湖南省湖北省八市十二所学校复数经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.复数3
(23)i +(其中i 为虚数单位)的虚部为( )
A .9i
B .46i -
C .9
D .46-
2.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有
1z =,则a b +=( )
A .-1
B .0
C .1
D .2 3.若复数1z i i ⋅=-+,则复数z 的虚部为( )
A .-1
B .1
C .-i
D .i
4.已知i 为虚数单位,则复数23i
i -+的虚部是( ) A .
35
B .35i -
C .15
-
D .1
5
i -
5.已知复数2021
11i z i
-=+,则z 的虚部是( )
A .1-
B .i -
C .1
D .i
6.在复平面内,复数z 对应的点是()1,1-,则1
z
z =+( ) A .1i -+
B .1i +
C .1i --
D .1i -
7.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )
A .1
B
C .2
D .4
8.已知复数z 满足2021
22z i i i
+=+-+,则复数z 在复平面内对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.已知复数z 满足2
2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上
C .恒在直线y x =上
D .恒在直线y x
=-上
10.若复数()4
1i 34i
z +=
+,则z =( )
A .
4
5
B .
35
C .
25
D .
5
11.已知复数z 的共轭复数212i
z i
-=+,i 是虚数单位,则复数z 的虚部是( ) A .1
B .-1
C .i
D .i -
12.复数2i
i -的实部与虚部之和为( ) A .35 B .15- C .15
D .
35
13.
122i
i
-=+( ) A .1
B .-1
C .i
D .-i
14.已知i 是虚数单位,a 为实数,且3i
1i 2i
a -=-+,则a =( ) A .2 B .1 C .-2 D .-1 15.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )
A .5
B
C D .3
二、多选题
16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.若复数351i
z i
-=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限 18.已知复数(),z x yi x y R =+∈,则( ) A .2
0z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足
|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于
虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
2
20.已知复数122
z =-
+(其中i 为虚数单位,,则以下结论正确的是( ).
A .2
0z
B .2z z =
C .31z =
D .1z =
21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w
z
=,则下列结论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 的虚部为
2
i 22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )
A .|z |=
B .z 的实部是2
C .z 的虚部是1
D .复数z 在复平面内对应的点在第一象限
23.下列结论正确的是( )
A .已知相关变量(),x y 满足回归方程ˆ9.49.1y
x =+,则该方程相应于点(2,29)的残差为1.1
B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好
C .若复数1z i =+,则2z =
D .若命题p :0x R ∃∈,2
0010x x -+<,则p ⌝:x R ∀∈,210x x -+≥
24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .
z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )
A .1z +=
B .z 虚部为i -
C .202010102z =-
D .2z z z +=
26.若复数2
1i
z =
+,其中i 为虚数单位,则下列结论正确的是( )
A .z 的虚部为1-
B .||z =
C .2z 为纯虚数
D .z 的共轭复数为1i --
27.对于复数(,)z a bi a b R =+∈,下列结论错误..
的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数 D .纯虚数z 的共轭复数是z -
28.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )
A .1
B .4-
C .0
D .5
29.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=
B .当1z ,2z
C ∈时,若22
12
0z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =
的充要条件是12=z z
30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数
C .若22
12
0z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.C 【分析】
应用复数相乘的运算法则计算即可. 【详解】 解:
所以的虚部为9. 故选:C. 解析:C 【分析】
应用复数相乘的运算法则计算即可. 【详解】
解:()()()3
2351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.
2.C 【分析】
根据复数的几何意义得. 【详解】
∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .
解析:C
根据复数的几何意义得,a b . 【详解】
∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .
3.B 【分析】 ,然后算出即可. 【详解】
由题意,则复数的虚部为1 故选:B
解析:B 【分析】
1i
z i -+=
,然后算出即可. 【详解】 由题意()111
11
i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B
4.A 【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是. 故选:A.
解析:A 【分析】
先由复数的除法运算化简复数23i
i
-+,再由复数的概念,即可得出其虚部. 【详解】
因为
22(3)2613
3(3)(3)1055
i i i i i i i i -----===--++-,所以其虚部是35
. 故选:A.
5.C 【分析】
求出,即可得出,求出虚部.
