八年级数学下册 第4章 平行四边形 44 运用边判定平行四边形第1课时课件 新版浙教版
平行四边形的性质(第1课时)PPT课件
![平行四边形的性质(第1课时)PPT课件](https://img.taocdn.com/s3/m/ab72e7cd4bfe04a1b0717fd5360cba1aa8118c0e.png)
中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB, D∥AB,∴∠DAE=∠AEB,∠ADF=∠
∴∠DAE=∠AEB,∠ADF=∠DFC.∵AE平 DFC,∵AE平分∠BAD,DF平分
分∠BAD,DF平分
∠ADC,∴∠BAE=∠DAE,∠ADF=
∠ADC,∴∠BAE=∠DAE,∠ADF=∠CDF, ∠CDF,∴∠BAE=∠AEB,∠CFD=
8.如图所示,在▱ABCD中,E是CD的中点,AE的延长线与BC的延 长线相交于点F. 求证BC=CF.
解析:先证明△ADE≌△FCE,得出AD=CF,再根据平行四边形的性 质可知AD=BC,继而得出结论.
证明:∵四边形ABCD为平行四边形, ∴AD∥BC,AD=BC. ∴∠ADE=∠FCE.
∵E是CD的中点,∴DE=CE.
八年级数学·下 新课标[冀教]
第二十二章 四边形
学习新知
检测反馈
问题思考
学习新知
问题1:同学们,你们观察过阳光透过长方形窗 口投在地面上的影子是什么形状吗?
问题2:爱动脑筋的小刚观察到平行四边形的影 子有一种对称的美,他说只要量出一个内角的度数, 就能知道其余三个内角的度数;只需测出一组邻边 的长,便能计算出它的周长,这是为什么呢?
由已知条件,得 2(AB+AD)=22, ∴AB+AD=11.
又∵AB+AD+BD=18, ∴BD=18-11=7.
(教材第128页例1)已知:如图所示,在▱ABCD中,∠B+∠D=260°, 求∠A,∠C的度数.
解:在▱ABCD中, ∵∠B=∠D,∠B+∠D=260°,
. ∴∠B=∠D=260 =130° 2
解析:设该平行四边形的两边长分别为x cm,y cm,且x>y,根据题
22,2 平行四边形的判定 第一课时八年级数学下册课件(冀教版)
![22,2 平行四边形的判定 第一课时八年级数学下册课件(冀教版)](https://img.taocdn.com/s3/m/1bb0c3490a1c59eef8c75fbfc77da26925c59696.png)
1 将两块全等的含30°角的三角尺按如图的方式摆放在一起,则
四边形ABCD 是平行四边形吗?请尝试用多种方法说明理由.
解:是;说明理由略.
2 如图,在▱ABCD 中,延长AB 到点E,延长CD 到点F, 使BE=DF. 猜想线段AC 与EF 之间的关系,并证明自己
的猜想.
解:AC 与EF 互相平分; 证明如下:如图,连接AF,CE. 在▱ABCD 中,AB=CD,AB∥CD, 因为BE=DF,所以AE=CF, 又因为AE∥CF, 所以四边形AECF 是平行四边形,所以AC 与EF 互相平分.
3 已知:如图,BD 是▱ABCD 的对角线,点E 和点F 在BD 上,且BE=DF.求证:四边形AECF 是平行四边形.
证明:在▱ABCD 中,AB=CD,AB∥CD,
因为AB∥CD,所以∠ABE=∠CDF,
AB=CD,
在△ABE 和△CDF 中,ABE=CDF, 所以△ABE ≌△CDF, BE=DF,
1 两组对角分别相等的四边形是平行四边形吗?为什么? 解:是;说明理由略.
2 已知:如图,把△ABC 绕边BC 的中点O 旋转180°得到 △DCB. 求证:四边形ACDB 是平行四边形.
解:由把△ABC 绕边BC 的中点O 旋转180°得到△DCB 可知, AB=CD,∠ABC=∠DCB,由∠ABC=∠DCB 得 AB∥CD,所以四边形ACDB 是平行四边形.
