范县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载

2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。

人教版2018-2019学年七年级下册期中数学试题(含答案解析)

人教版2018-2019学年七年级下册期中数学试题(含答案解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。

人教版2018-2019学年初一下册期中数学试题(含答案解析)

人教版2018-2019学年初一下册期中数学试题(含答案解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。

2018-2019学年七年级(下)期中数学试卷及答案解析

2018-2019学年七年级(下)期中数学试卷及答案解析

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。

2018—2019学年度第二学期期中测试卷

2018—2019学年度第二学期期中测试卷

1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各式计算错误的是()A. B. C. D.【答案】B【考点】立方根及开立方【解析】【解答】A、,不符合题意;B、,符合题意;C、,不符合题意;D、,不符合题意;故答案为:B.【分析】求一个数的立方根的运算叫开立方。

(1)根据开立方的意义可得原式=0.2 ;(2)根据算术平方根的意义可得原式=11;(3)根据开立方的意义可得原式=;(4)根据开立方的意义可得原式=-.2、(2分)若关于的方程组无解,则的值为()A.-6B.6C.9D.30【答案】A【考点】解二元一次方程组【解析】【解答】解:由×3得:6x-3y=3由得:(a+6)x=12∵原方程组无解∴a+6=0解之:a=-6故答案为:A【分析】观察方程组中同一未知数的系数特点:y的系数存在倍数关系,因此利用加减消元法消去y求出x 的值,再根据原方程组无解,可知当a+6=0时,此方程组无解,即可求出a的值。

3、(2分)所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数【答案】D【考点】实数在数轴上的表示【解析】【解答】解:∵实数与数轴上的点成一一对应。

故答案为:D【分析】根据实数与数轴上的点成一一对应,即可得出答案。

4、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A. AB∥BCB. BC∥CDC. AB∥DCD. AB与CD相交【答案】C【解析】【解答】解:∵∠ABC=150°,∠BCD=30°∴∠ABC+∠BCD=180°∴AB∥DC故答案为:C【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范集乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各式计算错误的是()A. B. C. D.【答案】B【考点】立方根及开立方【解析】【解答】A、,不符合题意;B、,符合题意;C、,不符合题意;D、,不符合题意;故答案为:B.【分析】求一个数的立方根的运算叫开立方。

(1)根据开立方的意义可得原式=0.2 ;(2)根据算术平方根的意义可得原式=11;(3)根据开立方的意义可得原式=;(4)根据开立方的意义可得原式=-.2、(2分)若关于的方程组无解,则的值为()A.-6B.6C.9D.30【答案】A【考点】解二元一次方程组【解析】【解答】解:由×3得:6x-3y=3由得:(a+6)x=12∵原方程组无解∴a+6=0解之:a=-6故答案为:A【分析】观察方程组中同一未知数的系数特点:y的系数存在倍数关系,因此利用加减消元法消去y求出x 的值,再根据原方程组无解,可知当a+6=0时,此方程组无解,即可求出a的值。

3、(2分)所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数【答案】D【考点】实数在数轴上的表示【解析】【解答】解:∵实数与数轴上的点成一一对应。

故答案为:D【分析】根据实数与数轴上的点成一一对应,即可得出答案。

4、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A. AB∥BCB. BC∥CDC. AB∥DCD. AB与CD相交【考点】平行线的判定【解析】【解答】解:∵∠ABC=150°,∠BCD=30°∴∠ABC+∠BCD=180°∴AB∥DC故答案为:C【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

