高考数学压轴专题人教版备战高考《推理与证明》知识点总复习有答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新】数学《推理与证明》复习资料
一、选择题
1.比利时数学家Germinal Dandelin 发现:在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到的截面曲线是椭圆.这个结论在圆柱中也适用,如图所示,在一个高为10,底面半径为2的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱边缘所得的图形为一个椭圆,该椭圆的离心率为( )
A .
3 B .
23
C .
6513
D .
5 【答案】D 【解析】 【分析】
如图,作出圆柱的轴截面,由于AOB OCD ∠=∠,所以sin sin AOB OCD ∠=∠,而由已知可求出,,OB AB OD 的长,从而可得3a OC ==,而椭圆短轴的长就等于圆柱的底面直径,得2b =,由此可求出离心率. 【详解】
对圆柱沿轴截面进行切割,如图所示,切点为A ,1A ,延长1AA 与圆柱面相交于C ,
1C ,过点O 作OD DC ⊥,垂足为D .
在直角三角形ABO 中,2AB =,1022
32
BO -⨯==, 所以2sin 3AB AOB BO ∠=
=,又因为22
sin sin 3
r AOB OCD OC OC ∠=∠===,
所以3a OC ==.
由平面与圆柱所截可知椭圆短轴即为圆柱底面直径的长,即24b =,则可求得
c ==,
所以c e a =
=
, 故选:D. 【点睛】
此题考查了圆与圆的位置关系、直角三角形中正弦的定义和椭圆的基本概念等知识,属于基础题.
2.平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,…则平面内的六条两两相交且任意三条不共点的直线将平面分成的部分数为( ) A .20 B .21
C .22
D .23
【答案】C 【解析】 【分析】
一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,即可求得答案. 【详解】
设画n 条直线,最多可将面分成()f n 个部分,
1,(1)112n f ==+=Q ; 2,(2)(1)24n f f ==+=; 3,(3)(2)37n f f ==+=;,
4,(4)(3)411n f f ==+=; ,
5,(5)(4)516n f f ==+=;
6,(6)(5)622n f f ==+=.
故选:C. 【点睛】
本题解题关键是掌握根据题意能写出函数递推关系,在求解中寻找规律,考查了分析能力和推理能力,属于中档题.
3.二维空间中圆的一维测度(周长)2l
r π=,二维测度(面积)2S r π=;三维空间中球的二
维测度(表面积)24S r π=,三维测度(体积)3
43
V r π=
.若四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( )
A .42r π
B .43r π
C .44r π
D .46r π
【答案】A 【解析】
分析:由题意结合所给的性质进行类比推理即可确定四维测度W .
详解:结合所给的测度定义可得:在同维空间中,1n +维测度关于r 求导可得n 维测度, 结合“超球”的三维测度38V r π=,可得其四维测度42W r π=. 本题选择A 选项.
点睛:本题主要考查类比推理,导数的简单应用等知识,意在考查学生的转化能力和计算求解能力.
4.观察下图:
12343456745678910
L
L
则第 行的各数之和等于22017( ) A .2017 B .1009
C .1010
D .1011
【答案】B 【解析】 【分析】
由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】
由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()
2
2122211212
n n n n n ---+⨯=
-
令212017n -=,得1009n = 故选:B 【点睛】
本题考查的是推理和等差数列的知识,较简单.
5.设
a ,
b ,
c 都大于0,则三个数1a b +,1b c +,1
c a
+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2
【答案】A
【解析】 【分析】
根据基本不等式,利用反证法思想,即可得出答案 【详解】
因为
a ,
b ,
c 都大于0
1111116a b c a b c b c a a b c +
++++=+++++≥ 当且仅当1a b c ===时取得最小值
若12a b +<,12b c
+<,1
2c a +<
则111
6a b c b c a
+++++<,与前面矛盾
所以三个数1a b +,1b c +,1
c a
+的值至少有一个不小于2 故选:A 【点睛】
本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.
6.已知0x >,不等式12x x +
≥,243x x +≥,327
4x x
+≥,…,可推广为1n a
x n x
+
≥+ ,则a 的值为( ) A .2n B .n n
C .2n
D .222n -
【答案】B 【解析】 【分析】
由题意归纳推理得到a 的值即可. 【详解】
由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n a
x n x
+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】
归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.
7.小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列{}n a 有以下结论:①515a =;②{}n a 是一个等差数列;③数列{}n a 是一个等比数列;④数列{}
n a 的递堆公式11(),n n a a n n N *
+=++∈其中正确的是( )
A .①②④
B .①③④
C .①②
D .①④
【答案】D 【解析】
由图形可得:a 1=1,a 2=1+2,… ∴()1122
n n n a n +=++⋯+=
.
所以①a 5=15; 正确;
②an −a n −1= n ,所以数列{a n }不是一个等差数列;故②错误; ③数列{an }不是一个等比数列;③错误; ④数列{a n }的递推关系是a n +1=a n +n +1(n ∈N ∗).正确; 本题选择D 选项.
点睛: 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.
8.将从1开始的连续奇数排成如图所示的塔形数表,表中位于第i 行,第j 列的数记为