(2)由此,你发现了什么结果?与大家交流. 我们发现:一组对边平行且相等的四边形是平行四边形. 现在,我们来证明这个结论.
已知:如图,在四边形ABCD 中,AD∥BC,AD =BC. 求证:四边形ABCD 是平行四边形.
证明:如图,连接BD. 在△ABD 和△CDB 中, ∵AD∥BC,∴∠ADB=∠CBD. ∵AD=CB,BD=DB,∴△ABD ≌△CDB. ∴∠ABD =∠CDB. ∴AB∥DC. ∴四边形ABCD 是平行四边形.
第一课时平行四边形的性质1-八年级数学下册课件(人教版)
![第一课时平行四边形的性质1-八年级数学下册课件(人教版)](https://img.taocdn.com/s3/m/bb0af344a55177232f60ddccda38376baf1fe01e.png)
课堂练习
8.如图,在▱ABCD 中,∠B=120°,DE⊥AB 于点 E,DF⊥BC 于点 F,则∠ADE=______3_0_°______,∠EDF=_____6__0_°______, ∠FDC=______3_0_°______.
课堂练习
9.如图,已知 BD 是△ABC 的角平分线,点 E,F 分别在边 AB,BC 上,ED∥CF,EF∥AC.求证:BE=CF.
边形的周长为( B )
A.16
B.26
C.22
D.11
4.如图,在▱ABCD 中,AB⊥AC,若 AB=3,AC=4,则 AD 的长
为( A )
A.5
B.8
C.10
D.11
课堂练习
5.在▱ABCD 中,若∠A+∠C=100°,则∠B=_____1_3_0_°______. 6.在▱ABCD 中,AB=5,则 CD=_______5_______. 7.▱ABCD 的周长为 28 cm,且 AB∶BC=2∶5,那么 AB= ______4________ cm,AD=______1_0_______ cm.
又∵∠1=∠2,∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB.
归纳小结
平行四边形的性质:
1.平行四边形对边相等。 2.平行四边形对角相等。
巩固练习
1.如图,在四边形 ABFE 中,点 C,D 分别在边 AE,BF 上,若 AB∥CD∥EF,AE∥BF,则图中的平行四边形共有____3______ 个.
证明:∵ED∥CF,EF∥AC, ∴四边形 EFCD 是平行四边形. ∴ED=CF. ∵BD 是∠ABC 的平分线, ∴∠EBD=∠DBC. ∵ED∥BC,∴∠EDB=∠DBC. ∴∠EBD=∠EDB.∴BE=ED.∴BE=CF.
《平行四边形的性质》PPT课件(第1课时)
![《平行四边形的性质》PPT课件(第1课时)](https://img.taocdn.com/s3/m/a1100f841b37f111f18583d049649b6648d709e8.png)
(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时
八年级数学下册教学课件《平行四边形的判定》(第1课时)
![八年级数学下册教学课件《平行四边形的判定》(第1课时)](https://img.taocdn.com/s3/m/af769ad685868762caaedd3383c4bb4cf7ecb73f.png)
考 点 1 1 利用两组对边分别相等识别平行四边形 如图,在Rt△MON中,∠MON=90°.求证:
四边形PONM是平行四边形. 证明:在Rt△MON中,
由勾股定理得(x-5)2+42=(x-3)2,
解得x=8.
∴PM=11-x=3,ON=x-5=3,MN=x-3=5.
∴PM=ON,OP=MN,
∴四边形PONM是平行四边形.
∴∠BPE=360°-108°-72°-72°=108°=∠A.
∴四边形ABPE是平行四边形.
课堂检测
18.1 平行四边形
拓广探索题
如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧作等边 △ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行 四边形. 证明:∵△ABD和△BCF都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°. ∴∠DBF=∠ABC.又∵BD=BA,BF=BC, ∴△DBF≌△ABC(SAS).∴AC=DF. 又∵△ACE是等边三角形,∴AC=DF=AE. 同理可证△ABC≌△EFC,∴AB=EF=AD. ∴四边形DAEF是平行四边形.