范岗镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范岗镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范岗镇初级中学2018-20佃学年七年级下学期数学期中考试模拟试卷含解析1、 ( 2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有示.则下列三位学生的说法中正确的是() 甲:七年级的达标率最低乙:八年级的达标人数最少 丙:九年级的达标率最高【答案】C【考点】扇形统计图,条形统计图【解析】【解答】解:由扇形统计图可以看出:八年级共有学生药080OS7% xi00%=87.8% ;2扌5X100%=97.9% ;250则九年级的达标率最高•则甲、丙的说法是正确的. 故答案为:C【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论2、 ( 2分) 如图,AB , CD 相交于点 O , AC 丄CD 与点C ,若/ BOD=38°,则/ A 等于()各年级人数 分布情况A.甲和乙B.乙和丙C.甲和丙D.甲乙丙班级 ____________ 座号 _______ 姓名 _____________、选择题分数 ____________800名学生,达标情况如表所800 &3%=264 人;七年级的达标率为九年级的达标率为八年级的达标率为A. 52B. 46C. 48D. 50【答案】A【考点】对顶角、邻补角【解析】【解答】解:由对顶角的性质和直角三角形两锐角互余,可以求出 / A 的度数为52.故答案为:A【分析】利用对顶角的性质,可知/ AOC= / BOD ,由直角三角形两锐角互余,可求出 / A 的度数.3、( 2分) 如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道 ABCD,使其拐角【答案】C【考点】平行线的判定【解析】【解答】解:•••/ ABC=150 ° BCD=30•••/ ABC+ / BCD=180 ••• AB // DC故答案为:CC. AB // DCD. AB 与CD 相交【分析】根据已知可得出/ ABC+ / BCD=180,根据平行线的判定,可证得 AB // DC 。

范桥乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范桥乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范桥乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析、选择题A. 2 或 12B. 2 或-12C. - 2 或 12D. - 2 或-12【答案】D 【考点】平方根【解析】【解答】•/ a 2=25 , =7,••• a=±5, b=±7. 又■/ |a+b|=a+b , • a=±5, b=7.•••当 a=5, b=7 时,a - b= - 2;当 a=- 5, b=7 时,a - b= - 5- 7= - 12. 故答案为:D .【分析】平方根是指如果一个数的平方等于 a,则这个数叫作a 的平方根。

根据平方根的意义可得 a= 5 ,b= 7,再根据已知条件|a+b|=a+b,可得a= ±, b=7,再求出a-b 的值即可。

2、 ( 2分)对于图中标记的各角,下列条件能够推理得到 a // b 的是( )A. / 1 = Z 2 【答案】D【考点】平行线的判定【解析】【解答】A 选项,错误,所以不符合题意;班级 ___________ 座号 _______ 姓名 ______________分数 ___________1、 (2分)2已知a =25,丽-=7,且|a+b|=a+b ,则a - b 的值为(B. / 2= Z 4D. / 1+ / 4 = 180B选项,/ 2与/4不是同位角,错误,所以不符合题意;C选项,/ 3与/4不是同位角,错误,所以不符合题意;D选项,因为/ 1+/ 4=180 °所以a// b,正确,符合题意;故答案为:D。

【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行内错角相等,两直线平行。

3、(2分)下列各式是一元一次不等式的是()A. 2x - 4> 5y+1B. 3 >- 5C. 4x+1 > 01D. 4y+3 v【答案】C【考点】一元一次不等式的定义【解析】【解答】解:根据一元一次不等式的概念,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式,可知2x-4 > 5y+1含有两个未知数,故不正确;13> -5没有未知数,故不正确;4x+1 > 0是一元一次不等式,故正确;根据4y+3 v 中分母中含有未知数,故不正确.故答案为:C.【分析】只含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的不等式叫一元一次不等式。

范村镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范村镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范村镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④- 是17的平方根。

其中正确的有()A.0个B.1个C.2个D.3个【答案】B【考点】平方根,立方根及开立方,有理数及其分类,无理数的认识【解析】【解答】①带根号的数不一定是无理数,能够开方开得尽的并不是无理数,而是有理数,所以错误;②不带根号的数不一定是有理数,比如含有π的数,或者看似有规律实则没有规律的一些数,所以错误;③负数有一个负的立方根,所以错误;④一个正数有两个平方根,这两个平方根互为相反数,所以正确。

故答案为:B【分析】无限不循环小数是无理数,无理数包括开方开不尽的数,含有π的数,看似有规律实则没有规律的一些数,正数有一个正的平方根,负数有一个负的平方根,零的平方根是零,一个正数有两个平方根,这两个平方根互为相反数。

