 3,c=4 3, 养
合 作
求 A,B,C.
课
探
时
究
分
层
释
作
疑
业
难
·
返 首 页
22
情
[解] 根据余弦定理,cos A=b2+2cb2c-a2
课
景
堂
·
导 学
探
=6+22×362++24
·
结
提 素
知
养
合 作
=2k2+2×[2k3×+13k+]2-1k 6k2=12,
探
课 时
究
∵0°<B<180°,∴B=60°.
分 层
释
作
疑
难
∴C=180°-A-B=180°-45°-60°=75°.
业
返 首 页
·
28
余弦定理的综合应用
·
情
课
景
[探究问题]
堂
导
小
学
探 新
在△ABC 中,若 c2=a2+b2,则 C=π2成立吗?反之若 C=π2,则
·
堂 小 结
探
提
新 知
整理得:(a2+b2-c2)b2=(a2+b2-c2)a2,
素 养
·
·
合
即(a2-b2)(a2+b2-c2)=0,
作
课
探 究
∴a2+b2-c2=0 或 a2=b2.
时 分
层
释 疑
∴a2+b2=c2 或 a=b.
作 业
难
故△ABC 为直角三角形或等腰三角形.
返 首 页
31
·
情
课
·
结
提 素
知
养
c2=a2+b2 成立吗?为什么?
合
作 探
[提示]
因为 c2=a2+b2,所以 a2+b2-c2=0,由余弦定理的变
课 时
究
释 疑
形 cos C=a2+2ba2b-c2=0,即 cos C=0,所以 C=π2,反之若 C=π2,
分 层 作 业
难
则 cos C=0,即a2+2ba2b-c2=0,所以 a2+b2-c2=0,即 c2=a2+b2.
作
课
探 究
释
∴A=π6,B=71π2,C=π4.
时 分 层 作
疑
业
难
返 首 页
·
24
·
情
课
景
堂
导 学
1.已知三边求角的基本思路是:利用余弦定理的推论求出相应
小 结
·
探 新
角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,
提 素
知
养
结果唯一.
合
作
课
探 究
2.若已知三角形的三边的关系或比例关系,常根据边的关系直
业
返 首 页
·
5
·
情
课
景
堂
导 学
1.余弦定理
小 结
·
探 新
三角形任何一边的平方等于其他两边平方的和减去这两边与它
提 素
知
养
们夹角的余弦的积的两倍.
合
作 探
即 a2=__b_2_+__c2_-__2_b_c_co_s__A__,
究
课 时 分
释
b2=__c_2_+__a_2-__2_c_a_c_os__B__,
层 作
疑
业
难
c2=_a_2_+__b_2-__2_a_b_c_o_s_C___.
返 首 页
·
6
·
情 景
思考 1:根据勾股定理,若△ABC 中,C=90°,则 c2=a2+b2=
课 堂
导
小
学 a2+b2-2abcos C.
①
结
·
探
提
新
试验证①式对等边三角形还成立吗?你有什么猜想?
素
知
养
合
提示: 当 a=b=c 时,C=60°,
时 分
层
释 接代入化简或利用比例性质,转化为已知三边求解.
作
疑
业
难
返 首 页
·
25
·Байду номын сангаас
情
课
景
堂
导
小
学
结
·
探 新
[跟进训练]
提 素
知
养
2.已知△ABC 中,a∶b∶c=2∶ 6∶( 3+1),求△ABC 中各
合
作
课
探 角的度数.
时
究
分
层
释
作
疑
业
难
返 首 页
·
26
·
情
课
景
堂
导
[解] 已知 a∶b∶c=2∶ 6∶( 3+1),令 a=2k,b= 6k,c= 小
知
养
b2=a2+c2-2accos B=(2 3)2+( 6+ 2)2-2×2 3×( 6+
合
作 探
2)×cos 45°=8,∴b=2 2.
课 时
究
分
释 疑 难
又∵cos A=b2+2cb2c-a2=8+2× 26+2×22- 6+2 232=12,
层 作 业
∴A=60°,C=180°-(A+B)=75°.
学
结
·
探 新
(
3+1)k(k>0),
提 素
知
养
合 作
由余弦定理的推论,得 cos A=b2+2cb2c-a2
课
探
时
究
释 疑
= 6k2×2+[6k×3+ 13k+]21-k2k2= 22,
分 层 作 业
难
返 首 页
·
27
·
情 景
∵0°<A<180°,∴A=45°.
课 堂
导
小
学
探 新
cos B=a2+2ca2c-b2
素 养
合 作 探
(2)由余弦定理得:( 5)2=52+BC2-2×5×BC×190,
究
课 时 分
层
释 疑
所以 BC2-9BC+20=0,解得 BC=4 或 BC=5.]