ij a ,例如329a =,4215a =,5423a =,若2019ij a =,则i j -=( )
A .71
B .72
C .20
D .19
【答案】D 【解析】 【分析】
先确定奇数2019为第1010个奇数,根据规律可得从第1行到第i 行末共有
()11+2+3++=
2
i i i +⋅⋅⋅个奇数,可确定2019位于第45行,进而确定2019所在的列,
即可得解. 【详解】
奇数2019为第1010个奇数,
由题意按照蛇形排列,从第1行到第i 行末共有()11+2+3++=
2
i i i +⋅⋅⋅个奇数,
则从第1行到第44行末共有990个奇数,从第1行到第45行末共有1035个奇数, 则2019位于第45行,而第45行时从右往左递增,且共有45个奇数, 故2019位于第45行,从右往左第20列, 则45i =,26j =,故19i j -=. 故选:D. 【点睛】
本题考查了归纳推理的应用,考查了逻辑思维能力和推理能力,属于中档题.
9.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( ) A .2 B .3
C .4
D .5
【答案】B 【解析】 【分析】
根据提示三分法,考虑将硬币分为3组,然后将有问题的一组再分为3组,再将其中有问题的一组分为3,此时每组仅为1枚硬币,即可分析出哪一个是假币. 【详解】
第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平. 故选:B. 【点睛】
本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.
10.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以
国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:
小明说:“鸿福齐天”是我制作的;
小红说:“国富民强”不是小明制作的,就是我制作的;
小金说:“兴国之路”不是我制作的,
若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是()
A.小明B.小红C.小金D.小金或小明
【答案】B
【解析】
【分析】
将三个人制作的所有情况列举出来,再一一论证.
【详解】
依题意,三个人制作的所有情况如下所示:
若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,
故选:B.
【点睛】
本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.
11.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()
A .8种
B .10种
C .12种
D .14种
【答案】B 【解析】 【分析】
根据表格,利用分类讨论思想进行逻辑推理一一列举即可. 【详解】
张毅同学不同的选课方法如下:
()1物理A 层1班,生物B 层3班,政治3班; ()2物理A 层1班,生物B 层3班,政治2班; ()3物理A 层1班,生物B 层2班,政治3班; ()4物理A 层3班,生物B 层2班,政治3班; ()5物理A 层3班,生物B 层2班,政治1班; ()6物理A 层2班,生物B 层3班,政治1班; ()7物理A 层2班,生物B 层3班,政治3班; ()8物理A 层4班,生物B 层3班,政治2班; ()9物理A 层4班,生物B 层3班,政治1班; ()10物理A 层4班,生物B 层2班,政治1班;
共10种. 故选:B 【点睛】
本题以实际生活为背景,考查学生的逻辑推理能力和分类讨论的思想;属于中档题.
12.设x ,y ,z >0,则三个数,,y y z z x x
x z x y z y
+++ ( ) A .都大于2
B .至少有一个大于2
C .至少有一个不小于2
D .至少有一个不大于2
【答案】C 【解析】 【分析】 【详解】
假设这三个数都小于2,则三个数之和小于6,又
y x +y z +z x +z y +x
z +x y =(y x
+x y )+
(
y
z +z y )+(z x +x z
)≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.
13.观察下列等式:
12
133+=,781011123333
+++=,161719202223
39333333
+++++=,…,则当n m <且m ,*n N ∈时,31323231
3333
n n m m ++--++++=L ( ) A .22m n + B .22m n -
C .33m n +
D .33m n -
【答案】B 【解析】 【分析】
观察可得等式左边首末等距离的两项和相等,即可得出结论. 【详解】
31323231
3333
n n m m ++--++++L 项数为2()m n -, 首末等距离的两项和为
3131
33
n m m n +-+=+, 31323231
3333n n m m ++--++++L 22()()m n m n m n =+⨯-=-,
故选:B. 【点睛】
本题考查合情推理与演绎推理和数列的求和,属于中档题.
14.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A .甲、乙、丙
B .乙、甲、丙
C .丙、乙、甲
D .甲、丙、乙
【答案】A
【解析】 【分析】
利用逐一验证的方法进行求解. 【详解】
若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】
本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.
15.观察下列各式:5678953125,515625,578125,5390625,51953125,=====L ,则20205的末四位数字为( ) A .3125 B .5625 C .0625 D .8125
【答案】C 【解析】 【分析】
根据5
6
7
8
9
53125,515625,578125,5390625,51953125,=====L ,分析次数与末四位数字的关系,归纳其变化规律求解. 【详解】
因为5
6
7
8
9
53125,515625,578125,5390625,51953125,=====L , 观察可知415k +的末四位数字3125,
425k +的末四位数字5625, 435k +的末四位数字8125,
445k +的末四位数字0625,
又202045044=⨯+,则20205的末四位数字为0625. 故选:C 【点睛】
本题主要考查数列中的归纳推理,还考查了理解辨析推理的能力,属于中档题.
16.观察下列一组数据
11a = 235a =+ 37911a =++ 413151719a =+++