2、(2分)若a=-0.32,b=(-3)-2,c=,d=,则()A.a<b<c<dB.a<b<d<cC.a<d<c<bD.c<a<d<b【答案】B【考点】实数大小的比较【解析】【解答】解:∵a=-0.32=-0.9,b=(-3)-2=,c=(-)-2=(-3)2=9,d=(-)0=1,∴9>1>>-0.9,∴a<b<d<c.故答案为:B.【分析】根据幂的运算和零次幂分别计算出各值,比较大小,从而可得答案.3、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()A.50°B.60°C.70°D.80°【答案】D【考点】平行线的判定与性质,三角形内角和定理【解析】【解答】解:∵∠B+∠DAB=180°,∴AD∥BC,∵∠C=50°,∴∠C=∠DAC=50°,又∵AC平分∠DAB,∴∠DAC=∠BAC=∠DAB=50°,∴∠DAB=100°,∴∠B=180°-∠DAB=80°.故答案为:D.【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.4、(2分)下列说法中错误的是()A.中的可以是正数、负数或零B.中的不可能是负数C.数的平方根有两个D.数的立方根有一个【答案】C【考点】平方根,立方根及开立方【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;D选项中任何数都有立方根,所以正确。

范店乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范店乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范店乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)±2是4的()A. 平方根B. 相反数C. 绝对值D. 算术平方根【答案】A【考点】平方根【解析】【解答】解:±2是4的平方根.故答案为:A【分析】根据平方根的定义(±2)2=4,故±2是4的平方根。

2、(2分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数,并根据调查结果绘制了如图所示的条形统计图.若将条形统计图转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A. 144°B. 75°C. 180°D. 150°【答案】A【考点】条形统计图【解析】【解答】解:20÷50×100%=40%.360°×40%=144°.故答案为:A【分析】先根据统计图计算喜爱打篮球的人数所占的百分比,然后乘以360°即可得出圆心角的度数.3、(2分)某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为()A. 18B. 19C. 20D. 21【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,依题意得2×15+8x≥190,解之得,x≥20,所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故答案为:C【分析】设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,从而根据前两天的工作量+后8天的工作量应该不小于190,列出不等式,求解即可。

范家园镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范家园镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范家园镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)一元一次不等式的最小整数解为()A.B.C.1D.2【答案】C【考点】一元一次不等式的特殊解【解析】【解答】解:∴最小整数解为1.故答案为:C.【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。

2、(2分)一个数若有两个不同的平方根,则这两个平方根的和为()A.大于0B.等于0C.小于0D.不能确定【答案】B【考点】平方根【解析】【解答】解:∵正数的平方根有两个,一正一负,互为相反数,∴这两个平方根的和为0。

故答案为:B.【分析】根据正数平方根的性质,结合题意即可判断。

3、(2分)若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()A. 0B. 1C. -1D. ±1【答案】C【考点】非负数之和为0【解析】【解答】解:因为|a+1|+ =0,所以a+1=0且b-1=0,解得:a=-1,b=1,所以(ab)2 017=(-1)2 017=-1.故答案为:C【分析】先根据若几个非负数的和等于0,则每个非负数都等于0,建立关于a、b的方程组求解,再将a、b 的值代入代数式求值即可。

4、(2分)若26m>2x>23m,m为正整数,则x的值是()A.4mB.3mC.3D.2m【答案】A【考点】不等式及其性质【解析】【解答】解:根据合并同类项法则和不等式的性质,然后根据6m>x>3m,由m为正整数,可知A 符合题意.故答案为:A.【分析】根据不等式的性质和有理数大小的比较可得6m>x>3m,再结合选项可得答案.5、(2分)如果关于的不等式的解集为,那么的取值范围是()A.B.C.D.【答案】D【考点】不等式的解及解集【解析】【解答】解:根据题意中不等号的方向发生了改变,可知利用了不等式的性质3,不等式的两边同时乘以或除以一个负数,不等号的方向改变,因此可知2a+1<0,解得.故答案为:D【分析】先根据不等式的性质②(注意不等式的符号)得出2a+1<0,然后解不等式即可得出答案。

