人教版选修【1-2】2.2.2《反证法》ppt课件
人教版选修1-2第二章2.2.2反证法课件

司马懿见此情景,心中疑虑:“诸葛亮
一生精明过人,谨慎有余,从不冒险,
今天如此这般,城内恐怕必有伏兵,有
意诱我入城,绝不能中计也。”
数学中常见实例分析:
1.a 0, b 0, a b 1, 求证:a, b中至少有
1
一个不大于 .
2
2.a, b, c不全为零,a b c 0, 求证:a, b, c
只有一个根.
点评:“有且只有”包含了“有根”和“只有这个
根”两层意思.由于a≠0,因此方程至少有一
个根= .从正面较难说明为什么只有这个
根.故我们采用反证法.
试一试
求证:在一个三角形中,
至少有一个内角小于或等
于60°.
A
B
C
证明:假设结论不成立,即:
<
<
<
∠A___ 60°, ∠B ___ 60°,
(1)a是实数。
(2)a大于2。
a小于或等于2
a不是实数
(3)a小于2。
(4)至少有2个
a大于或等于2
最多有1个
(5)最多有一个
(6)两条直线平行。
至少有两个
两直线不平行
巩固新知
2、用反证法证明“若a2≠ b2,则a ≠ b”
的第一步是 假设a=b 。
巩固新知
3、用反证法证明“如果一个三角形没有两个相
中至少有一个大于0.
定义
假设原命题 不成立 ,经过正确的推理,最后得出矛
假设错误
盾,因此说明________,从而证明了
这样的证明方法叫做反证法.
原命题成立,
反证法常见的矛盾类型
人教a版数学【选修2-2】2.2.2《反证法》ppt课件

人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第二章
推理与证明
第二章 2.2 直接证明与间接证明
2.2.2 反证法
1
自主预习学案
2
典例探究学案
3
巩固提高学案
4
备 选 练 习
自主预习学案
理解反证法的概念,掌握反证法的特点及证题的步骤.
重点:反证法概念的理解以及反证法的证题步骤. 难点:反证法的应用.
已知p3+q3=2,求证p+q≤2. [解析] 假设p+q>2,那么p>2-q,所以p3>(2-q)3=8-12q +6q2-q3,将p3+q3=2代入消去p,得6q2-12q+6<0,即 6(q-1)2<0.这与6(q-1)2≥0矛盾,故假设错误.所以p+q≤2. [点评] 本题已知条件为p、q的三次幂,而结论中只有p,q 的一次幂,若直接证明,应考虑到用立方根,同时用放缩法 ,但很难证,故考虑采用反证法.
[方法规律总结] 用反证法证明数学命题的步骤 第一步:审题,分清命题的条件和结论; 第二步:反设,做出与命题结论相矛盾的假设; 第三步:归谬,由假设出发,应用演绎推理方法,推出矛盾 的结果; 第四步:下结论,断定产生矛盾结果的原因,在于开始所做 的假设不真,于是原结论成立,从而间接地证明了命题为真 .
典例探究学案
用反证法证明直接证明不易入手的问题
求证:若两条平行直线 a、b 中的一条与平面 α 相交,则另一条也与平面 α 相交.
[分析] 直接证明直线与平面相交比较困难,故可考虑用反 证法,注意该命题的反面情形不止一种,需一一驳倒,才能 推出命题结论正确.
[解析] 不妨设直线a与平面α相交,b与a平行,从而要证b 也与平面α相交.假设b不与平面α相交,则必有下面两种情 况:(1)b在平面α内.由a∥b,a⊄平面α,得a∥平面α,与题 设矛盾. (2)b∥平面α. 则平面α内有直线b′,使b∥b′. 而a∥b,故a∥b′,因为a⊄平面α,所以a∥平面α,这也与 题设矛盾. 综上所述,b与平面α只能相交.
第2章 2.2 2.2.2 反证法

