半导体器件物理课件1
合集下载
第1章 半导体器件-PPT课件
V
V
a )
b )
jiaocaiwang
1.2半导体三极管
二、三极管的电流放大作用
三极管实现电流放大作 用的外部条件:发射结 正向偏置, 集电结反向 偏置。 NPN管必须满足: UC>UB>UE, 而PNP管必须满足: UC<UB<UE。
IB V R + U
BB b
IC
R + IE
c
U -
CC
-
a)
空穴 (少 子 )
内电场
IR
+
A
外电场
U
b)
jiaocaiwang
1.1半导体二极管
三、半导体二极管——结构、符号和类型
jiaocaiwang
1.1 半导体二极管
三、半导体二极管——伏安特性
iV / m A
正向特性:硅管的死 区电压0.5 V,导通压 降0.6~0.7 V,而锗管 为0.1 V和0.2~0.3 V 反向特性:饱和电流Is 反向击穿特性:UBR 温度特性:温度升高 时二极管正向特性曲 线向左移动,反向特 性曲线向下移动。
I/ m A
U
Z
U
B
U
U
A
Z
O
I A ( I Z m in ) IZ IZ IB (IZ m a x) U / V
V
A
B
jiaocaiwang
1.1 半导体二极管
四、特殊二极管——光电二极管、发光二极管
光电二极管正向电阻为几千欧,反向电阻为无穷大,工作在反偏 状态,主要用于需要光电转换的自动探测、控制装置以及光导纤 维通讯系统中作为接收器件等。符号如下: 发光二极管工作在正向偏置状态,导通时能发光,是一种把电能 转换成光能的半导体器件。常用作设备的电源指示灯、音响设备、 数控装置中的显示器。符号如下:
半导体器件物理(详尽版)ppt
半导体 电阻率介于导体和绝缘体之间 。导体(电阻率小于10-8Ω·m), 绝缘体(电阻率大于106Ω·m)。
晶体 自然界中存在的固体材料,按其结构形式不同,可以分为晶 体(如石英、金刚石、硫酸铜等)和非晶体(玻璃、松香、沥青等)。
1.1 半导体的晶格结构
五种常见的晶格结构
●简单立方结构 ●体心立方结构 ●面心立方结构 ●金刚石结构 ●闪锌矿结构
图中“● ”表示价带内的电子 ;图中“○ ”表示价带内的空穴。
思考
• 既然半导体电子和空穴都能导电,而导体只有电子导电,为什么半导体的导 电能力比导体差?
●导带底EC
导带电子的最低能量
●价带顶EV
价带电子的最高能量
●禁带宽度 Eg
Eg=Ec-Ev
●本征激发 由于温度,价键上的电子 激发成为准自由电子,亦 即价带电子激发成为导带 电子的过程 。
●价带
由价电子形成的能带,但半导体 材料价电子形成的低能级能带通 常称为价带。
●禁带宽度/Eg
导带和价带之间的能级宽度,
单位是能量单位:eV(电子伏特)
图1-6
导体、绝缘体、半导体的能带示意图
3~6eV
禁带比较窄,常 温下,部分价带 电子被激发到空 的导带,形成有 少数电子填充的 导带和留有少数 空穴的价带,都
电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质
简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。
半导体物理课件
结论:磷杂质在硅、锗中电离时,能够释放电子而 产生导电电子并形成正电中心。这种杂质称施主杂 质 。掺施主杂质后,导带中的导电电子增多,增 强了半导体的导电能力。
主要依靠导带电子导电的半导体称n型半导体。
*从Si的电子能量图看:
电离能的计算:
氢原子
En
mq4
(4 0 )2 22
1 n
(2)受主杂质 (Acceptor) p型半导体 Ⅳ族元素硅、锗中掺Ⅲ族元素,如硼(B): *从si的共价键平面图看:
两边取对数并整理,得:
EF
1 2
EC ED
1 2
k0T
ln(
ND 2NC
)
ED起了本征EV 的作用
载流子浓度:
EC EF
EC
EF
n0 NCe k0T NCe k0T e k0T
ND NC
1
2
EC ED
e 2k0T
ND NC
1 2
ED
e 2k0T
2
2
(2)中温强电离区
N
D
n0 ND
(2)EF ~T
(3)EF ~掺杂(T一定,则NC也一定)
T一定,ND越大,EF越靠近EC(低温: ND > NC 时 , ND
(ln ND -ln2 NC)
ND < NC 时, ND
|ln ND -ln2 NC| 中温:由于T的升高, NC增加,使ND < NC , ND
B13:1S22S22P63S23P1 B有三个价电子,当它与周围的四
个Si原子形成共价键时,必须从别 处的硅原子中夺取一个价电子,共价 键中缺少一个价电子,产生空穴。 硼原子接受一个电子后,成为带负 电的硼离子。 B- —负电中心.