范里镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范里镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范里镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A. 40°B. 70°C. 80°D. 140°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∠ACD=40°,∴∠ACD+∠BAC=180°∴∠BAC=180°-40°=140°∵AE平分∠CAB∴∠BAE=∠CAB=×140°=70°故答案为:B【分析】根据平行线的性质可求出∠BAC的度数,再根据角平分线的定义得出∠BAE=∠CAB,即可得出答案。

2、(2分)下列不等式组是一元一次不等式组的是()A.B.C.D.【答案】C【考点】一元一次不等式组的定义【解析】【解答】根据一元一次不等式组的定义可知选项C正确,故选:C.【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.3、(2分)利用加减消元法解方程组,下列做法正确的是()A. 要消去z,先将①+②,再将①×2+③B. 要消去z,先将①+②,再将①×3-③C. 要消去y,先将①-③×2,再将②-③D. 要消去y,先将①-②×2,再将②+③【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:利用加减消元法解方程组,要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③.故答案为:A.【分析】观察方程组的特点:若要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③,即可得出做法正确的选项。

范村乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范村乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

A. n≤m 【答案】B
【考点】一元一次不等式的应用 【解析】【解答】解:设成本为 a 元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0, 则(1+m%)(1﹣n%)﹣1≥0, 去括号得:1﹣n%+m%﹣ 整理得:100n+mn≤100m, 故 n≤ .故答案为:B ﹣1≥0,
第 5 页,共 17 页
范村乡初级中学 2018-2019 学年七年级下学期数学期中考试模拟试卷含解析 班级__________ 一、选择题
1、 ( 2 分 ) 下列生活现象中,属于平移的是( A. 足球在草地上滚动 【答案】 B 【考点】生活中的平移现象 【解析】【解答】解 :拉开抽屉是平移。 B. 拉开抽屉 ) D. 钟摆的摆动
8、 ( 2 分 ) 如果方程组
的解中

的值相等,那么
的值是(

第 4 页,共 17 页
A.1 B.2 C.3 D.4 【答案】 C 【考点】解二元一次方程组
【解析】【解答】解:∵方程组 ∴x=y ∴3x+7x=10 解之:x=1 ∴y=1 ∴a+a-1=5 解之:a=3 故答案为:C
的解中

的值相等,
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决 问题。 18、( 1 分 ) 二元一次方程 的非负整数解为________
【答案】




【考点】二元一次方程的解 【解析】【解答】解:将方程变形为:y=8-2x ∴ 二元一次方程 当 x=0 时,y=8; 当 x=1 时,y=8-2=6; 当 x=2 时,y=8-4=4; 当 x=3 时,y=8-6=2; 当 x=4 时,y=8-8=0; 一共有 5 组 的非负整数解为:

老范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

老范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

老范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)的值为()A. 5B.C. 1D.【答案】C【考点】实数的运算【解析】【解答】原式= =1.故答案为:C.【分析】先比较与3、与2的大小,再根据绝对值的意义化简,最后运用实数的性质即可求解。

2、(2分)“a<b”的反面是()A.a≠bB.a>bC.a≥bD.a=b【答案】C【考点】命题与定理【解析】【解答】解:a<b的反面是a=b或a>b,即a≥b.故答案为:C【分析】a<b的反面是a=b或a>b,即a≥b.3、(2分)对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()A. B. C. D.【答案】A【考点】二元一次方程的解【解析】【解答】解;移项得:3y=7-2x系数化为1得:故答案为:A【分析】先将左边的2x移项(移项要变号)到方程的右边,再将方程两边同时除以3,即可求解。