2.2.2反证法学习目标核心素养1.了解反证法的思考过程、特点.(重点、易混点)2.会用反证法证明简单的数学问题.(重点、难点)通过反证法的学习,提升学生的逻辑推理素养.反证法1.反证法的定义由证明p⇒q转向证明:¬q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾,从而判定¬q为假,推出q为真的方法,叫做反证法.2.常见的几种矛盾(1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾(例如,导出0=1,0≠0之类的矛盾).1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(3)反证法的实质是否定结论导出矛盾.()[答案](1)√(2)×(3)√2.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°[解析]根据反证法的定义,假设是对原命题结论的否定,故假设三个内角都大于60°.[答案] B3.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设__________.[解析]∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.[答案]b与c平行或相交利用反证法证明否定性命题数,则方程没有整数根”,正确的假设是方程存在实数根x0为() A.整数B.奇数或偶数C.自然数或负整数D.正整数或负整数(2)已知三个正整数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.[解析](1)要证明的结论是“方程没有整数根”,故应假设:方程存在实数根x0为整数,故选A.[答案] A(2)证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.又a,b,c成等比数列,所以b2=ac,即b=ac,所以a+c+2ac=4ac,所以a+c-2ac=0,即(a-c)2=0,所以a =c ,从而a =b =c ,所以a ,b ,c 可以成等差数列,这与已知中“a ,b ,c 不成等差数列”相矛盾.原假设错误,故a , b , c 不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.反证法证明问题的一般步骤1.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.求证:数列{S n }不是等比数列.[证明] 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾.所以数列{S n }不是等比数列.利用反证法证明存在性命题于14.[思路探究] “不能都大于”的含义为“至少有一个小于或等于”其对立面为“全部大于”.[解] 假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. ∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0.∴(1-a )+b 2≥(1-a )b >14=12.同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:2.已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.[证明] 假设a ,b ,c ,d 都是非负数,因为a +b =c +d =1,所以(a +b )(c +d )=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.利用反证法证明唯一性命题反证法解题的实质是什么?提示:否定结论、导出矛盾,从而证明原结论正确.【例3】已知直线m与直线a和b分别交于A,B两点,且a∥b.求证:过a,b,m有且只有一个平面.[思路探究]“有且只有”表示“存在且唯一”,因此在证明时,要分别从存在性和唯一性两方面来考虑.[解]因为a∥b,所以过a,b有一个平面α.又因为m∩a=A,m∩b=B,所以A∈a,B∈b,所以A∈α,B∈α.又因为A∈m,B∈m,所以m⊂α,即过a,b,m有一个平面α,如图.假设过a,b,m还有一个平面β异于平面α,则a⊂α,b⊂α,a⊂β,b⊂β,这与a∥b,过a,b有且只有一个平面矛盾.因此,过a,b,m有且只有一个平面.用反证法证明唯一性命题的一般思路证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.3.若函数f(x)在区间[a,b]上的图象连续,且f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.[证明]由于f(x)在[a,b]上的图象连续,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内至少存在一个零点,设零点为m,则f(m)=0.假设f(x)在(a,b)内还存在另一个零点n,即f(n)=0,则n≠m.若n>m,则f(n)>f(m),即0>0,矛盾;若n<m,则f(n)<f(m),即0<0,矛盾.因此假设不正确,即f(x)在(a,b)内有且只有一个零点.1.“自然数a,b,c中恰有一个偶数”的否定正确的为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数[解析]自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数,所以否定正确的是a,b,c中都是奇数或至少有两个偶数.[答案] D2.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角[解析]“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.[答案] B3.“x=0且y=0”的否定形式为________.[解析]“p且q”的否定形式为“¬p或¬q”.[答案]x≠0或y≠04.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设________.[解析]“x≠a且x≠b”形式的否定为“x=a或x=b”.[答案]x=a或x=b5.若a,b,c互不相等,证明:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.[证明]假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加得a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0,∴a=b=c.这与a,b,c互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.。
最新人教版高二数学选修1-2(B版)电子课本课件【全册】

2.1.2 演绎推理
2.2.2 反证法
阅读与欣赏
《原本》与公理化思想
第三章 数引入
3.2.2 复数的乘法和除法
阅读与欣赏
复平面与高斯
4.1 流程图
本章小结
附录 部分中英文词汇对照表
第一章 统计案例
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.1 独立性检验
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
阅读与欣赏
“回归”一
词的由来
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
最新人教版高二数学选修1-2(B 版)电子课本课件【全册】目录
0002页 0090页 0178页 0200页 0277页 0329页 0401页 0403页 0454页 0530页 0608页 0610页 0672页 0703页
第一章 统计案例
1.2 回归分析
阅读与欣赏
“回归”一词的由来
第二章 推理与证明
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.2 回归分析
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
本章小结
高中数学选修2-2课件2.2.2《反证法》课件

