2014新北师大八下第四章因式分解导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 因式分解
第一节因式分解
【学习目标】
(1)了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
(2)通过观察,发现分解因式与整式乘法的关系,培养观察能力和语言概括能力. (3)通过观察,推导分解因式与整式乘法的关系,了解事物间的因果联系. 【学习方法】自主探究与小组合作交流相结合. 【学习重难点】
重点: 1.理解因式分解的意义. 2.识别分解因式与整式乘法的关系.
难点:通过观察,归纳分解因式与整式乘法的关系. 【学习过程】 模块一预习反馈 一.学习准备
1.因式分解是:把 的形式。

2.请同学们阅读教材,预习过程中请注意:⑴不懂的地方要用红笔标记符号;
⑵完成你力所能及的随堂练习和习题; 二.教材精读:
1、整式乘法
公式类:()()a b a b +-=2()a b += 2()a b -= (1)单⨯单:34a ab = (2) 单⨯多:(35)a a b -=
(3) 多⨯多:(3)(2)x y x y -+= (4) 混合乘:(1)(1)a a a +-=
2、把一个多项式化成的形式,这种变形叫做把这个多项式
如:⑴22a b -=()()a b a b +-⑵22
2a ab b ++=2()a b +
⑶222a ab b -+=2()a b -⑷2
35a ab -=(35)a a b -
⑸3
a a -=(1)(1)a a a +-
定义解析:(1)等式左边必须是
(2)分解因式的结果必须是以的形式表示;
(3)分解因式必须分解到每个因式都有不能分解为止。

3、分解因式与整式乘法的关系是: 模块二合作探究
探究一:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么? (1)2
2
111x x x x x x ⎛⎫⎛⎫-
=+- ⎪⎪⎝
⎭⎝⎭(2)()22
2424ab ac a b c +=+ (3)2
4814(2)1x x x x --=--(4)222()ax ay a x y -=-
(5)2224(2)a ab b a b -+=-(6)2
(3)(3)9x x x +-=- 解:
(7)下列从左边到右边的变形,是因式分解的是( )
A 、29)3)(3(x x x -=+-
B 、))((2233n mn m n m n m ++-=-
C 、)1)(3()3)(1(+--=-+y y y y
D 、z yz z y z z y yz +-=+-)2(2242 探究二:连一连:
9x 2-4y 2 a (a +1)2 4a 2-8ab +4 b 2
-3a (a +2)
-3 a 2-6a 4(a -b )2
a 3+2 a 2
+a (3x +2y )(3x -2y ) 模块三形成提升
1. 下列各式从左到右的变形是分解因式的是().
A .a (a -b )=a 2-ab ;
B .a 2
-2a +1=a (a -2)+1 C .x 2
-x =x (x -1); D .x 2
-y
y ⨯1
=(x +y 1)(x -y 1)
2.连一连:
a 2-1 (a +1)(a -1)
a 2+6a +9 (3a +1)(3a -1) a 2-4a +4 a (a -
b ) 9a 2
-1
(a +3)2
a 2-ab
(a -2)2
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:识别分解因式。

三.我的困惑:请写出来:
课外拓展思维训练: 分解因式:
1.若分解因式x 2
+mx-15=(x+3)(x+n),则m 、n 的值是多少?
2.把下列各式分解因式正确的是()
A .x y 2-x 2y =x (y 2-xy );
B .9xyz -6 x 2y 2
=3xyz (3-2xy ) C .3 a 2
x -6bx +3x =3x (a 2
-2b ); D .
21x y 2
+21x 2y =2
1xy (x +y )
第四章因式分解
第二节提公因式法(一)
【学习目标】
(1)经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式(单项式式);(2)会用提取公因式法进行因式分解(单项式式).
(3)通过观察、对比等手段,确定多项式各项的公因式,加强直觉思维,培养观察能力;进一步发展类比思想;
【学习方法】.自主探究与小组合作交流相结合.
【学习重难点】
重点:能观察出多项式的公因式,并根据分配律把公因式提出来.
难点:让学生识别多项式的公因式.
【学习过程】
模块一预习反馈
一.学习准备:
1.请同学们阅读教材的内容,并完成书后习题
2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;
⑵完成你力所能及的随堂练习和习题;
二.教材精读:
1、一个多项式中各项都含有的因式,叫做这个多项式各项的.
2、公因式是各项系数的与各项都含有的字母的的积
多项式ma+mb+mc都含有的相同因式是,
多项式3x2-6xy+x都含有的相同因式是。