(第一章)半导体物理ppt课件
下这些部分占满的能带中的电子将参与导电。由于绝缘
体的禁带宽度很大,电子从价带激发到导带需要很大能
量,所以通常温度下绝缘体中激发到导带去的电子很少,
导电性差;半导体禁带比较小(数量级为1eV),在通常
温度下有不少电子可以激发到导带中去,所以导电能力
比绝缘体要好。
最新课件
27
§1.3 半导体中电子(在外力下)的运动 及有效质量
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
⒉波函数
德布罗意假设:一切微观粒子都具有波粒二象性。 自由粒子的波长、频率、动量、能量有如下关系
Eh P h k
即:具有确定的动量和确定能量的自由粒子,相当 于频率为ν和波长为λ的平面波,二者之间的关系 如同光子与光波的关系一样。
书中(1-13)
最新课件
16
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
布洛赫曾经证明,满足式(1-13)的波函数一定具有 如下形式:
k(x)uk(x)eikx 书中(1-14)
式中k为波数,u k ( x是) 一个与晶格同周期的周期性函 数,即:
uk(x)uk(xna)
1.3.1半导体导带中E(k)与k 的关系
定性关系如图所示 定量关系必须找出E(k)函数带底附近E(k)与k的关 系
用泰勒级数展开可以近似求出极值附近的E(k)与k 的关系,以一维情况为例,设能带底位于k=0,将 E(k)在E ( kk =) 0E 附(0 近) 按(d 泰d勒)E k k 级0k 数 展1 2(开d d 2 ,E 2k )取k 0 至k2 k项2 ,得到
K=0时能量极小,所以(ddEk)k0k ,0因而
《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
《半导体物理第一章》课件
3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。
半导体器件物理课件一.ppt
第一章 半导体物理基础
能量为E的电子状态密度
EC 导带底 h 普朗克常数 mn* 电子的有效质量
广东工业大学
第一章 半导体物理基础
能量为E的空穴状态密度
mp* 空穴的有效质量 EV 价带顶
广东工业大学
第一章 半导体物理基础
费米-狄拉克分布函数
能量为E的一个量子态被一个电子占据的几率
E 电子能量 k0 玻耳兹曼常数 T 热力学温度 EF 费米能级 常数,大多数情况下,它的数值在半导体能 带的禁带范围内,和温度、半导体材料的导电类型、杂质的 含量以及能量零点的选取有关。只要知道了EF的数值,在一 定温度下,电子在各量子态上的统计分布就完全确定了。
广东工业大学
第一章 半导体物理基础
1.3 半导体中的平衡与非平衡载流子
载流子 参与导电的电子和空穴统称为半导体的载流子。
载流子的产生 本征激发 电子从价带跃迁到导带,形成导带电子和价带空穴 杂质电离 当电子从施主能级跃迁到导带时产生导带电子;
当电子从价带激发到受主能级时产生价带空穴
广东工业大学
第一章 半导体物理基础
广东工业大学
第一章 半导体物理基础
深能级杂质
非Ⅲ、Ⅴ族元素掺入硅、锗中也会在禁带中引入能级。 非Ⅲ、Ⅴ族元素产生的能级有以下两个特点:
(1)施主能级距离导带底较远,受主能级距离价带顶也较 远。称为深能级,相应的杂质称为深能级杂质;
(2)这些深能级杂质能产生多次电离,每一次电离相应地 有一个能级。因此,这些杂质在硅、锗的禁带中往往引入若干 个能级。而且,有的杂质既能引入施主能级,又能引入受主能 级。
若E> EF,则f(E)<1/2
当系统的温度高于绝对零度时,如 果量子态的能量比费米能级低,则 该量子态被电子占据的几率大于百 分之五十;若量子态的能量比费米 能级高,则该量子态被电子占据的 几率小于百分之五十。 因此,费米能级是量子态基本上被 电子占据或基本上是空穴的一个标 志。
《半导体器件物理》课件
MOSFET的构造和工作原理
金属-氧化物-半导体场效应晶体管
通过施加电压控制栅极和通道之间的电荷分布,实现放大和开关功能。
三个区域
源极、栅极和漏极,通过电流控制源极和漏极之间的导电通道。
应用
MOSFET被广泛用于各种电子设备中,包括计算机芯片和功率放大器。
JFET的构造和工作原理
1 结构
由P型或N型半导体形成的通道,两个掺杂相对的端部形成控制电流的栅极。
PN结的形成和性质
1 结构
由P型半导体和N型半导体通过扩散形成 的结合层。
3 击穿电压
当施加足够的反向电压时,PN结会被击 穿,允许电流通过。
2 整流作用
PN结具有整流(仅允许电流单向通过) 的特性,可用于二极管。
4 应用
PN结广泛应用于二极管、太阳能电池和 光敏电阻等器件中。
PN结的应用:二极管
2 广泛应用
从计算机和手机到电视和汽车电子,硅晶体管和二极管的应用无处不在。
3 可靠性和效率
硅晶体管和二极管的可靠性和效率使它们成为现代电子技术的基石。
《半导体器件物理》PPT 课件
探索半导体器件物理的精彩世界!本课程将介绍半导体材料及其性质,PN结 的应用,MOSFET和JFET的工作原理,光电子学等内容。
介绍
半导体器件物理是研究半导体材料中电子行为的科学。它包括半导体材料的物理性质、PN结的形成与 应用、MOSFET和JFET的工作原理等内容。
2 电荷调控
通过控制栅极电压来控制通道中电荷的密度,进而改变电流。
3 应用
JFET用于低噪声放大器和开关等应用。
功能区和结构
结构
包括负责控制电流的基极、负 责放大电流的发射极和负责收 集电流的集电极。
半导体器件物理_1孟庆巨PPT课件
1946年2月14日
Moore School, Univ. of Pennsylvania
18,000个电子 管组成
大小:长24m,宽6m,高2.5m 速度:5000次/sec;重量:30吨; 功率:140KW;平均无故障运行时间:7min
– 1946年第一台计算机:ENIAC – 这样的计算机能够进入办公室、车间、连
.
.
.
产业格局与产业结构
• 集成电路的生命力在于它可以大批量、低成本和高 可靠地生产出来。 – 集成电路芯片价格:101~102美元 – 生产线的投资: 109美元(8”、0.25微米) – 要想赢利:年产量~108 块
• 集成电路芯片是整机高附加值的倍增器,但不是最 终产品,如果不能在整机和系统中应用,那它就没 有价值和高附加值。
.
晶体管的发明
第一只晶体管什么时候发明的?
A. 1945 B. 1947 C. 1951 D. 1958
哪家公司发明的?
A. IBM B. Bell Lab C. TI D. Motorola
.