正难则反
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成------立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结 -----论正确 归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论. (3)结论为“至少”、“至多”、“有无穷 多个” ---类命题; (4)结论为 “唯一”类命题;
例1:用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
例4 如图2.2 2,AB,CD为圆
的两条相交弦,且不全为直径. A
D
求证 AB,CD不能互相平分.
动画演示.
C
B
证明 假设AB,CD互相平分,
图2.2 2
则ACBD为平行四边形,故ACB ADB,
CAD CBD. 因为ABCD为圆内接四边形,所以
ACB ADB 180 0,CAD CBD 180 0.
指有面额的那面.
上述现 象可以用直 接证明的方 法解释, 但是, 我们这 里采用反证法.
假设经过若干次翻转可以使硬币全部反面向上. 由于每枚硬币从正面朝上变为反面朝上,都需要 翻转奇数次,所以3枚硬币全部反面朝上时,需要
翻转3个奇数之和次,即要翻转奇数次.
但由于每次用双手同时翻转2枚硬币,3枚硬币被
翻转的次数只能是2 的倍数,即偶数次.这个矛盾
说明假设错误,原结论正确,即无论怎样翻转都不
第二章--2.2.2--反证法

解析:①是“否定”型命题;②是“至少”型命题;③是“唯 一”型命题,且题中条件较少;④中条件较少不足以直接证 明,因此四个命题都适合用反证法证明. 答案:①②③④
返回
4.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a= A,c∥a,求证:b与c是异面直线,若利用反证法证明,则 应假设________. 解析:∵空间中两直线的位置关系有 3 种:异面、平行、 相交,∴应假设 b 与 c 平行或相交. 答案:b与c平行或相交
返回
5.若下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0, x2+2ax-2a=0 中至少有一个方程有实根,试求实数 a 的 取值范围. 解:若三个方程均无实根, 则ΔΔ12==4a-a21-2-4-4a42<a+0,3<0, Δ3=2a2-4-2a<0
返回
(2)如图,点 A 在平面 α 外, 假设经过点 A 至少有平面 α 的 两条垂线 AB,AC(B,C 为垂足), 那么 AB,AC 是两条相交直线, 它们确定一个平面 β,平面 β 和平面 α 相交于直线 BC,因为 AB⊥平面 α,AC⊥平面 α,BC⊂α,所以 AB⊥BC,AC⊥BC.在平 面 β 内经过点 A 有两条直线都和 BC 垂直,这与平面几何中经过直 线外一点只能有已知直线的一条垂线相矛盾. 综上,经过一点 A 只能有平面 α 的一条垂线.
假设ME与BN共面―→由AB∥平面DCEF得 BM∥EN―→由BM∥EF,得EN∥EF―→得出矛盾, 问题得证
返回
ቤተ መጻሕፍቲ ባይዱ
[规范解答] 假设ME与BN共面,则AB⊂平面MBEN,
[名师批注] 利用反证法证明问题,必须从假设出发,即本题必须以 ME 与 BN 共面为条件证明.此处极易忽视,造成解题错误.
2.2.2反证法

2.2.2反证法学习目标:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.学习重点:会用反证法证明问题;了解反证法的思考过程.学习难点:根据问题的特点,选择适当的证明方法.一、知识梳理1、反证法的定义:一般地,假设原命题,经过正确的推理,最后得出,因此说明假设,从而证明了原命题.2、反正法的步骤:3、反证法的适用范围:二、例题讲解例1、证明2不是有理数。
例2、证明质数有无穷多个。
例3、证明:1,3,2不能为同一等差数列的三项。
例4、平面上有四个点,没有三点共线。
证明以每三点为顶点的三角形不可能都是锐角三角形。
三、巩固练习1. 用反证法证明命题“三角形的内角至少有一个不大于60︒”时,反设正确的是(). A.假设三内角都不大于60︒B.假设三内角都大于60︒C.假设三内角至多有一个大于60︒D.假设三内角至多有两个大于60︒2. 实数,,a b c不全为0等价于为().A.,,a b c均不为0B.,,a b c中至多有一个为0C.,,a b c中至少有一个为0D.,,a b c中至少有一个不为03.设,,a b c都是正数,则三个数111,,a b cb c a+++().A.都大于2 B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于24.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数5. 用反证法证明命题“自然数,,a b c 中恰有一个偶数”的反设为 .6 “4x >”是“240x x ->”的 条件.7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是____ ____ .8.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为____________.9.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.10.已知数列{b n }的通项公式为b n =14⎝⎛⎭⎫23n -1.求证:数列{b n }中的任意三项不可能成等差数列.。
人教A选修2-211-12学年高二数学:2.2.2 反证法 课件(人教A版选修2-2)

