人教版八年级数学(下)学期 第一次 自主检测测试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )
A .20cm
B .18cm
C .25cm
D .40cm
2.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )
A .29cm
B .5cm
C .37cm
D .4.5cm
3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )
A .0.8米
B .2米
C .2.2米
D .2.7米 4.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、
E 分别在AC 、BC
上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )
A .不存在
B .等于 1cm
C .等于 2 cm
D .等于 2.5 cm
5.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( ) A .4 B .8 C .16 D .52
6.如图,已知AB AC =,则数轴上C 点所表示的数为( )
A .3-
B .5-
C .13-
D .15-
7.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )
A .34
B .35
C .45
D .125
8.以下列各组数为边长,不能构成直角三角形的是( )
A .3,4,5
B .1,1,2
C .8,12,13
D .2、3、5
9.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )
A .9
B .210
C .326+
D .12
10.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )
A .4
B .3
C .2
D .1
二、填空题
11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.
12.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.
13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
14.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.
15.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.
16.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222
()0c a b a b --+-=,则△ABC 的形状为___________
17.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.
18.如图,直线423
y x =
+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.
19.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.
20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12
BE CF AB +=.
()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.
(2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
24.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .
(1)求证:AE =BD ;
(2)试探究线段AD 、BD 与CD 之间的数量关系;
(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.
25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =;
(2)延长BD 与EF 交于点G .
①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为
______________.
26.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.
(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.
(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.
27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .
(1)补全图形.
(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).
(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.
28.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .
(1)直接写出BC =__________,AC =__________;
(2)求证:ABD ∆是等边三角形;
(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;
(4)P 是直线AC 上的一点,且13
CP AC =
,连接PE ,直接写出PE 的长. 29.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,
(1)试说明△ABC 是等腰三角形; (2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),
①若△DMN 的边与BC 平行,求t 的值;
②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.
图1 图2 备用图
30.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .
(1)求点A 的坐标;
(2)判断DF 与OE 的数量关系,并说明理由;
(3)直接写出ADG ∆的周长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.
【详解】
解:如图,将圆柱展开,EG 为上底面圆周长的一半,
作A 关于E 的对称点A ',连接A B '交EG 于F ,
则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,
即 25cm AF BF A B '+==,
延长BG ,过A '作A D BG '⊥于D ,
3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,
Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,
故选D .
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计
算是解题的关键.同时也考查了同学们的创造性思维能力.
2.B
解析:B
【分析】
要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
【详解】
解:根据题意,如图所示,最短路径有以下三种情况:
(1)沿AA',A C'',C B'',B B'剪开,得图1:
22222
'=+'=++=;
AB AB BB
(21)425
(2)沿AC,CC',C B'',B D'',D A'',A A'剪开,得图2:
22222
'=+'=++=+=;
AB AC B C
2(41)42529
DD,B D'',C B'',C A'',AA'剪开,得图3:
(3)沿AD,'
22222
AB AD B D
'=+'=++=+=;
1(42)13637
AB'=.
综上所述,最短路径应为(1)所示,所以225
AB'=,即5cm
故选:B.
【点睛】
此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.
3.D
解析:D
【分析】
先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.
【详解】
解:如图,由题意可得:
AD2=0.72+2.42=6.25,
在Rt△ABC中,
∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,
∴AB2+1.52=6.25,
∴AB=±2,
∵AB>0,
∴AB=2米,
∴小巷的宽度为:0.7+2=2.7(米).
故选:D.
【点睛】
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.
4.C
解析:C
【分析】
当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.
【详解】
解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.
【点睛】
本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.5.B
解析:B
作AD ⊥BC ,则D 为BC 的中点,即BD=DC=2,根据勾股定理可以求得AD ,则根据S=12
×BC×AD 可以求得△ABC 的面积. 【详解】
解:作AD ⊥BC ,则D 为BC 的中点,
则BD=DC=2,
∵AB=2522AB BD -,
∴△ABC 的面积为S=
12×BC×AD=12
×4×4=8, 故选:B .
【点睛】
本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD 是解题的关键. 6.D
解析:D 【分析】
根据勾股定理求出AB 的长,即为AC 的长,再根据数轴上的点的表示解答.
【详解】 由勾股定理得,22125AB =+=∴5AC AB ==∵点A 表示的数是1
∴点C 表示的数是15-故选D.