3、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做
4.提公因式法分解因式与单项式乘以多项式有什么关系?
模块二合作探究
探究一:找出下列多项式的公因式:
(1)3x+6(2)7x2-21x
(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
探究二:分解因式:
(1)3x+6;(2)7x2-21x;
(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
互相交流,总结出找公因式的一般步骤:
首先:
其次:
探究三:用提公因式法分解因式:
(1)c b a c ab b a 2
33236128+-
(2))(6)(4)(8a x c x a b a x a ---+-
(3)5335y x y x +-
1)c b a c ab b a 2
3
3
2
3
6128+-
(2))(6)(4)(8a x c x a b a x a ---+-
(3)5335y x y x +-
模块三形成提升 1.填空
(1)3x 2-27ax=3x ( );(2)12a 2b+8ab 2
=( )(3a+2b );
(3)25m 2+15mn-5m=5m ( );(4)4a 2
-6ab+2a=( )(2a-3b+1)。

2.将下列多项式进行分解因式:
(1)8x –72 (2)a 2b –5ab (3)4m 3–8m 2
(4)a 2b –2ab 2+ab (5)–48mn –24m 2n 3(6)–2x 2y +4xy 2
–2xy
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:提取公因式法进行因式分解 三.我的困惑:请写出来: 课外拓展思维训练:分解因式:(1)x
n+1
-5x n (2)-8x
2m+1y
m+2
+28x m+1y 2m+4
第四章因式分解
第二节提公因式法(二)
【学习目标】:
(1)进一步让学生掌握用提公因式法分解因式的方法.
(2)培养学生的直觉思维,渗透化归的思想方法,培养学生的观察能力.
(3)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展类比思想.【学习方法】.自主探究与小组合作交流相结合.
【学习重难点】重点:能观察出公因式是多项式的情况,并能合理地进行分解因式.
难点:准确找出公因式,并能正确进行分解因式.
【学习过程】
模块一
一.学习准备:
1.请同学们阅读教材的内容,并完成书后习题
2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;
⑵完成你力所能及的随堂练习和习题;
二.教材精读:
1、一个多项式中各项都含有的因式,叫做这个多项式各项的.
(1)–2x2y+4xy2–2xy的公因式:
(2)a(x–3)+2b(x–3)的公因式:
2、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做
模块二合作探究
探究一:把下列各式分解因式:
(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)
探究二:
1.在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:
(1)2–a=(a–2)(2)y–x=(x–y)
(3)b+a=(a+b)(4)(b–a)2=(a–b)2
(5)–m–n=(m+n)(6)–s2+t2=(s2–t2)
2.把下列各式分解因式:
(1)a(x–y)+b(y–x)(2)2(y-x)2+3(x-y)
(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)
(5)3(m–n)3–6(n–m)2(6)mn(m-n)-m(n-m)2
模块三形成提升 1、填一填: (1)3+a =(a+3)(2)1–x =(x –1)
(3)(m –n )2=(n –m )2 (4)–m 2+2n 2=(m 2–2n 2

2、把(x -y )2
-(y -x )分解因式为( ) A .(x -y )(x -y -1) B .(y -x )(x -y -1) C .(y -x )(y -x -1) D .(y -x )(y -x +1) 3、下列各个分解因式中正确的是( )
A .10ab 2c +6ac 2+2ac =2ac (5b 2
+3c )
B .(a -b )3-(b -a )2=(a -b )2
(a -b +1)
C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c -a )(x +y -1)
D .(a -2b )(3a +b )-5(2b -a )2
=(a -2b )(11b -2a )
4、观察下列各式: ①2a +b 和a +b ,②5m (a -b )和-a +b ,③3(a +b )和-a -b ,
④x 2-y 2和x 2+y 2。