[例3] 已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. [分析]
[解析] 根据点A和平面α的位置关系,分 两种情况证明. (1)如图1,点A在平面α内,假设经过点A 至少有平面α的两条垂线AB、AC,那么AB、 AC是两条相交直线,它们确定一个平面β, 平面β和平面α相交于经过点A的一条直线a.
[点评] 1.本题的解答依赖于等差和等比 数列的概念和性质,体现了特殊化思想、 分类讨论思想和正难则反的思维策略.对 代数的推理能力要求较高. 2.结论中含有“不”、“不是”、“不 可能”、“不存在”等词语的命题,此类 问题的反面比较具体,适于应用反证法.
3.反证法属逻辑方法范畴,它的严谨体 现在它的原理上,即“否定之否定等于肯 定”,其中:第一个否定是指“否定结论 (假设)”;第二个否定是指“逻辑推理结 果否定了假设”.反证法属“间接解题方 法”,书写格式易错之处是“假设”易错 写成“设”.
2.命题“三角形中最多只有一个内角是 直角”的结论的否定是 ( ) A.两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角 [答案] C [解析] “最多只有一个”即为“至多一 个”,反设应为“至少有两个”,故应选 C.
3.如果两个实数之和为正数,则这两个 数( ) A.一个是正数,一个是负数 B.两个都是正数 C.至少有一个正数 D.两个都是负数 [答案] C [解析] 假设两个数都是负数,则两个数 之和为负数,与两个数之和为正数矛盾, 所以两个实数至少有一个正数,故应选C.
[分析] 本题中,含有“至少存在一个” 词,可考虑使用反证法.
[证明]
1 假设不存在 x∈[-1,1]上一个 x 满足|f(x)|≥2.
人教A选修二第2章2.2.2

课堂互动讲练
考点突破 用反证法证明否定性命题 结论中含有“不 、 不是 不是”、 不可能 不可能”、 不存在 不存在” 结论中含有 不”、“不是 、“不可能 、“不存在 等词语的命题,此类命题的反面比较具体, 等词语的命题,此类命题的反面比较具体,适于 应用反证法. 应用反证法.
x-2 - 例1 已知 f(x)=a + (a>1),证明 = , x+1 +
2
用反证法证明唯一性问题 结论以“有且只有一个 、“只有一个 、“唯一存 结论以 有且只有一个”、 只有一个”、 唯一存 有且只有一个 只有一个 等形式出现的命题, 在”等形式出现的命题,由于反设结论易于导出 等形式出现的命题 矛盾,所以用反证法证其唯一性简单明了. 矛盾,所以用反证法证其唯一性简单明了. 例3 已知:一点 和平面 已知:一点A和平面 和平面α. 求证:经过点A只能有一条直线和平面 垂直. 只能有一条直线和平面α垂直 求证:经过点 只能有一条直线和平面 垂直.
在平面β内经过点 有两条直线都和 垂直, 在平面 内经过点A有两条直线都和 垂直,这 内经过点 有两条直线都和BC垂直 与平面几何中经过直线外一点只能有已知直线的 一条垂线相矛盾. 一条垂线相矛盾. 综上,经过一点A只能有平面 的一条垂线. 只能有平面α的一条垂线 综上,经过一点 只能有平面 的一条垂线.
(2)如图 ,点A在平面 外,假设经过点 至少有 如图2, 在平面α外 假设经过点A至少有 如图 在平面 平面α的两条垂线 的两条垂线AB和 为垂足), 平面 的两条垂线 和AC(B、C为垂足 ,那么 、 为垂足 AB、AC是两条相交直线,它们确定一个平面 , 是两条相交直线, 、 是两条相交直线 它们确定一个平面β, 平面β和平面 相交于直线BC,因为AB⊥平面α, 和平面α相交于直线 平面 和平面 相交于直线 ,因为 ⊥平面 , AC⊥平面 ,BC⊂α,所以 ⊥BC,AC⊥BC. ⊥平面α, ⊂ ,所以AB⊥ , ⊥ 图2
《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)

知识要点
反证法主要适用于以下两种情形: (1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰. (2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很 少的几种情形.
知识要点
用反证法证题时,应注意的事项 : (1)周密考察原命题结论的否定事项, 防止否定不当或有所遗漏; (2)推理过程必须完整,否则不能说明命题的真伪性; (3)在推理过程中,要充分使用已知条 件,否则推不出矛盾,或者不能断定推出的结果是错误的.
矛盾
所以 _假__设__不__成__立 ,即求证的命题正确. 命题成立
l3
P
l1
l2
知识要点
反证法的步骤 一、提出假设 假设待证命题不成立,或是命题的反面成立. 二、推理论证 以假设为条件,结合已知条件推理,得出与已知条件或是正确命题相矛盾的结论. 三、得出矛盾 这与“......”相矛盾. 四、结论成立 所以假设不成立,所求证的命题成立.
∴ ∠ 1 =∠ 2 =∠3(两直线平行,同位角相等) ∴ l 3∥ l2(同位角相等,两直线平行 ) 归纳
l1
l1
l2
P 2
l1
3
请同学们自己比较两种证明方法的各自特点,从中体验反证法的思考过程和特点.
新知探究
结合我们讲过的例子,我们可以得到什么?
思考
由上面的例子可以看出,反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件 矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
知识要点
宜用反证法证明的题型
(1)以否定性判断作为结论的命题; (2)某些定理的逆命题; (3)以“至多”、“至少”或“不多于”等形式陈述的命题; (4)关于“唯一性”结论的命题; (5)解决整除性问题; (6)一些不等量命题的证明; (7)有些基本定理或某一知识体系的初始阶段; (8)涉及各种“无限”结论的命题等等.
(人教A版)数学【选修2-2】2-2-2《反证法》ppt课件