晶体管的发明
• 1946年1月,Bell实验室正式成立半导体研 究小组, W. Schokley,J. Bardeen、W. H.Brattain。
闸流管模型
thyristor
1958年 Esaki 隧道二极管 1973年诺 贝尔奖
1960
1957年Kroemer 异质结双极晶体管
HBT 2000年诺贝尔奖
1960年 Kahng,Atalla
增强型MOSFET
1962年 Hall, Nathan,Quist 半导体激光器
1967年
Kahng, Sze 非挥发存储 器
• 半导体:Semiconductor 内涵及外延均与微电子类似,是早期的叫法。
Moore School, Univ. of Pennsylvania
18,000个电子 管组成
大小:长24m,宽6m,高2.5m 速度:5000次/sec;重量:30吨; 功率:140KW;平均无故障运行时间:7min
– 1946年第一台计算机:ENIAC – 这样的计算机能够进入办公室、车间、连
.
.
.
产业格局与产业结构
• 集成电路的生命力在于它可以大批量、低成本和高 可靠地生产出来。 – 集成电路芯片价格:101~102美元 – 生产线的投资: 109美元(8”、0.25微米) – 要想赢利:年产量~108 块
• 集成电路芯片是整机高附加值的倍增器,但不是最 终产品,如果不能在整机和系统中应用,那它就没 有价值和高附加值。
.
晶体管的发明
第一只晶体管什么时候发明的?
A. 1945 B. 1947 C. 1951 D. 1958
哪家公司发明的?
A. IBM B. Bell Lab C. TI D. Motorola
.
晶体管的发明
• 1946年1月,Bell实验室正式成立半导体研 究小组, W. Schokley,J. Bardeen、W. H.Brattain。
闸流管模型
thyristor
1958年 Esaki 隧道二极管 1973年诺 贝尔奖
1960
1957年Kroemer 异质结双极晶体管
HBT 2000年诺贝尔奖
1960年 Kahng,Atalla
增强型MOSFET
1962年 Hall, Nathan,Quist 半导体激光器
1967年
Kahng, Sze 非挥发存储 器
• 半导体:Semiconductor 内涵及外延均与微电子类似,是早期的叫法。
半导体器件物理课件1
5.半导体中的基本控制方程 1)连续性方程 粒子数守恒:
利用电流密度表达式:
(1-212)
在一维情况下,取电流沿x方向:
半导体物理基础
1.6非平衡载流子
5.半导体中的基本控制方程 2)泊松方程
在饱合电离的情况下:
(1-220)
设空间电荷所形成的电势分布为 ,则 与 之间满 足泊松方程:
为自由空间电容率,其数值为
半导体物理基础
1.6非平衡载流子
3.修正的欧姆定律
其中: 分别称为电子和空穴的等效电导率。修正欧姆定律虽然在 形式上和欧姆定律一致,但它包括了载流子的漂移和扩散 的综合效应。 从修正欧姆定律可以看出,费米能级恒定(即
)是电流为零的条件。处于热平衡的 半导体,费米能级恒定。或者说,热平衡系统具有统一的 费米能级。
Ø光学波 特点:对于光学波,相邻两种不同原子 的振动方向是相反的。原胞的质心保持 不动,由此也可以定性的看出,波长很 长的光学波(长光学波)代表原胞中两 个原子的相对振动。
晶格振动能量的量子化 ---声子
半导体物理基础
2.载流子的散射
1)平均自由时间与驰豫时间 载流子在电场中作漂移运动时,只有在连续两次散射之
第一章 半导体物理基础
●半导体中的电子状态 ●载流子的统计分布 ●简并半导体 ●载流子的散射 ●载流子的输运 ●非平衡载流子
概述
1、本课程的主要内容 2、本课程的考核方式、答疑时间
半导体物理基础
1.1半导体中的电子状态
●半导体中电子的波函数和能量谱值 ●能带 ●有效质量 ●导带电子和价带空穴 ●Si/Ge/GaAs的能带结构 ●杂质和缺陷能级
这些就是本课程的主要内容。
半导体物理基础
半导体物理基础