求证:四边形ABCD是平行四边形.
证明:连接AC,如图所示: 在△ABC和△CDA中, ∴△ABC≌△CDA(SSS). ∴∠BAC=∠DCA,∠ACB=∠CAD.
∴AB∥CD,BC∥AD.
∴四边形ABCD是平行四边形.
A B
D C
课堂检测
基础巩固题
18.1 平行四边形
1.如图,在四边形ABCD中,对角线AC , BD相交C 于点O,下列
起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动
两根木条,四边形ABCD一直是一个平行四边形吗?
浙教版数学八年级下册4.4《平行四边形的判定》教案1
![浙教版数学八年级下册4.4《平行四边形的判定》教案1](https://img.taocdn.com/s3/m/76cf690c814d2b160b4e767f5acfa1c7ab00826a.png)
浙教版数学八年级下册4.4《平行四边形的判定》教案1一. 教材分析《平行四边形的判定》是浙教版数学八年级下册4.4节的内容,本节课主要让学生掌握平行四边形的判定方法,培养学生运用几何知识解决实际问题的能力。
教材通过生活实例引入平行四边形的概念,接着引导学生探索平行四边形的判定方法,最后提供一些练习题让学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识。
他们对几何图形的认知和观察能力逐渐提高,但部分学生对几何图形的判定方法仍存在困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与课堂活动,提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:如何运用平行四边形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的空间想象能力和逻辑思维能力。
3.小组合作学习:鼓励学生分组讨论,提高他们的沟通能力和团队协作精神。
4.练习法:提供适量练习题,让学生巩固所学知识。
六. 教学准备1.课件:制作课件,展示平行四边形的判定方法及实例。
2.练习题:准备一些练习题,用于巩固所学知识。
3.教学用具:直尺、三角板、剪刀等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活实例,如教室里的桌子、篮球场上的篮板等,引导学生观察这些实例中的图形,提问:“这些图形是什么类型的四边形?”从而引出平行四边形的概念。
2.呈现(10分钟)展示平行四边形的判定方法,引导学生观察、操作、猜想、验证。
2023年人教版八年级下册数学_ 平行四边形的判定1 第1课时 同步典型例题精讲课件
![2023年人教版八年级下册数学_ 平行四边形的判定1 第1课时 同步典型例题精讲课件](https://img.taocdn.com/s3/m/ae4fc30b0622192e453610661ed9ad51f01d54d5.png)
6
C.1∶2∶1∶2
D.1∶1∶2∶2
7
解析:由题意,得∠A与∠C是对角,∠B与∠D是对角.当∠A=∠C,
8
∠B=∠D时,四边形ABCD是平行四边形,故选项A,B,D不符合
9
题意,选项C符合题意.
第1课时 平行四边形的判定1
STEP1 知识理解与运用
返回目录
1
7.在下列条件中,不能确定四边形ABCD为平行四边形的是( D )
1
2.小红同学周末在家做家务,不慎把家里的一块
2
平行四边形玻璃打碎成如图所示的四块,为了
3
能从玻璃店配到一块与原来相同的玻璃,他应
4
该带去玻璃店的是( B )
5
A.①② B.②④ C.②③ D.①③
返回目录
6
7
解析:只有②④两块角的两边互相平行,且中间部分相连,角的两边
8
的延长线的交点就是平行四边形的顶点.
STEP1 知识理解与运用
返回目录
1
知识点四 对角线互相平分
2
8.如图,四边形ABCD的对角线AC和BD相交于点O,下列能判定四边
3
形ABCD是平行四边形的是( D )
4
A.AO=OC,AC=BD
5
B.BO=OD,AC=BD
6
C.AO=BO,CO=DO
D.AO=OC,BO=OD
7
8
解析:∵AC,BD是四边形ABCD的对角线,AO=OC,BO=OD,
6
∴四边形为平行四边形.
