曲靖市实验中学数学全等三角形达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲靖市实验中学数学全等三角形达标检测卷(Word版含解析)
一、八年级数学轴对称三角形填空题(难)
1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.
【答案】4
【解析】
【分析】
由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.
【详解】
(1)当点P在x轴正半轴上,
①如图,以OA为腰时,
∵A的坐标是(2,2),
∴∠AOP=45°,OA=22,
当∠AOP为顶角时,OA=OP=22,
当∠OAP为顶角时,AO=AP,
∴OPA=∠AOP=45°,
∴∠OAP=90°,
∴OP=2OA=4,
∴P的坐标是(4,0)或(22,0).
②以OA为底边时,
∵点A的坐标是(2,2),
∴∠AOP=45°,
∵AP=OP,
∴∠OAP=∠AOP=45°,
∴∠OPA=90°,
∴P点坐标为(2,0).
(2)当点P在x轴负半轴上,
③以OA为腰时,
∵A的坐标是(2,2),
∴OA=22,
∴OA=OP=22,
∴P的坐标是(﹣22,0).
综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).
故答案为:4.
【点睛】
此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.
2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将
△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.
【答案】363
【解析】
分若AE =AM 则∠AME
=∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;
【详解】
解:①若AE =AM 则∠AME =∠AEM =45°
∵∠C =45°
∴∠AME =∠C
又∵∠AME >∠C
∴这种情况不成立;
②若AE =EM
∵∠B =∠AEM =45°
∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°
∴∠BAE =∠MEC
在△ABE 和△ECM 中,
B BAE CEN
AE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABE ≌△ECM (AAS ),
∴CE =AB =6,
∵AC =BC =2AB =23,
∴BE =23﹣6;
③若MA =ME 则∠MAE =∠AEM =45°
∵∠BAC =90°,
∴∠BAE =45°
∴AE 平分∠BAC
∵AB =AC ,
∴BE =12
BC =3. 故答案为23﹣6或3.
本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.
3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.
【答案】40°
【解析】
【分析】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.
【详解】
如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,
∵PP1关于OA对称,
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°
同理,∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M=50°,
∴∠P1OP2=180°-2×50°=80°,
∴∠AOB=40°,
故答案为:40°
【点睛】
本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.4.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若
△PMN 周长的最小值为5,则∠AOB 的度数为_____.
【答案】30°.
【解析】
【分析】
如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,
∠AOB=
12
∠P'O P''=30°. 【详解】
解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,
由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"
∴由两点之间线段最短可知,此时△PMN 周长的最小
∴P'P"=5
由对称OP=OP'=OP"=5
∴△P'OP"为等边三角形
∴∠P'OP"=60
∵∠P'OB=∠POB ,∠P"OA=∠POA
∴∠AOB=
12
∠P'O P''=30°. 故答案为30°.
【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.
5.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,
ADC ∠的大小为________.
【答案】112.5︒或67.5︒
【解析】
【分析】
当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.
【详解】 如图1,当点D 在线段AB 上,且A D
BC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒
,解得112.5A DC ADC '∠=∠=︒.
图1
如图2,当A D AC '时,45A DB A '∠=∠=︒,
45180ADC A DC '∴∠+∠+=︒︒
,解得67.5A DC ADC '∠=∠=︒.
图2
【点睛】
本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.
6.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.
【答案】3
【解析】
【分析】
由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.
【详解】
以BD为边作等边三角形BDG,连接GE,如图所示:
∵等边三角形BDG,等边三角形DEF
∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF
∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE
∴△BDF≌△GDE(SAS)
∴BF=GE
当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′
∴BF=GE=CD+1
2
DG=2+1=3
故答案为:3.
【点睛】
此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.
7.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,…若∠A=70°,则锐角∠A n的度数为______.
【答案】
1702n -︒ 【解析】
【分析】
根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.
【详解】
在△1ABA 中,AB=A 1B ,∠A=70°
可得:∠1BAA =∠1BA A =70°
在△112B A A 中,A 1B 1=A 1A 2
可得:∠112A B A =∠121A A B
根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B
∴∠112A B A =∠121A A B =
702︒ 同理可得:∠232A A B =
2702︒ ∠343A A B =
3702︒ …….
以此类推:∠A n =
1702n -︒ 故答案为:
1
702n -︒. 【点睛】
本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..
8.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1), 若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.
【答案】1 2
【解析】
过点Q作AD的延长线的垂线于点F.
因为△ABC是等边三角形,所以∠A=∠ACB=60°.
因为∠ACB=∠QCF,所以∠QCF=60°.
因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,
又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.
所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=1
2
AC=
1
2
.
故答案为1 2 .
10.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.
【答案】8cm.
【解析】
【详解】
解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=36°,
∴NM=2,
∴BN=4,
∴BC=8.
二、八年级数学轴对称三角形选择题(难)
11.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()
A.32°B.64°C.65°D.70°
【答案】B
【解析】
【分析】
此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案
【详解】
如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置
∠B=∠D=32° ∠BEH=∠DEH
∠1=180︒-∠BEH-∠DEH=180︒-2∠DEH
∠2=180︒-∠D -∠DEH -∠EHF
=180︒-∠B -∠DEH -(∠B+∠BEH)
=180︒-∠B -∠DEH -(∠B+∠DEH)
=180︒-32°-∠DEH -32°-∠DEH
=180︒-64°-2∠DEH
∴∠1-∠2=180︒-2∠DEH -(180︒-64°-2∠DEH)
=180︒-2∠DEH -180︒+64°+2∠DEH
=64°
故选B
【点睛】
此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键
12.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )
A .1个
B .2个
C .3个
D .无数个
【答案】D
【解析】
【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.
【详解】
解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.
∵OP 平分∠AOB ,120AOB ∠=︒,
∴∠EOP=∠POF=60°,
∵OE=OF=OP ,
∴△OPE ,△OPF 是等边三角形,
∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN,
在△PEM和△PON中,
PEM PON
PE PO
EPM OPN