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2载流子的统计分布
●本征半导体
Ec EF 即: Nc exp KT Ev EF Nv exp KT
n p
NV 1 1 于是: Ei Ec EV KT ln 2 2 Nc
ni pi NC NV
1 2
h
3
称为价带有效状态密度
1.2载流子的统计分布
●导带电子浓度和价带空穴浓度之积
Eg
np N c NV e
KT
(1-64)
式中 E g 为禁带宽度。E g 与温度有关,可以把它写成经验关系 式:
E g E g 0 T
3
得:
np K1T e
Eg 0
KT
(1-66)
其中 K 1 为常数 半导体物理基础
dp I p qA p p Dp dx
dn I n qA nn Dn dx
(1-137)
式中A为电流垂直流过的面积
半导体物理基础
1.5载流子的输运
5.非均匀半导体中的自建电场 1)半导体中的静电场和势 电场定义为电势的负梯度: 电势与电子势能的关系为:E q
NV EF EV KT ln Na Nd
Na Nd EF Ei KT ln ni
半导体物理基础
(1-88)
1.3简并半导体
●载流子浓度
n
2
N c F12 (n )
(1-91)
EF Ec n KT
费米积分: F12
0
d exp( n ) 1
1 2
●发生简并化的条件
n 0 或 n 2
半导体物理基础
习题
半导体物理基础
1.4载流子的散射
1.格波与声子 2.载流子的散射 1)平均自由时间与驰豫时间 2)散射机构 ○晶格振动散射
○电离杂质散射
半导体物理基础
1.格波与声子
声学波 特点: 相邻两种不同原子的振幅都有相同 的正号或负号,即对于声学波,相邻原子 都是沿着同一方向振动,当波长很长时, 声学波实际上代表原胞质心的振动。 光学波 特点:对于光学波,相邻两种不同原子 的振动方向是相反的。原胞的质心保持 不动,由此也可以定性的看出,波长很 长的光学波(长光学波)代表原胞中两 个原子的相对振动。
p Na
ni2 ni2 导带电子浓度为: n p Na
费米能级:
NV E F EV KT ln Na
或:EF Ei KT ln Na ni
(1-80)
半导体物理基础
1.2载流子的统计分布
●杂质补偿半导体 在 N d N a 的半导体中:
n Nd Na
相应的费米能级为:
小注入:
p
1 rp0
半导体物理基础
1.6非平衡载流子
2)通过复合中心的复合 为简单计,假设复合中心对电子和空穴的俘获系数相等。净 复合率可写成 2
U
或
U
np ni 0 n p n1 p1 1
1 np ni2
0
E Ei n p 2ni cosh t KT
半导体物理基础
1.6非平衡载流子
5.半导体中的基本控制方程 2)泊松方程
q p N d n N a (1-220) 在饱合电离的情况下:
设空间电荷所形成的电势分布为 ,则 与 之间满 足泊松方程:
2 q p Nd n Na k 0
1.5载流子的输运
1.漂移运动
q n 电子迁移率: n * mn q p 空穴迁移率: p * mp
迁移率和电导率 (1-114)
电子漂移电流密度: jn nqvn nqn 电子电导率: n nqn
(1-118)
——N型半导体的电导率 ——P型半导体的电导率
n n0 n p p0 p
n p ——非平衡载流子
小注入:非平衡载流子浓度<<热平衡多数载流子浓度
n n0 n n0 (n p p0 p p (p n0 ) p0 )
半导体物理基础
1.6非平衡载流子
2.准费米能级
E Fn Ei V n ni exp ni e n T (1-162) KT
p pq p 空穴电导率:
电子和空穴共同作用电导率: n p nqn pq p
半导体物理基础
1.5载流子的输运
2.扩散运动和扩散电流 电子扩散电流密度 qDnn 空穴扩散电流密度 qDpp 3.流密度 在漂移和扩散同时存在的情况下,空穴和电子的流密度分别 为: (1-129)
(1-68)
(1-69) (1-70 ni2