4、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()A. 全区所有参加中考的学生B. 被抽查的1000名学生C. 全区所有参加中考的学生的数学成绩D. 被抽查的1000名学生的数学成绩【答案】D【考点】总体、个体、样本、样本容量【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.故答案为:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.5、(2分)x的5倍与它的一半之差不超过7,列出的关系式为()A.5x-x≥7B.5x-x≤7C.5x-x>7D.5x-x<7【答案】B【考点】一元一次不等式的应用【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,故答案为:B.【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.6、(2分)的平方根是()A. 4B. -4C. ±4D. ±2【答案】D【考点】平方根,二次根式的性质与化简【解析】【解答】解:=4,4的平方根是±2.故答案为:D【分析】首先将化简,再求化简结果的平方根。

范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范寨乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,点在射线上,,则等于()A. B. 180ºC. D. 180º【答案】C【考点】平行线的性质【解析】【解答】解:∵AB∥CD∥EF∴∠B=∠BCD,∠E+∠DCE=180°∴∠DCE=180°-∠E∵∠BCD+∠DCE+∠GCE=180°∴∠B+180°-∠E+∠GCE=180°∴∠GCE=∠E-∠B故答案为:C【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。

2、(2分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定()A. 等于2 cmB. 小于2 cmC. 大于2 cmD. 大于或等于2 cm【答案】D【考点】垂线段最短【解析】【解答】解:根据“在连接直线外一点与直线上各点的线段中,垂线段最短”,可知2 cm是连接点A与直线MN上各点的线段中最短线段的长度故答案为:D【分析】根据垂线段最短,可得出答案。

3、(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()A. 63B. 58C. 60D. 55【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,由题意得:,由①得:y-x=34-z,由②得:x-y=92-z,即34-z+92-z=0,解得z=63;即桌子的高度是63.故答案为:A.【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。

范坑乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范坑乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范坑乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A. 20°B. 55°C. 20°或55°D. 75°【答案】C【考点】二元一次方程组的其他应用,平行线的性质【解析】【解答】解:∵∠A的两边与∠B的两边分别平行∴∠A=∠B,∠A+∠B=180°∵∠A的度数比∠B的度数的3倍少40°∴∠A=3∠B-40°∴或解之:或故答案为:C【分析】根据∠A的两边与∠B的两边分别平行,得出∠A=∠B,∠A+∠B=180°,再根据∠A的度数比∠B 的度数的3倍少40°,建立两个二元一次方程组,解方程组,即可求得结果。

2、(2分)下列各数中最小的是()A. -2018B.C.D. 2018【答案】A【考点】实数大小的比较【解析】【解答】解:∵-2018<-<<2018,∴最小的数为:-2018,故答案为:A.【分析】数轴左边的数永远比右边的小,由此即可得出答案.3、(2分)a是非负数的表达式是()A.a>0B.≥0C.a≤0D.a≥0【答案】D【考点】不等式及其性质【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,故答案为:D.【分析】正数和0统称非负数,根据这个定义作出判断即可。

4、(2分)下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或1【答案】C【考点】算术平方根,实数在数轴上的表示,有理数及其分类【解析】【解答】A. 实数与数轴上的点一一对应,故A不符合题意;B. =2,故B不符合题意;C. 负数立方根是负数,故C符合题意;D. 算术平方根等于它本身的数只有0或1,故D不符合题意;故答案为:C.【分析】实数与数轴上的点是一一对应的关系;两个无理数的和不一定是无理数,可能是0,也可能是有理数;负数立方根是负数,负数没有平方根;算术平方根等于它本身的数只有0或1.5、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。

范岗乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范岗乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

范岗乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级 __________ 座号_______ 姓名 ____________ 分数____________一、选择题1、(2分)下列说法正确的是()A、| —2|=- 2 B. 0的倒数是0 C. 4的平方根是2 D. —3的相反数是3【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、根据绝对值的代数意义可得2|=2,不符合题意;B、根据倒数的定义可得0没有倒数,不符合题意;C、根据平方根的定义可4的平方根为戈,不符合题意;D、根据相反数的定义可得-3的相反数为3,符合题意,故答案为:D.【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。

2、(2分)如果关于x的不等式x> 2a- 1的最小整数解为x=3,则a的取值范围是()3A. 0 v a v 2B. a v 2C. 2 <a 2D. a<2【答案】C【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】解:•••关于x的不等式x>2a- 1的最小整数解为x=3 ,二2<2-1v 3,3解得:2 < a 2.故答案为:C.【分析】由题意可得不等式组 2 < 2-1 v 3,解这个不等式组即可求解。