其中有公因式的是() A .①② B.②③ C .③④ D .①④ 5、把下列各式因式分解: (1)x (a+b )+y (a+b )(2)3a (x –y )–(x –y )
(3)6(p+q )2
–12(q+p )(4)a (m –2)+b (2–m )
(5)2(y –x )2+3(x –y )(6)mn (m –n )–m (n –m )2
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:提公因式法分解因式。

三.我的困惑:请写出来:
课外拓展思维训练:分解因式:
1.分解因式:x (a-b )2n +y (b-a )2n+1
=_______________________.
2.△ABC 的三边满足a 4+b 2c 2-a 2c 2-b 4
=0,则△ABC 的形状是__________. 3.若A y x y x y x ⋅-=+--)(2
2
,则A =_____
第四章 因式分解
第三节
运 用 公 式 法(一)
【学习目标】
(1)了解运用公式法分解因式的意义; (2)会用平方差公式进行因式分解;
(3)了解提公因式法是分解因式,首先考虑方法,再考虑用平方差公式分解因式.
(4)在引导学生逆用乘法公式的过程中,发展学生的观察能力培养学生逆向思维的意识,同时让学生了解换元的思想方法. 【学习方法】.自主探究与小组合作交流相结合. 【学习重难点】
重点:让学生掌握运用平方差公式分解因式.
难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.
【学习过程】 模块一预习反馈 一.学习准备:
1.请同学们阅读教材的内容,并完成书后习题
2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;
⑵完成你力所能及的随堂练习和习题;
二.教材精读:
1、平方差公式:a 2–b 2
= 填空: (1)(x+3)(x –3) =(2)(4x+y )(4x –y )=; (3)(1+2x )(1–2x )=;(4)(3m +2n )(3m –2n )=.
2、把(a +b )(a -b )=a 2-b 2反过来就是a 2-b 2
=
a 2-
b 2=中左边是两个数的,右边是这两个数的与这两个数的的。

根据上面式子填空:
(1)9m 2–4n 2=; (2)16x 2–y 2
=;
(3)x 2–9=;(4)1–4x 2
=. 模块二合作探究
探究一:把下列各式因式分解:
(1)x 2-16 (2)25–16x 2
(3)9a 2
–2
41b (4)9 m 2-4n 2
探究二:将下列各式因式分解:
(1)9(x –y )2–(x +y )2(2)2x 3–8x (3)3x 3
y –12xy (4)a 4-81
模块三形成提升
1、判断正误:
(1)x 2+y 2
=(x+y )(x –y ) ( )
(2)–x 2+y 2
=–(x +y )(x –y ) ( )
(3)x 2–y 2
=(x+y )(x –y ) ( )
(4)–x 2–y 2
=–(x+y )(x –y ) ( ) 2、下列各式中不能用平方差公式分解的是()
A.-a 2+b 2
B.-x 2-y 2
C.49x 2y 2-z 2
D.16m 4-25n 2
3、分解因式3x 2-3x 4
的结果是( )
A.3(x+y 2)(x-y 2)
B.3(x+y 2)(x+y)(x-y)
C.3(x-y 2)2
D.3(x-y)2(x+y) 2
4、把下列各式因式分解:
(1)4–m 2 (2)9m 2–4n 2
(3)a 2b 2-m 2 (4)(m -a )2-(n +b )2
(5)
(6)-16x 4
+81y 4
5、分解多项式:
(1)16x 2y 2z 2-9; (2)a 2b 2-m 2
(2)81(a+b)2-4(a-b)2 (4)(m -a )2-(n +b )2
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:平方差公式分解因式。