EF Ei p n exp Ei EF 参照 E i 得: n ni exp i KT KT
半导体物理基础
习题
半导体物理基础
1.2载流子的统计分布
梯度分布、电场分布、电势分布、电流密度分布等,最终求得
器件的各个端电流。 这些就是本课程的主要内容。 半导体物理基础
半导体物理基础
3)表面复合率
U S Sp
qDp d p dx qU s qS p
x 0
(1-210)
半导体物理基础
1.6非平衡载流子
5.半导体中的基本控制方程 1)连续性方程 粒子数守恒:
p p S p G t p
n n S n G (1-212) t n
——热电势
在热平衡情况下,费米势为常数,可以把它取为零基准,于 是: (1-146) n ni e VT p ni e VT
2)爱因斯坦关系
电子:
Dn
n
VT
KT q
空穴: Dp VT KT p q
半导体物理基础
1.5载流子的输运
3)非均匀半导体自建电场
EF Ei n N d x ni exp KT
np n e
2 i
p n VT
1.6非平衡载流子
3.修正的欧姆定律
I d n d J n n qn n n x n A dx dx
Jp Ip A qp p d p dx p x d p dx
其中: n x qn n p x qp p 分别称为电子和空穴的等效电导率。修正欧姆定律虽然在 形式上和欧姆定律一致,但它包括了载流子的漂移和扩散 的综合效应。 从修正欧姆定律可以看出,费米能级恒定(即 d n dx 0, d p dx 0 )是电流为零的条件。处于热平衡的 半导体,费米能级恒定。或者说,热平衡系统具有统一的 费米能级。 半导体物理基础
晶格振动能量的量子化 ---声子 半导体物理基础
2.载流子的散射
1)平均自由时间与驰豫时间 载流子在电场中作漂移运动时,只有在连续两次散射之 间的时间称为自由时间,取极多次而求平均值,则称之为载 流子的平均自由时间,常用τ 表示。 平均自由时间与散射几率互为倒数。 2)散射机构 ○晶格振动散射 ○电离杂质散射 半导体物理基础
0 为自由空间电容率,其数值为 8.85418 10 12 F m
半导体物理基础
分析半导体器件时,应先将整个器件分为若干个区,然后
在各个区中视具体情况对基本方程做相应的简化后进行求解。 求解微分方程时还需要给出 边界条件。扩散方程的边界条件为 边界上的少子浓度与外加电压之间的关系。于是就可以将外加 电压作为已知量,求解出各个区中的少子浓度分布、少子浓度
请复习《半导体物理基础》相关知识点! 半导体物理基础
1.2载流子的统计分布
●导带电子浓度
E EF n N C exp C KT
其中
(1-57)
22mdn KT Nc 3 h
3
2
称为导带有效状态密度
●价带空穴密度
其中 N V 半导体物理基础
EF EV p NV exp (1-60) KT 3 22mdp KT 2
Ei E Fp p ni exp KT p VT ni e
(1-163)
n 和 式中 E Fn 和 E Fp 分别称为电子和空穴的准费米能级, p 分别为相应的准费米势:
E Fp E Fn n , p q q
半导体物理基础
对于N型半导体,有(取EF为零基准):
VT ln
Nd ni
V dN d d T dx N d dx
(1-151)
对于P型半导体,有:
Na VT ln ni
VT dN a N a dx
(1-153)
半导体物理基础
1.6非平衡载流子
1.非平衡载流子的产生与复合 非平衡载流子:比平衡态多出来的部分载流子
1.6非平衡载流子
4.复合机制 1)直接复合 净复合率: U r (n0 p0 p)p 寿命:
1 r (n0 p0 p)
p
(1-171)
1 杂质半导体: n rn0
1 r (n0 p0 ) 1 本征半导体: i 2rn i
第一章 半导体物理基础
●半导体中的电子状态
●载流子的统计分布 ●简并半导体 ●载流子的散射 ●载流子的输运 ●非平衡载流子
概述
1、本课程的主要内容
2、本课程的考核方式、答疑时间
半导体物理基础
1.1半导体中的电子状态
●半导体中电子的波函数和能量谱值