规律技巧 用反证法证明“至多”“至少”型命题,可减 少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什 么,避免出现错误.需仔细体会“至多有一个”“至少有一 个”的含义.
三 用反证法证明否定性命题 【例3】 求证抛物线上任取四点所组成的四边形不可能
是平行四边形.
已知:如图所示,A,B,C,D是抛物线y2=2px(p>0)上的 任意四点,其坐标分别是(x1,y1),(x2,y2),(x3,y3),(x4, y4).连接AB,BC,CD,DA.
答案 D
3.求证:如果a>b>0,那么n
n a>
b(n∈N,且n>1).
证明 假设n a不大于n b,则n a=n b,或n a<n b.
当n a=n b时,则有a=b. 这与a>b>0相矛盾.
当n
n a<
b时,则有a<b,
这也与a>b相矛盾.
所以n
a>
b.
4.若a,b,c均为实数,且a=x2-2y+
求证:四边形ABCD不可能是平行四边形. 【分析】 解答本题的关键在于通过假设,根据平行四边 形对边所在直线的斜率相等,推出结论与已知条件相矛盾,从 而肯定原命题正确.
【证明】 由题意得,直线AB的斜率为 kAB=xy22--xy11=y12+py2,同理kBC=y32+py2, kCD=y42+py3,kDA=y12+py4. 假设四边形ABCD为平行四边形,则有kAB=kCD,kBC=kDA. 即有yy23+ +yy12= =yy31+ +yy44, ,① ② 由①-②,得y1-y3=y3-y1,
π 2
,b=y2-2z+
π3,c=z2-2x+6π.
高中数学选修~课件第三章§反证法

推理不严谨,结论不成立
推理过程中存在漏洞
在使用反证法时,需要确保推理过程的严谨性。如果推理过程中存在漏洞,就可 能导致结论不成立。
未能正确运用逻辑规则
在反证法中,需要正确运用逻辑规则进行推理。如果未能正确运用逻辑规则,就 可能导致推理结果出现错误。
05 练习题与拓展思考
针对性练习题
证明
若$a,b,c in mathbb{R}$,且$a=b+c$,则$a,b,c$中至少有一个数不小于$frac{a}{3}$ 。
错误地否定原命题
在反证法中,需要假设原命题的否定 形式成立,然后进行推理。如果错误 地否定了原命题,就会导致推理方向 偏离正确轨道。
未能找到矛盾点或突破口
对已知条件理解不足
在使用反证法时,需要充分利用已知条件进行推理。如果对 已知条件理解不足,就可能无法找到矛盾点或突破口。
缺乏解题经验
对于一些较为复杂的题目,需要具备一定的解题经验才能找 到矛盾点或突破口。如果缺乏解题经验,就可能无法有效地 运用反证法。
假设$x,y$都不大于$1$,即$x leq 1, y leq 1$,则$x+y leq 2$,与已知条件 $x+y>2$矛盾,故假设不成立,原命题成立。
答案及解析
• 假设在这$99$个数中,任意三个数的和都不是$3$的倍数。 考虑这$99$个数除以$3$的余数,只能为$0,1,2$。由于 $99$个数中任意三个数的和都不是$3$的倍数,故余数为 $0,1,2$的数应各出现$33$次。但在这$99$个连续自然数中 ,必有一个数能被$3$整除,即余数为$0$的数至少有$34$ 个,与假设矛盾,故原命题成立。
高中数学选修~课件 第三章§反证法
汇报人:XX 20XX-01-30
2.2.2反证法