7
8
9
第1课时 平行四边形的判定1
STEP1 知识理解与运用
返回目录
1
知识点三 两组对角分别相等
人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件
![人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件](https://img.taocdn.com/s3/m/11d4a711580102020740be1e650e52ea5518ce1a.png)
新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.
最新北师大版数学八年级下册《平行四边形的判定(1)》优质教学课件
![最新北师大版数学八年级下册《平行四边形的判定(1)》优质教学课件](https://img.taocdn.com/s3/m/6c0fc774a9956bec0975f46527d3240c8547a17c.png)
第1课时 从四边形边的角度判定平行四边形
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
边
平行四边形的两组对边分别平行。 平行四边形的两组对边分别相等。
平行四边形的性质:
角
平行四边形的对角相等。 平行四边形的邻角互补。
对角线 平行四边形的对角线互相平分。
平行四边形是中心对称图形,
解:AB//CD//EF,AC//BD,CE//DF
A
理由如下:
∵ AC=BD,AB=CD
B
∴四边形ABDC是平行四边形
∴AB//CD,AC//BD
∵ DC=EF,CE=DF ∴四边形CDFE是平行四边形 ∴CE//DF,CD//EF ∴AB//CD//EF
DC
E
DC
F
活动2:议一议
1.取两根长度相等的细木条,你能将它们摆放在一张纸上,使得这两根 细木条的四个端点恰好是一个平行四边形的四个顶点吗?
求证:四边形BFDE是平行四边形.
A
E
D
B
F
C
检测三: 习题6.3 第3题
1、知识层面
课堂小结
判定 文字语言 图形语言
几何语言
两组对边分别平行 A
定义法 的四边形是平行四
边形
B
两组对边分别相等 A
定理一 的四边形是平行四
边形 一组对边平行且
B A
定理二 相等的四边形是
平行C ∴四边形ABCD是平行四边形
否在平面内将这四根细木条首尾顺次相接搭成一个平行四边形?说说你的 理由,并与同伴交流.
定猜想理: 两组对边分别相等的四边形是平行四边形.
A
D
几何语言:
第4章 平行四边形-中位线常见的辅助线 浙教版数学八年级下册课件
![第4章 平行四边形-中位线常见的辅助线 浙教版数学八年级下册课件](https://img.taocdn.com/s3/m/4afad3f0c67da26925c52cc58bd63186bceb92dc.png)
点,求证:EF和GH互相平分
连结EG,GF,FH,EH
∵E,G分别为AD,BD的中点
∴
∵F,H分别为BC,AC的中点
∴
∴
∴四边形EGFH是平行四边形
∴EF和GH互相平分
例题演练 掌握新知
练习1:已知:四边形ABCD中,AB=CD,M、N、E、F分
3、三角形中两边中点-------中位线定理
4、一般三角形中点-------倍长中线法
只有一边中点,取另一边中点构造中位线
例题演练 掌握新知
例3:如图,△ABC中,AD是BC边上的中线,F是AD的中
点,BF的延长线交AC于点E
1
求证:AE AC
3
取BE中点M,连结DM
∵D,M分别为BC,BE的中点
中位线常见的辅助线
例题演练 掌握新知
出现两边中点,添加第三边构造三角
形使其成为中位线
例1:任意四边形ABCD,四边中点E、F、G、H
组成的四边形是不是平行四边形?
顺次连接任意四边形各边中点的线段组成一个平行四边形
例题演练 掌握新知
练习1:如图,已知△ABC是锐角三角形,分别以AB,AC
为边向外侧作两个等边△ABM和△CAN.D,E,F分别是MB,
CD的中点,EF交AC于M,交BD于N,
求证:OM=ON。
取BC中点G,连接EG、FG
∵E,G分别为AB,BC的中点
∴ ∥ , =
同理可得 ∥ , =
∴ =FG
∵AB=CD
∴∠GEF=∠GFE
北师大版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件(第1课时)
![北师大版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件(第1课时)](https://img.taocdn.com/s3/m/1e30b2aaf71fb7360b4c2e3f5727a5e9846a2706.png)
探究新知
例2 如图,在平行四边形ABCD中,E,F分别是AD和BC的中点. 求证:四边形BFDE是平行四边形.