3、 ( 2分)晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小 按照此程序输入 后,输出的结果应为( )【答案】【考点】实数的运算【分析】根据运算程序法则即可求解。

4、 ( 2分)下列调查适合抽样调查的有()① 了解一批电视机的使用寿命; ②研究某种新式武器的威力; ③审查一本书中的错误; ④调查人们节约用电意 识. 【答案】B【考点】全面调查与抽样调查【解析】【解答】解:①调查具有破坏性,因而只能抽样调查; ② 调查具有破坏性,因而只能抽样调查; ③ 关系重大,因而必须全面调查调查; ④ 人数较多,因而适合抽查. 故答案为:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对 于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查的特征进行判断即可确定结论5、 ( 2分)若不等式(a + 1) x >a + 1的解集是x v 1,贝U a 必满足()A. a v — 1B. a >— 13、 1,晓影A. 2016B. 2017C.2019D.2020【解析】【解答】输出的数为 :一二」」故答案为:B .A. 4种B. 3种C. 2种D. 1种C. a v 1D. a> 1【答案】A【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:根据不等式的不等号发生了改变,可知a+1v 0,解得a v -1.故答案为:A【分析】根据不等式的性质3和所给不等式的解集可知a+1<0,即可求出a的取值范围.注意不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变- 1 > 16、(2分)不等式组的解集在数轴上表示为()B.C.^HF【答案】C【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式组可得1-丫二2,AC项,x<2不符合题意;D项,x< 1, x<2不符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若方程ax-3y=2x+6是二元一次方程,则a必须满足()A.a≠2B.a≠-2C.a=2D.a=0【答案】A【考点】二元一次方程的定义【解析】【解答】解:先将方程移项整理可得: ,根据二元一次方程的定义可得:故答案为:A.【分析】首先将方程右边的2x改变符号后移到方程的左边,然后再合并同类项得出,根据二元一次方程的定义,方程必须含有两个未知数,从而得出不等式a-2≠0,求解即可得出a的取值范围。

2、(2分)当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3<5【答案】A【考点】不等式的解及解集【解析】【解答】解:A、当x=3时,x+3=3+3=6>5,所以x+3>5成立;B、当x=3时,x+3=3+3=6,所以x+3>6不成立;C、当x=3时,x+3=3+3=6<7,所以;x+3>7不成立;D、当x=3时,x+3=3+3=6>5,所以x+3<5不成立.故答案为:A【分析】把x=3分别代入各选项中逐个进行判断即可。

3、(2分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.故答案为:A.【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、(2分)下列各式中是二元一次方程的是()A.x+3y=5B.﹣xy﹣y=1C.2x﹣y+1D.【答案】A【考点】二元一次方程的定义【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;C. 2x﹣y+1,不是方程,不符合题意;D. ,不是整式方程,不符合题意,故答案为:A.【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。

5、(2分)某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()A.a>bB.a<bC.a=bD.与a和b的大小无关【答案】A【考点】整式的加减运算,不等式及其性质【解析】【解答】解:根据题意得:(20a+10b)÷30﹣= = ,当a>b,即a﹣b>0时,结果赔钱.故答案为:A.【分析】根据单价×数量=总价,先求出两次购买肉的总价(20a+10b),再求出卖肉的总价×30,根据肉全部卖掉,结果赔了钱可知(20a+10b)-×30<0,然后解不等式即可得出结论。