作 业
难
返 首 页
·
19
·
情
课
景
堂
导
小
学
结
探
1.已知两边和夹角求第三边,直接利用余弦定理计算,已知两 提
·
新
素
知 边和其中一边所对的角,求第三边,利用余弦定理列方程求解. 养
(2)在△ABC 中,若 AB=
5,AC=5,且 cos C=190,则 BC=
课 时 分
层
释 疑
________.
作 业
难
·
返 首 页
18
·
情
课
景
堂
导 学
(1)60 (2)4 或 5 [(1)由余弦定理得:
小 结
·
探
提
新 知
a= 602+60 32-2×60×60 3×cos π6=60(cm).
返 首
页
·
29
·
情
课
景
堂
导
小
学
结
·
探
提
新 知
【例 3】
在△ABC 中,若(a-ccos B)·b=(b-ccos A)·a,判断
素 养
合 △ABC 的形状.
作
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
30
[解] ∵(a-c·cos B)·b=(b-c·cos A)·a,
情
课
景 导 学
∴由余弦定理可得:a-c·a2+2ca2c-b2·b=b-c·b2+2cb2c-a2·a,
景
堂
导
小
学
结
·
探
提
新
素
知
(变条件)将例题中的条件“(a-ccos B)·b=(b-ccos A)·a”换为 养
合 作
“acos A+bcos B=ccos C”其它条件不变,试判断三角形的形状.
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
32
·
情 景
[解]
由余弦定理知 cos A=b2+2cb2c-a2,cos B=c2+2ac2a-b2,cos C
业
返 首 页
·
9
·
情
课
景
堂
导
小
学
结
探
(2)余弦定理与勾股定理的关系
·
提
新
素
知
在△ABC 中,c2=a2+b2⇔C 为_直__角_;c2>a2+b2⇔C 为_钝__角_;c2<a2 养
合 作
+b2⇔C 为_锐__角___.
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
10
·
情
课
景 导
思考 3:勾股定理和余弦定理有何联系与区别?
课 堂
导
小
学
探 新
=
a2+b2-c2 2ab
,
代
入
已
知
条
件
得
b2+c2-a2 a· 2bc
+
c2+a2-b2 b· 2ca
+
·
结
提 素
知
养
合 作
c·c2-2aa2b-b2=0,通分得 a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-
课
探 究
b2)=0,展开整理得(a2-b2)2=c4.∴a2-b2=±c2,即 a2=b2+c2 或 b2
·
情
课
景 导
第11章 解三角形
堂 小
学
结
·
探
提
新 知
11.1 余弦定理
素 养
合
作
课
探
时
究
分
层
释
作
疑
业
难
·
返 首 页
2
·
情
课
景
学习目标
核心素养
堂
导
小
学 1.掌握余弦定理及其推论.(重点)
结
·
探
1.借助余弦定理的推导过程,提 提
新 知
2.掌握正、余弦定理的综合应
升学生的逻辑推理素养.
素 养
合 用.(重点)
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
13
·
情 景
2.在△ABC
导已知两边与一角解三角形
中,若
a=5,c=4,cos
A=196,则
b=________.
课 堂 小
学已知两边与一角解三角形
结
已知两边与一角解三角形
·
6 [由余弦定理可知 探已已知知两 两边边与与一一角角解解三三角角形形
新已知两边与一角解三角形
释已已知知两 两边边与与一一角角解解三三角角形形
解得 b=6.] 疑已知两边与一角解三角形
难已知两边与一角解三角形
课 时 分 层 作 业
·
返 首 页
14
·
情 景
3.在△ABC 中,a=3,b= 7,c=2,则 B=________.
课 堂
导
小
学
结
探 新 知
60° [cos B=a2+2ca2c-b2=9+142-7=12,∴B=60°.]
合 作
2.已知三角形的两边及一角解三角形的方法, 先利用余弦定理 课
探
时
究 求出第三边,然后利用余弦定理的推论求出其余角.
分 层
释
作
疑
业
难
返 首 页
·
20
·
[跟进训练]
情
课
景
堂
导
1.在△ABC 中,a=2 3,c= 6+ 2,B=45°,解这个三角形. 小
学
结
·
探 新
[解] 根据余弦定理得,
提 素
难
猜想得证. 返 首 页
·
8
·
情 景
2.余弦定理的变形
课 堂
导
小
学
结
探
(1)余弦定理的变形
·
提
新 知
b2+c2-a2
素 养
cos A=_____2_b_c_____,
合 作
a2+c2-b2
课
探 究
cos B=_____2_c_a_____,
时 分
释
a2+b2-c2
层 作
疑 难
cos C=_____2_a_b_____.
作 业
难
返 首 页
·
16
·
情
课
景
堂
导
小
学
结
·
探
提
新 知
合
合作
探究
释疑
难
素 养
作
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
·
17
已知两边与一角解三角形
情
课
景
堂
导 学
探
【例 1】
(1)在△ABC 中,已知 b=60 cm,c=60
3
cm,A=π6,
·
小 结
提
新
素
知 则 a=________ cm;
养
合 作 探 究
堂 小
学
结
·
探 新
提示: 二者都反映了三角形三边之间的平方关系;其中余弦定