证明:
∵ 四边形ABCD是平行四边形,
∴ AD=CB, AD//BC.
思路:根据平行四边形定义证明
证明四边形两组对边分别平行
通过角之间的关系得到平行
通过三角形全等找到角之 间的关系
通过作辅助线可以构造出全 等三角形
探究新知
已知: 四边形ABCD中,AB=CD,AD=CB.
求证: 四边形ABCD是平行四边形.
证明: 连接BD,
在△ABD和△CDB中,
A
AB=CD,
AD=CB,
探究新知
思考:
将两根同样长的木条AD,BC平行放置,再用木条AB,DC
加固,得到的四边形ABCD是平行四边形.ADB NhomakorabeaC
猜想:一组对边平行且相等的四边形是平行四边形.
探究新知
猜想验证:
如图,在四边形ABCD中,AB ∥CD.求证:四边形ABCD是
平行四边形.
你能想到几种证
连接四边形对角线
明方法?
构造全等三角形
探究新知
(1)窗扇完全打开,张角∠CAB=85°,求 此时窗扇与窗框的夹角∠DFB的度数.
(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距 离(精确到0.1 cm). (参考数据: 3≈1.732, 6 ≈2.449)
解:(1)∵AC=DE=20 cm,AE=CD=10 cm, ∴四边形ACDE是平行四边形,∴AC∥DE,∴∠DFB=∠CAB, ∵∠CAB=85°,∴∠DFB=85°.
八年级数学下册 4.4 平行四边形的判定定理(第1课时)例题选讲课件 (新版)浙教版
![八年级数学下册 4.4 平行四边形的判定定理(第1课时)例题选讲课件 (新版)浙教版](https://img.taocdn.com/s3/m/03fdc227b90d6c85ed3ac606.png)
正答:∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD. 又E、F分别是AB、CD的中点, ∴AE=CF,AE∥CF. ∴四边形AECF是平行四边形. 错因:错解是以“一组对边平行,另一组 对边相等的四边形是平行四边形”作为推理依 据,其实这是一个假命题,例如等腰梯形,它 符合命题的条件,但结论不成立,利用假命题 推出的结论,当然就不一定正确了.
第 4章
4.4
平行四边形
平行四边形的判定定理(第1课时)
与边相关的判定定理 例1 嘉淇同学要证明命题“两组对边分别相等 的四边形是平行四边形”是正确的,她先用尺规作 出了如图1的四边形ABCD,并写出了如下不完整的已 知和求证. 已知:如图1,在四边形ABCD中,BC=AD,AB= . 求证:四边形ABCD是 四边形.
(1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明; (3)用文字叙述所证命题的逆命题为 .
分析:(1)命题的题设为“两组对边分别相等的 四边形”,结论是“是平行四边形”,根据题设 可得已知:在四边形ABCD中,BC=AD,AB=CD,求 证:四边形ABCD是平行四边形;
(2)连结BD,利用SSS定理证明△ABD≌△CDB可得 ∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD, AD∥CB,根据两组对边分别平行的四边形是平行四 边形可得四边形ABCD是平行四边形; (3)把命题“两组对边分别相等的四边形”的题 设和结论对换可得平行四边形两组对边分别相等. 证明:(1)已知:如图1,在四边形ABCD中, BC=AD,AB=CD,求证:四边形ABCD是平行四边形.
例1 如图, ABCD中,E是AB的中点,F是CD的中 点. 求证:四边形AECF是平行四边形.