三.我的困惑:请写出来: 课外拓展思维训练:
1.下列多项式中能用平方差公式分解因式的是( )
A 、22)(b a -+
B 、mn m 2052
- C 、2
2y x -- D 、92
+-x
2.分解因式:
1.2
224)1(a a -+ 2.x 3-x
第四章 因式分解
第三节 运 用 公 式 法(二)
【学习目标】
(1)会用完全平方公式进行因式分解;
(2)清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.
(3)通过观察,推导分解因式与整式乘法的关系,感受事物间的因果联系. 【学习方法】.自主探究与小组合作交流相结合. 【学习重难点】
重点:会用完全平方公式进行因式分解 难点:对完全平方公式的运用能力. 【学习过程】 模块一预习反馈 一.学习准备:
1.请同学们阅读教材57页~58页的内容,并完成书后习题 2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;
⑵完成你力所能及的随堂练习和习题;
二.教材精读:
1、分解因式学了哪些方法?
2、填空: (1)(a+b )(a-b ) = ;
(2)(a+b )2
=;
(3)(a –b )2
=; 根据上面式子填空:
(1)a 2–b 2
= ;
(2)a 2–2ab+b 2
=;
(3)a 2+2ab+b 2
= ;
结论:形如与的式子称为完全平方式.由分解因式与整式乘法关系可以看出:如果,那么 ,这种分解因式的方法叫运用公式法。

模块二合作探究
探究一: 观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解.
(1)x 2–4y 2 (2)x 2+4xy –4y 2 (3)4m 2–6mn+9n 2
(4)m 2+9n 2+6mn (5)x 2
–x+ (6)251056+-x x
探究二:把下列各式因式分解: (1)a 2
b+b 3
-2ab 2
(2);
4
1
(3)(4)
(5)
(6)(m 2-2m )2-2(m 2
-2m)+1
模块三形成提升
1.下列多项式能用完全平方公式分解因式的是() A .m 2
-mn+n 2
B .(a+b )2
-4ab C .x 2
-2x+4
1 D .x 2
+2x -1 2.若a+b=4,则a 2
+2ab+b 2
的值是()
A .8
B .16
C .2
D .4 3.如果
是一个完全平方式,那么k 的值是__________;
4.下列各式不是完全平方式的是()
A .x 2
+4x+1 B .x 2
-2xy+y 2
C .x 2y 2
+2xy+1 D .m 2
-mn+4
1n 2
5.把下列各式因式分解:
(1)x 2
–4x+4 (2)9a 2
+6ab+b 2
(3)m 2
–9
1
32+m (4)3ax 2+6axy+3ay 2
(5)–x 2
–4y 2
+4xy (6)
()()1682
++++n m n m
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法? 二.本课典型:完全平方公式进行因式分解。

三.我的困惑:请写出来:
课外拓展思维训练:1.若x 2
+2(m-3)x+16是完全平方式,则m=___________.
2.若a 2+2a+b 2
-6b+10=0, 则a=___________,b=___________.
试说明:无论x 、y 为何值,353091242
2
+++-y y x x 的值恒为正。

第四章 因式分解
第四节十字相 乘 法
【学习目标】
1、会用十字相乘法进行二次三项式的因式分解;
2、通过自己的不断尝试,培养耐心和信心,同时在尝试中提高观察能力。

【学习重难点】重点:能熟练应用十字相乘法进行的二次三项的因式解。

难点:准确地找出二次三项式中的常数项分解的两个因数与多项式中的一次
项的系数存在的关系,并能区分他们之间的符号关系。

【学习方法】自主探究与小组合作交流相结合.
模块一预习反馈
一.学习准备:
(一)、解答下列两题,观察各式的特点并回答它们存在的关系
1.(1)(x+2)(x+3)= (2)(x -2)(x -3)=
(3)(x -2)(x+3)=(4)(x+2)(x -3)=
(5)(x+a )(x+b)=x 2+( )x+
2.(1)x 2+5x+6=( )( ) (2)x 2-5x+6=( )( )
(3)x 2+x -6=( )( ) (4)x 2-x -6=( )( )
(二)十字相乘法
步骤:(1)列出常数项分解成两个因数的积的各种可能情况;
(2)尝试其中的哪两个因数的和恰好等于一次项系数;
(3)将原多项式分解成))((q x p x ++的形式。

