2019版理科数学一轮复习高考帮试题:第10章第5讲 曲线与方程(习思用.数学理) Word版含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 曲线与方程
考点 曲线方程的求法
1.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M,N 与圆C 相切的两直线(非x 轴)相交于点P ,则点P 的轨迹方程为
( )
A.x 2-y 28=1(x >1)
B.x 2-y 28=1(x <-1)
C.x 2+y 28=1(x >0)
D.x 2-y 210=1(x >1)
2.已知点Q 在椭圆C:x 216+y 210=1上,点P 满足OP ⃗⃗⃗⃗⃗ =12(OF 1⃗⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ )(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为
( )
A.圆
B.抛物线
C.双曲线
D.椭圆 3.[2018益阳市、湘潭市高三调考] 已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切.
(1)求点P 的轨迹C 的方程;
(2)设G (m ,0)为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值?并求出该定值.
答案
1.A 由题意知,|PM |-|PN |=|BM |-|BN |=2,由双曲线的定义可知点P 的轨迹是以M,N 为焦点的双曲线的右支,由c =3,a =1,知b 2=8.所以点P 的轨迹方程为x 2-y 28=1(x>1).故选A.
2.D 因为点P 满足OP ⃗⃗⃗⃗⃗ =12
(OF 1⃗⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ ),所以点P 是线段QF 1的中点,设P (x,y ),由于F 1为椭圆C :x 216+y 210=1的左焦点,则F 1(-√6,0),故Q (2x +√6,2y ),由点Q 在椭圆C :x 216+y 210=1上,得点P 的轨迹方程为(2x+√6)216+(2y )210=1,故点P 的轨迹为椭圆.故选D.
3.(1)由题意,设动圆P 的半径为r ,则|PM |=4-r ,|PN|=r ,可得|PM |+|PN |=4-r +r =4,∴点P 的轨迹C 是以M,N 为焦点的椭圆,∴2a =4,2c =2,∴b =√a 2-c 2=√3,
∴椭圆的方程为x 24+y 23=1.
即点P 的轨迹C 的方程为x 24+y 23=1.
(2)设A (x 1,y 1),B (x 2,y 2),由题意知-2<m <2,直线l:y =k (x -m ), 由{y =k (x -m ),x 24+y 23
=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0, ∴x 1+x 2=8mk 24k 2+3,x 1x 2=4m 2k 2-12
4k 2+3,∴y 1+y 2=k (x 1-m )+k (x 2-m )=k (x 1+x 2)-2km =-6mk 4k 2+3,
y 1y 2=k 2(x 1-m )(x 2-m )=k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2=3k 2(m 2-4)
4k 2+3,
∴|GA |2+|GB |2=(x 1-m )2+y 12+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2
=(k 2+1)[-6m 2(4k 2-3)+24(3+4k 2)]
(4k 2+3)2.
要使ω=|GA |2+|GB |2的值与m 无关,需使4k 2-3=0, 解得k =±√32,此时ω=|GA |2+|GB |2=7.。

相关文档
最新文档