,,其虚部是1. 故选:C.
解析:C 【分析】
求出z ,即可得出z ,求出虚部. 【详解】
()
()()
2
2021
1i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1.
故选:C.
6.A 【分析】
由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A
解析:A 【分析】
由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】
由题意得1i z =-+,则1i 1i i 11
1i 1i i i 1
z z -----+==⋅==-++-. 故选:A
7.B 【分析】
由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.
解析:B 【分析】
由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为z ,所以可设复数(),z yi x R y R =∈∈,
则其共轭复数为z yi =
,又z z =,
所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =
故选:B.
8.C 【分析】
由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】 由题可得,,
所以复数在复平面内对应的点为,在第三象限, 故选:C .
解析:C 【分析】
由已知得到2021
(2)(2)i i i
z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,
利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】
由题可得,2021
(2)(2)5i z i i
i -+=+-=--,
所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .
9.A 【分析】
先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果. 【详解】
由复数在复平面内对应的点为得,则,, 根据得,得,.
所以复数在复平面内对应的点恒在实轴上, 故
解析:A 【分析】
先由题意得到z x yi =+,然后分别计算2z 和2
z ,再根据2
2z z =得到关于x ,y 的方程
组并求解,从而可得结果. 【详解】
由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,
2
22z x y =+,
根据2
2
z z =得2222
20x y x y xy ⎧-=+⎨=⎩
,得0y =,x ∈R .
所以复数z 在复平面内对应的点(),x y 恒在实轴上, 故选:A .
10.A 【分析】
首先化简复数,再计算求模. 【详解】 , . 故选:A
解析:A 【分析】
首先化简复数z ,再计算求模. 【详解】
()()()2
24
2112434343434i i i z i i i i
⎡⎤++⎣⎦====-
++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,
45z ∴==.
故选:A
11.A 【分析】
先化简,由此求得,进而求得的虚部. 【详解】 ,
所以,则的虚部为. 故选:A
解析:A 【分析】
先化简z ,由此求得z ,进而求得z 的虚部. 【详解】
()()()()212251212125
i i i i
z i i i i ----=
===-++-, 所以z
i ,则z 的虚部为1.
故选:A
12.C 【分析】
利用复数代数形式的乘除运算化简得答案. 【详解】
,的实部与虚部之和为. 故选:C 【点睛】
易错点睛:复数的虚部是,不是.
解析:C 【分析】
利用复数代数形式的乘除运算化简得答案. 【详解】
()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555
-+=. 故选:C 【点睛】
易错点睛:复数z a bi =+的虚部是b ,不是bi .
13.D 【分析】
利用复数的除法求解. 【详解】 . 故选:D
解析:D 【分析】
利用复数的除法求解. 【详解】
()()()()
12212222i i i i i i i ---==-++-. 故选:D
14.B
【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .
解析:B 【分析】
可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】
由2
3(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .
15.C 【分析】
首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,
所以的共轭复数是,所以. 故选:C.
解析:C 【分析】
首先求出复数z 的共轭复数,再求模长即可. 【详解】 据题意,得22(2)12121
i i i i
z i i i ++-+=
===--,
所以z 的共轭复数是12i +,所以z =. 故选:C.
二、多选题 16.AD 【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题
解析:AD 【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.
【详解】
A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;
B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;
C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;
D 选项,设(),z a bi a b R =+∈,则()2
222234z a bi a abi b i =+=+-=+, 所以22324
a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.
17.AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】
解:,
,
z 的实部为4,虚部为,则相差5,
z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正
解析:AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】 解:()()()()
351358241112i i i i z i i i i -+--====---+,
z ∴==
z 的实部为4,虚部为1-,则相差5,
z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.
18.CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2
=,故D 正确. 故选:ACD
【点睛】 本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.
20.BCD
【分析】
计算出,即可进行判断.
【详解】
,
,故B 正确,由于复数不能比较大小,故A 错误;
,故C 正确;
,故D 正确.
故选:BCD.
【点睛】
本题考查复数的相关计算,属于基础题.
解析:BCD
【分析】 计算出23
,,,z z z z ,即可进行判断.
【详解】
122
z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222
222z ,故C 正确; 2213122z
,故D 正确.