【点睛】
本题考查了勾股定理、实数与数轴,熟记定理并求出AB 的长是解题的关键.
7.D
解析:D
【解析】
在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125
,故选D. 8.C
解析:C
根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】
A. 32+42=52,能构成直角三角形,故不符合题意;
B. 12+12=(2)2,能构成直角三角形,故不符合题意;
C. 82+122≠132,不能构成直角三角形,故符合题意;
D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,
故选C.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
9.B
解析:B
【分析】
将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.
【详解】
解:如图,AB=22
(24)2210
++=.
故选:B.
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.
10.A
解析:A
【分析】
根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积.
【详解】
解:3和5为两条直角边长时,
小正方形的边长=5-3=2,
∴小正方形的面积22=4;
综上所述:小正方形的面积为4;
故答案选A .
【点睛】
本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键.
二、填空题
11.1或
78
【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.
【详解】
解:分为3种情况:
①当PB PQ =时,
4=OA ,3OB =,
∴5BC AB ===, C 点与A 点关于直线OB 对称,
BAO BCO ∴∠=∠,
BPQ BAO ∠=∠,
BPQ BCO ∴∠=∠,
APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,
APQ CBP ∴∠=∠,
在APQ 和CBP 中,
BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩
, ()APQ CBP AAS ∴△≌△,
∴5AP BC ==,
1OP AP OA ∴=-=;
②当BQ BP =时,
BPQ BQP ∠=∠,
BPQ BAO ∠=∠,
BAO BQP ∴∠=∠,
根据三角形外角性质得:BQP BAO ∠>∠,
∴这种情况不存在;
③当QB QP =时,
QBP BPQ BAO ∠=∠=∠,
PB PA ∴=,
设OP x =,则4PB PA x ==-
在Rt OBP △中,222PB OP OB =+,
222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或
78; 【点睛】
本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.
12.6或2.
【分析】
由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:
①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;
②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.
【详解】
解:分两种情况讨论:
①当D 点在BC 上方时,如图1所示,
把△ABD 绕点D 逆时针旋转90°,得到△DCE ,
则∠ABD=∠ECD ,CE=AB=22,AD=DE ,且∠ADE=90°
在四边形ACDB 中,∠BAC+∠BDC=90°+90°=180°,
∴∠ABD+∠ACD=360°-180°=180°,
∴∠ACD+∠ECD=180°,
∴A 、C 、E 三点共线.
∴AE=AC+CE=42+22=62
在等腰Rt △ADE 中,AD 2+DE 2=AE 2,
即2AD 2=(62)2,解得AD=6
②当D 点在BC 下方时,如图2所示,
把△BAD 绕点D 顺时针旋转90°得到△CED ,
则CE=AB=22,∠BAD=∠CED ,AD=AE 且∠ADE=90°,
所以∠EAD=∠AED=45°,
∴∠BAD=90°+45°=135°,即∠CED=135°,
∴∠CED+∠AED=180°,即A 、E 、C 三点共线.
∴AE=AC-CE=42-22=22
在等腰Rt △ADE 中,2AD 2=AE 2=8,解得AD=2.
故答案为:6或2.
【点睛】
本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.
13.232
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4,
∴22224223AC AB BC =-=-=
当AC 为腰时,则该三角形的腰长为3
当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则3
设DE=x ,则AD=2x ,
∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:23或2 【点睛】 此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
14.1425+或825+
【分析】
分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.
【详解】
解:分两种情况考虑:
如图1所示,此时△ABC 为锐角三角形,
在Rt △ABD 中,根据勾股定理得:BD=
22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=
2222543AC AD -=-=,
∴BC=253+, ∴△ABC 的周长为:652531425+++=+;
如图2所示,此时△ABC 为钝角三角形,
在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,
∴BC=253-, ∴△ABC 的周长为:65253825++-=+;
综合上述,△ABC 的周长为:1425+或825+; 故答案为:1425+或825+.
【点睛】
此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 15.6
【解析】
∵AB=AC ,AD 是角平分线,
∴AD ⊥BC ,BD=CD ,
∴B 点,C 点关于AD 对称,
如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,
则CQ=BP+PQ 的最小值,
根据勾股定理得,AD=8,
利用等面积法得:AB ⋅CQ=BC ⋅AD ,
∴CQ=
BC AD AB ⋅=12810
⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.