应用反证法常见的“结论词”与“反设词” 当命题中出现“至多”“至少”等词语时,直接证明不易 入手且讨论较复杂.这时,可用反证法证明,证明时常见的 “结论词”与“反设词”如下:
已知:∠A, ∠ B, ∠ C是△ABC的内角. 求证: ∠ A, ∠ B, ∠ C中至少有一个 不小于60°
证明: 假设 ABC 的三个内角A,B,C都小于60°, 所以
∠ A < 60°,∠B < 60°, ∠C < 60°
∴ ∠A+∠B+∠C<180°
这与 三角形内角和等于180° 相矛盾.
2 2
个方程有实数根.
【解】 零得 Δ1=4a2+44a-3<0, Δ2=a-12-4a2<0, Δ =2a2-4×-2a<0, 3 假设三个方程都没有实数根,则由判别式都小于
1 3 -2<a<2, 则a>1或a<-1, 3 -2<a<0,
3 解得-2<a<-1,
x
根.
【解】
假设x0是f(x)=0的负数根,
x0 -2 则x0<0且x0≠-1且ax0=- , x0 +1 x0 -2 由0<ax0<1⇒0<- <1, x0 +1 1 解得2<x0<2,这与x0<0矛盾,所以假设不成立, 故方程f(x)=0没有负数根.
2、求证: 2 是无理数。
证明:假设 2不是无理数,则 2是有理数 m 则存在互质的整数m,n使得 2 = , n
人教A版选修(2-2)2.2.2《反证法》课件(23张ppt)优秀课件PPT

【变式训练3】已知a≠0,证明x 的方程ax=b有且只有一个根.
回顾与归纳
反证法
假 设
公 得理
结 论
推理论证
出 矛
、 定
的 反 面 正
反确设
盾理 (等 已) 知
、归谬
命
假题
得出结论
设成 不立
.
成
立
,
原
结论
课堂练习
1.写出下列各结论的反面:
(1)a//b;
a∥b
(2)a≥0;
a<0
(3)b是正数;
b是0或负数
(4)a⊥b
a不垂直于b
2.已知:如图,△ABC中,AB=AC,∠APB≠∠APC。 求证:PB≠PC
证明:假设PB=PC。
在△ABP与△ACP中
AB=AC(已知)
AP=AP(公共边)
PB=PC(已知)
∴△ABP≌△ACP(S.S.S)
∴∠APB=∠APC(全等三角形
对应边相等)
B
这与已知条件∠APB≠∠APC
你能对小华的判断说出理由吗?
小华的理由:
假设昨天晚上没有下雨,那么地上应是干的,这与 早晨地上全湿了相矛盾,所以说昨晚下雨是正确的。
我们可以把这种说理方法总结一下:
知新益能
• 1.反证法 • 假设原命题_不__成_立__(即在原命题的条件下,
结论不成立),经过正确的推理,最后得 出矛盾,因此说明_假__设__错_误__,从而证明了 _原__命_题__成__立__,这种证明方法叫做反证法. • 2.反证法常见矛盾类型 • 反证法的关键是在正确的推理下得出矛盾, 这个矛盾可以是与_已__知__条_件__、_公_理__、_定__义_、 _定_理__等矛盾.
2.2.2-反证法-课件

∴ {cn}不是等比数列 .
栏目 导引
第二章
推理与证明
【名师点评】
(1)当结论为否定形式的命题时 ,通过反设 ,
转化为肯定性命题 .可作为条件应用进行推理 ,因此对此类 问题用反证法很方便 . (2)用反证法证明问题的一般步骤: ①假设命题的结论不成立 ,即假设结论的反面成立 ; ②从这个假设出发 ,经过推理论证 ,得出矛盾; ③从矛盾判定假设不正确 ,从而肯定命题的结论正确 .
跟踪训练
栏目 导引
第二章
推理与证明
知能演练轻松闯关
栏目 导引
第二章
推理与证明
本部分内容讲解结束
按ESC键退出全屏播放
栏目 导引
第二章
http://www.99dyw.co/ 九九电影网 / 九九电影网 www.youhuijuan.co 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014 天堂网2014
例1 设{an},{bn}是公比不相等的两个等比数列 ,cn=an+bn,
证明:数列 {cn}不是等比数列 .
【证明】 假设 {cn}是等比数列 , 则当 n≥ 2 时 ,(an+ bn)2= (an-1+bn- 1)· (an+1+bn+ 1). 2 ∴ a2 + 2 a b + b n n n n = an- 1an+ 1+ an- 1bn+1+bn- 1an+ 1+bn-1bn+ 1. 设 {an},{bn}的公比分别为 p,q(p≠ q).
2016-2017学年人教版高中数学选修2-2课件:第二章 2.2 2.2.2 反证法