则20a 从左到右第一个数是( )
A .379
B .383
C .381
D .377 【答案】C
【解析】
【分析】
先计算前19行数字的个数,进而可得20a 从左到右第一个数.
【详解】
由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有
()119191902
+⨯=个奇数,
所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,
所以第191个奇数为21911381⨯-=.
故选:C.
【点睛】
本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.
17.下列表述正确的是( )
①归纳推理是由特殊到一般的推理;②演绎推理是由一般到特殊的推理;
③类比推理是由特殊到一般的推理;④分析法是一种间接证明法;
A .②④
B .①③
C .①④
D .①②
【答案】D
【解析】分析:根据题意,结合合情推理、演绎推理的定义,依次分析4个命题,综合即可得答案.
详解:根据题意,依次分析4个命题:
对于①,归纳推理是由特殊到一般的推理,符合归纳推理的定义,所以正确; 对于②,演绎推理是由一般到特殊的推理,符合演绎推理的定义,所以正确; 对于③,类比推理是由特殊到特殊的推理,所以错误;
对于④,分析法、综合法是常见的直接证明法,所以错误;
则正确的是①②,故选D.
点睛:该题考查的是有关推理的问题,对归纳推理、演绎推理和类比推理的定义要明确,以及清楚哪些方法是直接证明方法,哪些方法是间接证明方法,就可以得结果.
18.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()
A.乙、丁可以知道自己的成绩B.乙可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.丁可以知道四人的成绩
【答案】A
【解析】
【分析】
根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.
【详解】
因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,
又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,
又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,
又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.
因此,乙、丁知道自己的成绩,故选:A.
【点睛】
本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.
19.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:
甲预测说:获奖者在乙、丙、丁三人中;
乙预测说:我不会获奖,丙获奖
丙预测说:甲和丁中有一人获奖;
丁预测说:乙的猜测是对的
成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是()
A.甲和丁
B.乙和丁
C.乙和丙
D.甲和丙
【答案】B
【解析】
【分析】
从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断
【详解】
若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出
获奖的是乙和丁
答案选B
【点睛】
真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证
20.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是
A.甲B.乙C.丙D.无法预测
【答案】A
【解析】
【分析】
若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次。

【详解】
若甲的预测正确,乙、丙的预测错误,则丙是第一名,甲不是第三名,则甲是第二名,乙是第三名,矛盾!
若乙的预测正确,甲、丙的预测错误,则乙是第三名,甲的预测错误,那么甲是第三名,矛盾!
若丙的预测正确,则甲、乙的预测错误,则甲是第三名,乙不是第三名,丙是第一名,则乙是第二名。

因此,第三名是甲,故选:A。

【点睛】
本题考查合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考查推理分析能力,属于中等题。

相关文档
最新文档