16.等腰直角三角形
【解析】
根据非负数的意义,由()2222
0c a b a b --+-=,可知222c a b =+,a=b ,可知此三角
形是等腰直角三角形.
故答案为:等腰直角三角形.
点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 17.485
【解析】
试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面
积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485
. 18.(0,
34). 【分析】 由423
y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122
OA '=
-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423
y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32
-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=
32,
∴52AB =
==, ∴53122
OA '=-=, 设点C 的坐标为(0,m )
由翻折得ABC A BC '≌,
∴2A C AC m '==-,
在Rt A OC '中, 222A C OC A O ''=+,
∴222(2)1m m -=+,解得m=
34, ∴点C 的坐标为(0,
34). 故答案为:(0,
34
). 【点睛】
此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标.
19.32
【分析】
由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.
【详解】
解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +
由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,
∵AM =7EF ,
727,,2
a b a b ∴== ∵正方形EFGH 的面积为4,
∴24b =,
∴正方形ABCD 的面积=2224+832.a b b ==
故答案为32.
【点睛】
本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.
20.522,322++
【分析】
过B 作BF ⊥CA 于F ,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC 的长.
【详解】
分两种情况:
①当∠C 为锐角时,如图所示,过B 作BF ⊥AC 于F ,
由折叠可得,折痕PE 垂直平分AB ,
∴AP=BP=4,
∴∠BPC=2∠A=45°,
∴△BFP 是等腰直角三角形,
∴BF=DF=22,
又∵BC=3,
∴Rt △BFC 中,CF=221BC BF -=,
∴AC=AP+PF+CF=5+22;
②当∠ACB 为钝角时,如图所示,过B 作BF ⊥AC 于F ,
同理可得,△BFP 是等腰直角三角形,
∴BF=FP=22
又∵BC=3,
∴Rt △BCF 中,1=,
∴AC=AF-CF=3+
故答案为:5+3+
【点睛】
本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
三、解答题
21.(1)BE =1;(2)见解析;(3)(2y x =
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据
30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.
【详解】
解:(1)如图1,∵△ABC 是等边三角形,
∴∠B =∠C =60°,BC =AC =AB =4.
∵点D 是线段BC 的中点,
∴BD =DC =12
BC =2. ∵DF ⊥AC ,即∠AFD =90°,
∴∠AED =360°﹣60°﹣90°﹣120°=90°,
∴∠BED =90°,∴∠BDE =30°,
∴BE =12
BD =1;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,
则有∠AMD =∠BMD =∠AND =∠CND =90°.
∵∠A =60°,
∴∠MDN =360°﹣60°﹣90°﹣90°=120°.
∵∠EDF =120°,
∴∠MDE =∠NDF .
在△MBD 和△NCD 中,
∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,
∴△MBD ≌△NCD (AAS ),
∴BM =CN ,DM =DN .
在△EMD 和△FND 中,
∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,
∴△EMD ≌△FND (ASA ),
∴EM =FN ,
∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12
AB ;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM 22=3BD BM BM -,
∴)3x y x y +=-,整理,得(23y x =.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度AE=22257-=24米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22CD CE -222520-,
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.
【分析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩

∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =
,AD ==
此时22l AD =+=
综上可知24l +≤<.
【点睛】
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
24.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =
+4.
【分析】
(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;
(2)利用全等三角形的性质及勾股定理即可证得结论;
(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.
【详解】
(1)证明:∵△ACB 和△ECD 都是等腰直角三角形
∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°
∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD
∴∠ACE =∠BCD ,
∴△ACE ≌△BCD (SAS ),
∴AE =BD .
(2)解:由(1)得△ACE ≌△BCD ,
∴∠CAE =∠CBD ,
又∵△ABC 是等腰直角三角形,
∴∠CAB =∠CBA =∠CAE =45°,
∴∠EAD =90°,
在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,
∴BD 2+AD 2=ED 2,
∵ED =2CD ,
∴BD 2+AD 2=2CD 2,
(3)解:连接EF ,设BD =x ,
∵BD :AF =1:2AF =2x ,
∵△ECD 都是等腰直角三角形,CF ⊥DE ,
∴DF =EF ,
由 (1)、(2)可得,在Rt △FAE 中,
EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,
∴222(223)2(36)x x x ++=,
解得x =1,
∴AB =2+4.