a≤-2或a≥0.
即 a∈
上一页
下一页 末 页 第十四页,编辑于星期五:十五点 四十分。
结束
3.[变条件,变设问]已知 a,b,c,d∈R,且 a+b=c+d=1,ac +bd>1,求证:a,b,c,d 中至少有一个是负数. 证明:假设 a≥0,b≥0,c≥0,d≥0. ∵a+b=c+d=1, ∴(a+b)(c+d)=1, ∴ac+bd+bc+ad=1. 而 ac+bd+bc+ad>ac+bd>1,与上式矛盾, ∴假设不成立, ∴a,b,c,d 中至少有一个是负数.
首页
上一页
下一页 末 页 第十五页,编辑于星期五:十五点 四十分。
结束
用反证法证明“至多”“至少”等问题的两个关注点 (1)反设情况要全面,在使用反证法时,必须在假设 中罗列出与原命题相异的结论,缺少任何一种可能,反 证法都是不完全的. (2) 常 用 题 型 : 对 于 否 定 性 命 题 或 结 论 中 出 现 “ 至 多”“至少”“不可能”等字样时,常用反证法.
2.[变条件,变设问]将本题条件改为三个方程中至多有 2 个方程有 实数根,求实数 a 的取值范围. 解:假设三个方程都有实数根,则
((4aa-)21-)2-4(-4a42≥a+0,3)≥0, (2a)2+4×2a≥0,
即43aa22+ +42aa- -31≥ ≤00, , a2+2a≥0,
a≤-32或a≥12, 解得-1≤a≤13,
人教A版高中数学选修1-2课件2.2.2

8.完成下面的反证法证题的全过程. 已知:设a1,a2,…,a7是1,2,…,7的一个全排列. 求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数. 证明:假设p为奇数,则______①______均为奇数, 因为奇数个奇数之和为奇数,故有奇数 =________②________ =________③________ =0. 但奇数≠偶数,这一矛盾说明,p为偶数.
跟踪训练
3.求证:方程2x=3有且只有一个根. 证明:∵2x=3,∴x=log23,这说明方程至少有一个根. 下面用反证法证明方程2x=3的根是唯一的.
假设方程2x=3有两个根x1,x2(x1≠x2),则2x1=3, 2x2=3,两式相除得,2x1-x2=1,如果x1-x2>0,则2x1-x2 >1,这与2x1-x2=1相矛盾;
11.已知 a,b,c 均为实数,且 a=x2-2y+π2,b =y2-2z+π3,c=z2-2x+π6,求证:a,b,c 中至少有 一个大于 0.
证明:假设a,b,c都不大于0,即a≤0,b≤0,c≤0, 得a+b+c≤0, 而a+b+c=(x-1)2+(y-1)2+(z-1)2+π-3≥π-3>0, 即a+b+c>0,与a+b+c≤0矛盾, ∴a,b,c中至少有一个大于0.
(3)反证法常用于直接证明比较困难的命题,例如某些初 始命题(包括部分基本定理)、必然性命题、存在性问题、唯 一性问题、否定性问题、带有“至多有一个”或“至少有一 个”等字眼的问题.
使用反证法证明问题时,准确地做出反设是正确运用反 证法的前提,常见“反设词”如下:
原 =><
2.2.2 反证法