故选:BCD.
【点睛】 本题考查复数的相关计算,属于基础题.
21.ABC
【分析】
对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.
对选项由题得
.
所以复数对应的点为,在第二象限,所以选项正确
解析:ABC
【分析】
对选项,A 求出1=22
w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项
,C 复数w 的实部为12-
,判断得解;对选项D ,w 判断得解. 【详解】
对选项,A 由题得1,z =-
1=2w ∴===-.
所以复数w 对应的点为1(2-
,在第二象限,所以选项A 正确;
对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-
,所以选项C 正确;
对选项D ,w 所以选项D 错误. 故选:ABC
【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.
22.ABD
【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.
【详解】
,
,
,故选项正确,
的实部是,故选项正确,
的虚部是,故选项错误,
复
【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.
【详解】
(1i)3i z +=+,
()()()()3134221112
i i i i z i i i i +-+-∴====-++-,
z ∴==,故选项A 正确,
z 的实部是2,故选项B 正确,
z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.
故选:ABD .
【点睛】
本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.
23.ABD
【分析】
根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.
【详解】
当时,,则该方程相应于点(2,29)的残差为,则A 正确;
在两个变量
解析:ABD
【分析】
根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.
【详解】
当2x =时,ˆ9.429.127.9y
=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;
在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;
1z i =-,z ==C 错误;
由否定的定义可知,D 正确;
故选:ABD
【点睛】
本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数,
所以其虚部为,即A 错误;
,故B 正确;
解析:BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数1z i =+,
所以其虚部为1,即A 错误;
z ==B 正确;
复数z 的共轭复数1z i =-,故C 正确;
复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.
故选:BCD.
【点睛】
本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.
25.ACD
【分析】
先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】
由可得,,所以,虚部为;
因为,所以,.
故选:ACD .
【
解析:ACD
【分析】
先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】
由1zi i =+可得,11i z i i
+==-,所以12z i +=-==,z 虚部为1-; 因为2422,2z i z =-=-,所以()5052020410102z
z ==-,2211z z i i i z +=-++=-=.
故选:ACD .
【点睛】
本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 26.ABC
【分析】
首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.
【详解】
因为,
对于A :的虚部为,正确;
对于B :模长,正确;
对于C :因为,故为纯虚数,
解析:ABC
【分析】
首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.
【详解】 因为()()()2122211i 1i 12
i i z i i --====-++-, 对于A :z 的虚部为1-,正确;
对于B :模长z =
对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;
对于D :z 的共轭复数为1i +,错误.
故选:ABC .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.
27.AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为
当且时复数为纯虚数,此时,故A 错误,D 正确;
当时,复数为实数,故C 正确;
对于B :,则即,故B 错误;
故错误的有AB
解析:AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为(,)z a bi a b R =+∈
当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;
当0b =时,复数为实数,故C 正确;
对于B :32a bi i -=+,则32a b =⎧⎨
-=⎩即32
a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;
故选:AB
【点睛】
本题考查复数的代数形式及几何意义,属于基础题. 28.ABC
【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设,∴,
∴,
∴,解得:,
∴实数的值可能是.
故选:ABC.
【点
解析:ABC
【分析】
设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方
程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设z x yi =+,∴222()3x y i x yi ai ++-=+,
∴222
223,23042,
x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.
故选:ABC.
【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
29.AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.
【详解】
解:由复数乘法的运算律知,A 正确;
取,;,满足,但且不
解析:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .
【详解】
解:由复数乘法的运算律知,A 正确;
取11z =,;2z i =,满足2212
0z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;
由12z z =能推出12=z z ,但12||||z z =推不出12z z =,
因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC
【点睛】
本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.
30.BD
【分析】
选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入
,验证结果是纯虚数,所以正确.
【详解】
取,,则,
但不满足,故A 错误;
,恒成
解析:BD
【分析】
选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以
正确;选项C :取1z i =,21z =,2212
0z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.
【详解】
取x i =,y i =-,则1x yi i +=+,
但不满足1x y ==,故A 错误;
a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,
故B 正确;
取1z i =,21z =,则2212
0z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,
故D 正确.
故选:BD .
【点睛】
本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。