错答:∵四边形ABCD是平行四边形,∴AB=CD, 又E、F分别是AB、CD的中点,∴DF=BE. 又 ∠D=∠B,AD=BC,∴△ADF≌△CBE. ∴AF=CE,又 AE∥CF,∴四边形AECF是平行四边形.
八年级数学下册教学课件《平行四边形的性质》(第1课时)
![八年级数学下册教学课件《平行四边形的性质》(第1课时)](https://img.taocdn.com/s3/m/9e20c23a9a6648d7c1c708a1284ac850ac02041f.png)
18.1 平行四边形 18.1.1 平行四边形的性质
(第1课时)
导入新知
18.1 平行四边形
【观察】上面图形给我们留下什么图形的形象?
学习目标
18.1 平行四边形
3. 经历“实验—猜想—验证—证明”的过程, 发展学生的思维水平.
2. 能够灵活运用平行四边形的性质解决问题.
E
O
G
BEOH, CHFD, BEGC, CHFD, ABCD. B H
C
提示:用定义判定平行四边形,即看四边形两组对边是否分别平行.
巩固练习
18.1 平行四边形
你能从以下图形中找出平行四边形吗?
(1)
(2)
(3)
√
(4)
(5)
√
探究新知
知识点 2
平行四边形边的特征
平行四边形除两
A
组对边分别平行
A 8m B
D C
解:∵ 四边形ABCD是平行四边形, ∴AB=CD, AD=BC. ∵AB=8m, ∴CD=8m. 又AB+BC+CD+AD=36m, ∴ AD=BC=10m.
探究新知
18.1 平行四边形
知识点 3 平行四边形角的特征
请用量角器等工具度量你手中平行四边形的四个角,并记
录下数据,你能发现∠A与∠C,∠B与∠D之间的数量关系吗?
两条平行线间的距离相等.
巩固练习
18.1 平行四边形
如图,AB∥CD,BC⊥AB,若AB=4cm,S△ABC=12cm2, 求△ABD中AB边上的高.
解:∵S△ABC
= =
1 AB•BC, 2 1×4 ×BC=12cm2,
2
4.6 反证法 浙教版数学八年级下册教学课件
![4.6 反证法 浙教版数学八年级下册教学课件](https://img.taocdn.com/s3/m/a31ffa896037ee06eff9aef8941ea76e58fa4a0e.png)
假__设__三__角__形__中__有__两__个__或__三__个__角__是__直__角_____
常 • 是用—的—互不为是否;定存在的—表—述不方存式在:
• 平行——不平行;垂直——不垂直 • 等于——不等于;都是——不都是 • 大于——不大于;小于——不小于 • 至少有一个——一个也没有 • 至少有两个——至多有一个 • 至少有三个——至多有两个 • 至少有n个——至多有(n-1)个
[能力测试] 写出下列各结论的反面:
(1)a//b;
a与b不平行
(2)a≥0;
a<0
(3)b是正数; (4)a⊥b
b是0或负数 a不垂直于b
变式训练
1.“a<b”的反面应是(
D)
(A)a≠b
(B)a >b
(C)a=b
(D)a=b或a>b
2.用反证法证明命题“三角形中最多有一个角是
直角”时,应如何假设?
的推理方法?