关键:乘积等于常数项的两个因数,它们的和是一次项系数
二次项、常数项分解竖直写,符号决定常数式,交叉相乘验中项,横向写出两因式
例如:x 2+7x+12
= (x+3)(x+4)
模块二合作探究
探究一:1.在横线上填+ ,- 符号
(1) x 2+4x+3=(x3)(x1); (2) x 2-2x -3=(x3)(x1);
(3) y 2-9y+20=(y4)(y5); (4) t 2+10t -56=(t4)(t14)
(5) m 2+5m+4=(m4)(m1) (6) y 2-2y -15=(y3)(y5) 归纳总结:用十字相乘法把二次项系数是“1”的二次三项式分解因式时,
(1).当常数项是正数时,常数项分解的两个因数的符号是(),且这两个因数的符号与一次项的系数的符号()。

(2).当常数项是负数时,常数项分解的两个因数的符号是(),其中()的因数符号与一次项系数的符号相同。

(3)对于常数项分解的两个因数,还要看看它们的()是否等于一次项的()。

探究二:用十字相乘法分解因式
(1)a 2+7a+10 (2) y 2-7y+12
(3) x 2+x -20 (4) x 2-3xy+2y
2
探究三:因式分解:
(1) 2x 2-7x+3 (2) 2x 2+5xy+3y
2
模块三形成提升
1.因式分解成(x -1)(x+2)的多项式是( )
A.x 2-x -2
B. x 2+x+2
C. x 2+x -2
D. x 2-x+2
2.若多项式x 2-7x+6=(x+a)(x+b)则a=_____,b=_____。

3. (1)x 2+4x+_____=(x+3)(x+1);(2)x 2+____x -3=(x -3)(x+1);
4.因式分解:
(1) m 2+7m -18 (2)x 2-9x+18 (3)3y 2+7y -6 (4)x 2-7x+10
(5)x 2+2x -15 (6)12x 2-13x+3 (7)18x 2-21xy+5y 2
模块四小结反思
一.这一节课我们一起学习了哪些知识和思想方法?
二.本课典型:十字相乘法进行二次三项式的因式分解。

三.我的困惑:请写出来:
课外拓展思维训练:
1.若(x 2+y 2)(x 2+y 2-1)=12, 则x 2+y 2=___________.
2.已知:02,022=-+≠b ab a ab ,那么b
a b a +-22的值为_____________. 3.若)5)(3(+-x x 是q px x ++2的因式,则p 为( )
A 、-15
B 、-2
C 、8
D 、2
4.多项式2,12,2
223--+++x x x x x x 的公因式是___________. 第四章 因式分解
回顾与思考
【学习目标】
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.
2.通过因式分解综合练习,提高观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.
【学习方法】自主探究与小组合作交流相结合.
【学习过程】
典型问题分析
问题一:下列各式从左到右的变形中,是因式分解的为( )
A .bx ax b a x -=-)(
B .222)1)(1(1y x x y x ++-=+-
C .)1)(1(12-+=-x x x
D .c b a x c bx ax ++=++)(
问题二:把下列各式分解因式
(1) 235a ab - (2)3a(2x-y)-6b(y-2x) (3)16a 2-9b 2
(4)(x 2+4)2-(x +3)2(5)-4a 2-9b 2+12ab (6)x 3-x
(7)(x +y )2+25-10(x +y ) (8)a 3-2a 2+a
问题三:把下列各式因式分解:
(1)x 3y 2–4x (2)2(y -x )2+3(x -y ) (3)a 3+2a 2+a
(4)(x –y )2–4(x +y )2 (5)(x +y )2–14(x+y )+49 (6)1272++x x
问题四:如果多项式100x 2–kxy +49y 2是一个完全平方式,求k 的值;
问题五:⑴已知x +y =1,求
222
121y xy x ++的值. ⑵已知5,3a b ab -==,求代数式32232a b a b ab -+的值.
课外拓展思维训练:
1.(1)22)34()43)(62()3(y x x y y x y x -+-+++
(2)27624--a a
2.解答题 设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数.。

相关文档
最新文档