二 新知探究
反证法:
假设命题结论的反面成立,经过正确的 推理,引出矛盾,因此说明假设错误,从而 证明原命题成立,这样的的证明方法叫反 证法。
反证法:
正难则反
综合法 :由因导果.
分析法 :执果索因.
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
①
1 以上三式相乘: (1 a)a•(1 b)b•(1 c)c≤ 64 与①矛盾∴结论成立
1 1 (1 c )c 同理: (1 b)b 4 4
1 (1 a ) a ∴0 (1 a )a 2 4
2
4
5
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结论 正确 归缪矛盾: (1)与已知条件矛盾; (2)与已有公理、定理、定义矛盾; (3)自相矛盾。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论.
(3)结论为“至少”、“至多”、“有无穷
多个” ---类命题; (4)结论为 “唯一”类命题;
2 求证: 2 是无理数。
证:假设 2是有理数,
m 则存在互质的整数m,n使得 2 = , n 2 2 ∴ m = 2n ∴ m = 2n
2 2 2 2
∴m 2 是偶数,从而m必是偶数,故设m = 2k(k∈N)
从而有4k = 2n ,即n = 2k ∴n2 也是偶数, 这与m,n互质矛盾!
所以假设不成立,2是有理数成立。
三 知识应用
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、用反正法证明时,导出矛盾有那几种可能?
(1)与原命题的条件矛盾;
(2)与假设矛盾。
(3)与定义、公理、定理、性质矛盾; (4)与客观事实矛盾.
2、你认为反证法的使用情形有那些?
(1)难于直接使用已知条件导出结论的命题; (2)唯一性命题; (3)“至多”或“至少”性命题; (4)否定性或肯定性命题。 练习:资料P65 课时 5
题型一
用反证法证明否定性命题
1.求证:1, 3,2 不能是同一等差数列中的三项.
证明:假设 1, 3,2 是公差为 d 的等差数列的三项, 则 1= 3-md,2= 3+nd, 其中 m, n 为正整数. 由上面两式消去 d,得 n+2m= 3(n+m). 因为 n+2m 为有理数,而 3(n+m)为无理数, 所以 列中的三项. 3(n+m), 因此假设不成立,即 1, 3,2 不能是同一等差数
点评:如果结论的反面只有一种,则只需将此 否定驳倒,这种比较单纯的反证法称归谬法.如果 结论的反面情况不只一种,则必须将其逐一驳倒, 才能推出命题结论正确.
思考?
今有A、B、C三个人,A说B撒谎,B说C撒 谎,C说A、B都撒谎,则C必定是在撒谎,为 什么?
分析:假设C没有撒谎, 则C真. - - -- 那么A假且B假; 由A假, 知B真. 这与B假矛盾. 那么假设C没有撒谎不成立; 则C必定是在撒谎.
2.2.2直接证明与间接证明
—反证法
反证法: 假设命题结论的反面成立,经过正确的推理,引出 矛盾,由此说明假设错误,从而证明原命题成立,这 样的证明方法叫反证法。
反证法的思维方法:正难则反
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成立; (2)从这个假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,从而肯定命题的结论正 确.
点评:采用反证法证明结论中至少或至多形式时,可以使 得推证方向明确、推证过程清晰,有利于问题的整体解决.
题型3 用反证法证明唯一性命题
例3 已知 a≠0,证明关于 x 的方程 ax=b 有且只有一个根
b 证明:由于 a≠0,因此方程至少有一个根 x=a. 如果方程不只一个根,不妨设 x1,x2 是它们的两个不同的根, 即有:ax1=b 且 ax2=b,则有 a(x1-x2)=0, 因为 x1≠x2,所以 a=0,这与已知矛盾.故假设错误. 所以 a≠0,方程 ax=b 有且只有一个根. 点评:“有且只有”包含了“有根”和“只有这个根”两层意 b 思.由于 a≠0,因此方程至少有一个根 x=a.从正面较难说明为什么 只有这个根.故我们采用反证法.
跟 踪 题型4 当正面入手较困难时宜用反证法 训 练
4.已知平面 M 内有两相交直线 a,b(交点为 P)和 平面 N 平行.求证:平面 M∥平面 N.
证明:假设平面 M 不平行于平面 N, 则平面 M 和平面 N 一定相交,设交线为 c. ∵a∥平面 N,∴a∥c.同理 b∥c. 则过 c 外一点 P 有两条直线与 c 平行. 这与公理 “ 过直线外一点有且只有一条直线和 已知直线平行”相矛盾,所以假设不成立. 所以平面 M∥平面 N.
点评: 本题很好地体现了反证法证明否定性数学 命题的巨大作用, 同时也十分清晰地展示了反证法的 证明步骤.
跟 踪 题型2 用反证法证明“至少、至多”问题 训 练
中至少有一个小于 2.
1+x 1+y 2.已知 x>0,y>0,且 x+y>2.试证: y , x
1+x 1+y 证明:假设 y , x 都不小于 2, 1+x 1+y 即 y ≥2, x ≥2. 因为 x>0, y>0, 所以 1+x≥2y, 且 1+y≥2x. 把这两个不等式相加,得 2+x+y≥2(x+y), 从而 x+y≤2.这与已知条件 x+y>2 矛盾. 1+x 1+y 因此 y , x 都不小于 2 是不可能的, 即原命题成立.
跟 踪
3.求证:方程 训 练
x
2 =3 有且ቤተ መጻሕፍቲ ባይዱ有一个根.
x
证明 :∵2 = 3, ∴x= log23,这说明方程至少 有一个根. 下面用反证法证明方程 2x=3 的根是唯一的. 假设方程 2x=3 有两个根 x1,x2(x1≠x2),则 2x1=3, 2x2=3,两式相除得,2x1-x2=1,如果 x1-x2> 0,则 2x1-x2>1,这与 2x1-x2=1 相矛盾; 如果 x1-x2<0,则 2x1-x2<1,这也与 x1- x2 2 =1 相矛盾,因此,x1-x2=0,即 x1=x2, 这与 x1≠x2 矛盾,所以方程 2x=3 有且只有一个根.