王戎的推理方法是: 假设“李子甜” 提出假设 树在道边则李子少
推理论证 与已知条件 “树在道边而多子”产生矛盾
得出矛盾
假设 “李子甜”不成立
结论成立 所以“树在道边而多子,此必为苦李” 是正确的
例:小华睡觉前,地上是干的,早晨起来,看见 地上全湿了。小华对婷婷说:“昨天晚上下雨了。”
反证法的一般步骤: 假设命题结论不成立。 (即命题结论的反面成立)
假设
所证命 题成立
推理得出 的结论
与已知条件矛盾 与定理、定义、公 理矛盾
假设不 成立
一、提出假设
假设命题不成立(即命题的反面成立)
反
二、推理论证
证
法
从假设出发经过推理
的 步
三、得出矛盾
数学:19.1平行四边形(第1课时)课件(人教新课标八年级下)
![数学:19.1平行四边形(第1课时)课件(人教新课标八年级下)](https://img.taocdn.com/s3/m/14a83db565ce0508763213d6.png)
∠ A=∠ C ∠ B=∠ D
小结:平行四边形的性质是证明线段相等和 角相等的重要依据和方法。
问题五:如果已知平行四边形一个内角的度数, 能确定其他三个内角的度数吗?说说你的理由。
A B
D
C
解:∵ 四边形ABCD是平行 四边形
A D
∴AB=CD, AD=BC
∵AB=8m
B
C
∴CD=8m
又AB+BC+CD+AD=36,
求证:AF=BM 证明: ∵ 四边形BEFM是平行四边形
A
∴BM=EF
AB//EF
∵ AD平分∠BAC
M E B D C F
∴∠BAD=∠CAD ∵AB//EF ∴ ∠BAD=∠AEF
∴∠CAD =∠AEF ∴ AF=EF
∴ AF=BM
1.平行四边形的概念
2.平行四边形的性质
3.解决平行四边形的有关问题经常连
∴ AD=BC=10m
A 50° B
30 20 C
1.如图,四边形ABCD是平行四 D 边形,填空
50°,∠BCD=__ 130° (1) ∠ADC=__ (2) 100 ABCD的周长=____
D C
2.已知 BE=DF
ABCD,延长
AB到E, 延长CD到F ,使
F
A
求证:AF=CE
B
E
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小区的伸缩门
庭院的篱笆
载重汽车的防护栏
两组对边分别平行的四边形叫做平行四边形. 平行四边形不相邻的两个顶点连成的线段叫它的 对角线. A D 如图,平行四边形 ABCD记作“ ABCD” B 如图 ① AB C
平行四边形的判定课件(第一课时)
![平行四边形的判定课件(第一课时)](https://img.taocdn.com/s3/m/302794f0763231126fdb11e4.png)
1、能判定四边形是平行四边形的题设是四边形的( B).
(A) 对角线相等.
(B)对角线互相平分.
(C) 对角线互相垂直. (D)对角线互相垂直且相等.
2、下列命题错误的是 ( D ).
(A)两组对边分别平行的四边形是平行四边形.
(B) 平行四边形的两组对边分别相等.
(C) 对角线互相平分的四边形是平行四边形.
4.对角线互相平分的四边形
4.平行四边形的对角线
是平行四边形
互相平分.
第十页,共19页。
已知:四边形ABCD, AB=CD,AD=BC
求证:四边形ABCD是平行四边形
证明:
A
D
∵ AB=CD,AD=BC (已知)
∴四边形ABCD是平行四边形 B
C
第十一页,共19页。
已知: 在四边形ABCD中,∠A=∠C,∠B=∠D.
第二页,共19页。
两组对边分别平行
的
从边考虑
四
边
两组对边分别相等
形
是
平
行
从角考虑
两组对角相等 四
边
形
从对角线考虑
两角线互相平分
第三页,共19页。
1.两组对边分别相等的四边形是平行
四边形
第四页,共19页。
已知:四边形ABCD, AB=CD,AD=BC 求证:四边形ABCD是平行四边形
证明:连结AC,
由此你得到的结论是:
对角线互相平分的四边形是平行四边形.
第九页,共19页。
性质:
判定:
1.平行四边形的对边
互 平行; 为 逆 2.平行四边形的对边
1.两组对边分别平行的 四边形是平行四边形;
2.两组对边分别相等的 四边形是平行四边形;
浙教版八年级下册数学课件第4章4.平行四边形的判定
![浙教版八年级下册数学课件第4章4.平行四边形的判定](https://img.taocdn.com/s3/m/b7660e55773231126edb6f1aff00bed5b8f37354.png)
整合方法提升练
∴四边形 BEDF 是平行四边形. ∴∠BED=∠DFB.∴∠AEG=∠CFH. 又∵AD∥BC,∴∠EAG=∠FCH.