⎪∠









∴△PEM≌△PON(ASA).
∴PM=PN,
∵∠MPN=60°,
∴△PNM是等边三角形,
∴只要∠MPN=60°,△PMN就是等边三角形,
故这样的三角形有无数个.
故选:D.
【点睛】
本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.
13.如图,已知:30
MON
∠=︒,点
1
A、
2
A、
3
A…在射线ON上,点
1
B、
2
B、
3
B…在
射线OM上,
112
A B A
△、
223
A B A
△、
334
A B A
△…均为等边三角形,若
1
1
2
OA=,则667
A B A的边长为( )
A.6 B.12 C.16 D.32
【答案】C
【解析】
【分析】
先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=
1
2
,得出△A1B1A2的边长

1
2
,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.
【详解】
解:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,
∴∠MON=∠OB1A1,
∴B1A1=OA1=1
2

∴△A1B1A2的边长为1
2

同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=1
2
+
1
2
=1,
∴△A2B2A3的边长为1,
同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.
故选:C.
【点睛】
本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.
14.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().
A.B.
C.D.
【答案】C
【解析】
【分析】
根据轴对称分析即可得到答案.
【详解】
根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,
故选:C.
【点睛】
此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.
15.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()
A.4 B.24
5
C.5 D.6
【答案】C
【解析】
试题解析:如图,
∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,
过点B′作B′N⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,
∵AC=10,S△ABC=25,
∴1
2
×10•BE=25,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
故选C.
16.如图,在等腰△ABC中,AB=AC=6,∠BAC=120°,点P、Q分别是线段BC、射线BA上一点,则CQ+PQ的最小值为()
A .6
B .7.5
C .9
D .12
【答案】C
【解析】
【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.
【详解】
解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于
H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.
∵AB=AC=6,∠BAC=120°,
∴∠ABC=30°,
易得BC=3
在Rt △BHC 中,∠ABC=30°,
∴HC=33BCH=60°, ∴163CC =
在1Rt △PCC 中,1PCC ∠=60°,
∴19PC =
∴CQ+PQ 的最小值为9,
故选:C.
【点睛】
本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.
17.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点
B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )
A .52
B .125
C .4
D .53
【答案】B
【解析】
【分析】
先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =
12AC∙BC=12
AB∙CE ,求出CE 进而得出答案即可. 【详解】
根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
又∵CE ⊥AB ,
∴△ECF 是等腰直角三角形,
∴EF=CE , 又∵S △ABC =
12AC∙BC=12
AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,
∴125CE =
, ∴EF 125
=. 所以答案为B 选项.
【点睛】
本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.
18.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.
【详解】
①正确:∵ABC △是等边三角形,
∴60BAC ︒∠=,∴CA AB =.
∵ABD △是等腰直角三角形,∴DA AB =.
又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,
∴DA CA =,∴()
1180150152ADC ACD ︒︒︒∠=∠=
-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AF G≠∠AGD
∴AF≠AG
③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,
∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.
又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,
在DAF △和ABH 中 ()AFD BHA DAF ABH
AAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌ABH .∴DF AH =.
⑤正确:∵150CAD ︒∠=,AH CD ⊥,
∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=
又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
19.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.1 B.2 C.3 D.4
【答案】D
【解析】
【分析】
由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.
【详解】
∵点A、B的坐标分别为(2,2)、B(4,0).
∴AB=22,
如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),
∴满足△ABC是等腰三角形的C点有1个;
②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;
③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;
综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.
故选D.
【点睛】
本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.
20.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握。

相关文档
最新文档