6、(2分)如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()A. 30°B. 45°C. 60°D. 135°【答案】B【考点】对顶角、邻补角【解析】【解答】∵∠AOC= ∠AOD,∴∠AOD=3∠AOC,又∵∠AOC+AOD=180°,∴∠AOC+3∠AOC=180°,解得∠AOC=45°,∴∠BOD=∠AOC=45°(对顶角相等).故答案为:B.【分析】根据图形得到对顶角相等即∠AOC=∠BOD,再由已知∠AOD=3∠AOC,∠AOD+∠AOC=180°,求出∠BOD的度数.7、(2分)若2m-4与3m-1是同一个正数的平方根,则m为()A. -3B. 1C. -1D. -3或1【答案】D【考点】平方根【解析】【解答】解:由题意得:2m-4=3m-1或2m-4=-(3m-1)解之:m=-3或m=1故答案为:D【分析】根据正数的平方根由两个,它们互为相反数,建立关于x的方程求解即可。

8、(2分)如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是()A. 大于2千克B. 小于3千克C. 大于2千克且小于3千克D. 大于2千克或小于3千克【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:由图可知,物体的质量大于两个砝码的质量,故物体质量范围是大于2千克.故答案为:C【分析】由图知:第一个图,天平右边高于左边,从而得出物体的质量大于两个砝码的质量,从第二个图可知:天平右边低于左边,物体的质量小于三个砝码的质量,从而得出答案。

9、(2分)若a>b,则下列各式变形正确的是()A. a-2<b-2B. -2a<-2bC. |a|>|b|D. a2>b2【答案】B【考点】有理数大小比较,不等式及其性质【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;B、由不等式的性质3可知B符合题意;C、如a-3,b=-4时,不等式不成立,故C不符合题意;D、不符合不等式的基本性质,故D不符合题意.故答案为:B【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。

10、(2分)如果方程组的解中与的值相等,那么的值是()A.1B.2C.3D.4【答案】C【考点】解二元一次方程组【解析】【解答】解:∵方程组的解中与的值相等,∴x=y∴3x+7x=10解之:x=1∴y=1∴a+a-1=5解之:a=3故答案为:C【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。

11、(2分)在,π,,1.5(。

)1(。

),中无理数的个数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵无理数有:,故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.12、(2分)不等式组的解集在数轴上表示为()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式组可得,AC项,x≤2,不符合题意;D项,x﹤1,x≤2,不符合题意。

故答案为:C【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题13、(1分)若x+y+z≠0且,则k=________.【答案】3【考点】三元一次方程组解法及应用【解析】【解答】解:∵,∴,∴,即.又∵,∴.【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。

14、(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.【答案】95°【考点】对顶角、邻补角,平行线的性质,三角形内角和定理【解析】【解答】解:如图,∵直线l1∥l2,且∠1=45°,∴∠3=∠1=45°,∵在△AEF中,∠A=40°,∴∠4=180°﹣∠3﹣∠A=95°,∴∠2=∠4=95°,故答案为:95°.【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。

15、(2分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是________,点P2表示的数是________.【答案】﹣1﹣;﹣1+【考点】实数在数轴上的表示【解析】【解答】解:∵点A表示的数是﹣1,O是原点,∴AO=1,BO=1,∴AB= = ,∵以A为圆心、AB长为半径画弧,∴AP1=AB=AP2= ,∴点P1表示的数是﹣1﹣,点P2表示的数是﹣1+ ,故答案为:﹣1﹣;﹣1+【分析】根据在数轴上表示无理数的方法,我们可知与AB大小相等,都是,因在-1左侧,所以表示-1-,而在-1右侧,所以表示-1+16、(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.【答案】5【考点】数轴及有理数在数轴上的表示,算术平方根【解析】【解答】解:∵正方形的面积为49,∴正方形的边长AB==7∵点A对应的数是-2∴点B对应的数是:-2+7=5故答案为:5【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。

17、(1分)正数的两个平方根分别是和,则正数=________.【答案】100【考点】平方根【解析】【解答】解:∵正数a的两个平方根分别是2m和5-m,∴2m+5-m=0,解得:m=-5,∴a=(2m)2=(-5×2)2=100.故答案为:100.【分析】一个正数的两个平方根互为相反数,从而可得2m+5-m=0,解之求出m值,再由a=(2m)2即可求得答案.18、(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.【答案】【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;将代入①,5a+20=15,a=﹣1.故原方程组为,解得.故答案为:.【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。

相关文档
最新文档