【点睛】
此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.
25.(1)见解析;(2)①见解析;②2.
【分析】
(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;
(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有
∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;
②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积
=1
2
BC CG
⋅,而BC和CG可得,问题即得解决.
【详解】
解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,
当D、E两点重合时,则AD=CD,∴
1
30
2
DBC ABC
∠=∠=︒,
∵CF CD
=,∴∠F=∠CDF,
∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,
∴∠CBD=∠F,∴BD DF
=;
(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,
过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,
∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,
∵AE CD
=,CD=CF,∴EH=CF,
又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),
∴∠EBH=∠FEC,EB=EF,
∵BA=BC,∠A=∠ACB=60°,AE=CD,
∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,
∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;
②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,
∵EB=EF ,∴∠F =∠EBF =45°,
∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,
过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,
∴6BM ME MF ===,
∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=
-, ∴()262312CN FN ==⨯-=-,
∴()
2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,
∴62CG CF ==-,
∴△BCG 的面积=
()()
116262222BC CG ⋅=+-=. 故答案为:2.
【点睛】
本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.
26.(1)3;(2)见解析.
【分析】
(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.
【详解】
解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =
∴222AC AD CD =-=,
∵2BC AC =,∴BC=4,BD =3,∴1132322
ABD S BD AC ∆=
⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,
∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,
∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,
∴∠EFC =∠BCG ,∴∠E =∠BCG ,
在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,
∴222GH BG BH BG =+=,
∴2EG GH EH BG CG =+=
+.
【点睛】
本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.
27.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =
【分析】
(1)根据题意画出图形即可;
(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.
【详解】
解:(1)如图所示;
(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,
∴∠PAD=α,AB=AD ,
∵90BAC ∠=︒,
∴902DAC α∠=︒-,
又∵AB=AC ,
∴AD=AC ,
∴∠ADC=1[180(902)]2
α⨯︒-︒-=45α︒+; (3)如图,连接BE ,
由(2)知:∠ADC=45α︒+,
∵∠ADC=∠AED+∠EAD ,且∠EAD=α,
∴∠AED=45°,
∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,
∴∠AED=∠AEB=45°,BE=DE ,
∴∠BED=90°,
∴△BED 是等腰直角三角形,
∴22222BD BE DE DE =+=, ∴2BD DE =
. 【点睛】
本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.
28.(1)2,232)证明见解析(3221(423221【分析】
(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;
(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得
BCD ACD ACBD S S S =+四边形,代入求解即可;
(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.
【详解】
(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,
在Rt △BDE 中, ∵122BE AE AB ==
=,23DE =, ∴22=4BD BE DE =+,
∴BD=2BE ,∴∠BDE 为60°,
∴ABD ∆为等边三角形;
(3))由(1)(2)可知,=23AC ,AD=4,
∴22=27CD AC AD =+,
∵BCD ACD ACBD S S
S =+四边形, ∴111()222
BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =
; (4)分点P 在线段AC 上和AC 的延长线上两种情况,
如图,过点E 作AC 的垂线交AC 于点Q ,
∵AE=2,∠BAC=30°,∴EQ=1,
∵=23AC ,∴=3CQ QA =,
①若点P 在线段AC 上,
则23=333PQ CQ CP =-=,
∴3
PE =; ②若点P 在线段AC 的延长线上,
则3PQ CQ CP =+=,
∴3
PE =;
综上,PE . 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.
29.(1)见详解;(2)①t 值为:
103s 或6s ;②t 值为:4.5或5或4912. 【分析】
(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;
(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;
②根据题意得出当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-4;分别得出方程,解方程即可.
【详解】
解:(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,
在Rt △ACD 中,AC=5x ,
∴AB=AC ,
∴△ABC 是等腰三角形;
(2)解:由(1)知,AB=5x ,CD=4x ,
∴S △ABC =12
×5x×4x=40cm 2,而x >0, ∴x=2cm ,
则BD=4cm ,AD=6cm ,CD=8cm ,AB=AC=10cm .
由运动知,AM=10-2t ,AN=t ,
①当MN ∥BC 时,AM=AN ,
即10-2t=t , ∴103
t =; 当DN ∥BC 时,AD=AN ,
∴6=t ,
得:t=6;。

相关文档
最新文档