∠AEG=∠CFH, 在△AGE 和△CHF 中,AE=CF,
∠EAG=∠FCH, ∴△AGE≌△CHF.∴AG=CH.
整合方法提升练
13.如图,在▱ ABCD 中,F 是 AD 的中点,延长 BC 到点 E, 使 CE=12BC,连结 DE,CF.
(2)若 AB=4,AD=6,∠B=60°,求 DE 的长.
整合方法提升练
解:如图,过点 D 作 DH⊥BE 于点 H. 在▱ ABCD 中,∠B=60°,∴∠DCE=60°.
∵AB=4,∴CD=AB=4, ∴CH=12CD=2,DH=2 3. 在▱ CEDF 中,CE=DF=12AD=3,则 EH=1. ∴在 Rt△DHE 中,根据勾股定理知 DE= (2 3)2+1= 13.
整合方法提升练
14.如图,点 B,E 分别在 AC,DF 上,AF 分别交 BD,CE 于 点 M,N,∠A=∠F,∠1=∠2.
(2)已知 DE=2,连结 BN,若 BN 平分 ∠DBC,求 CN 的长.
解:∵BN 平分∠DBC,∴∠DBN=∠NBC. ∵DB∥EC,∴∠BNC=∠DBN.∴∠BNC=∠NBC. ∴BC=CN. ∵四边形 BCED 是平行四边形,∴BC=DE=2. ∴CN=2.
(1)若 PE⊥BC,求 BQ 的长.
培优探究展练
解:过点 A 作 AM⊥BC 于 M,如图所示. ∵∠BAC=90°,∠B=45°,∴∠C=∠B=45°, ∴AB=AC,∴BM=CM,∴AM=12BC=5. ∵AD∥BC,∴∠PAN=∠C=45°. ∵PE⊥BC,∴PE=AM=5,PE⊥AD. ∴△APN 和△CEN 是等腰直角三角形.
平行四边形的性质(第1课时)课件2023—-2024学年北师大版数学八年级下册
![平行四边形的性质(第1课时)课件2023—-2024学年北师大版数学八年级下册](https://img.taocdn.com/s3/m/8850272d7ed5360cba1aa8114431b90d6d85891f.png)
平行四边形是中心对称图形,来自平行两条对角线的交点是它的对称中心.
四边形 性 质
两组对边分别平行,相等;
两组对角分别相等,邻角互补
计算与证明
现在让我们一起来研究一下平行四边形.
四边形在生活中 应用的例子吗?
三、概念剖析
表示:平行四边形用符号“□ ”来表示.
如下图,平行四边形ABCD记作“□ ABCD”(要注意字母顺序).
语言表述:∵AD∥BC,AB∥DC,
∴四边形ABCD是平行四边形.
A
D
AB与CD,AD与BC叫做对边.
∠A与∠C,∠B与∠D叫做对角.
第六章 平行四边形 6.1 平行四边形的性质
第1课时
一、学习目标
1.理解平行四边形的定义,并会辨认平行四边形 2.掌握平行四边形的对称性及对边、对角的性质的证明 3.会运用平行四边形对边和对角的性质进行有关的证明和计算
二、新课导入
回顾与思考: 视察下面的图片,说明一下什么样的图形是平行四边形.
定义:两组对边分别平行的四边形叫做平行四边形. 你还能举出平行
A
D
B
C
猜想1: 平行四边形的对边相等 猜想2: 平行四边形的对角相等
三、概念剖析
证明猜想: 已知:四边形ABCD是平行四边形. 求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.
证明:如图,连接AC.
∵四边形ABCD是平行四边形,
B
∴AD∥BC,AB∥CD, ∴∠1=∠2,∠3=∠4.
B
C
平行四边形不相邻的两个顶点连成的线段叫它的对角线. 如:线段AC就是▱ABCD的一条对角线.
三、概念剖析
试一试:请找出下列图形中的平行四边形.