2018-2019年安徽省淮南市寿县八年级(上)期末数学试卷(解析版)

合集下载

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018-2019学年八年级上期末数学试卷(含答案解析)

2018-2019学年八年级上期末数学试卷(含答案解析)

2018-2019学年八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2B.2C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,84.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣37.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=kx的图象过点(﹣1,2),那么k=.12.取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。

2018~2019(上)初二数学期末考试试题解析

2018~2019(上)初二数学期末考试试题解析

(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()

安徽省淮南市2018-2019学年度八年级(上)数学期末考试模拟试卷(含答案)

安徽省淮南市2018-2019学年度八年级(上)数学期末考试模拟试卷(含答案)

.
13. 如图, △ ACE≌Δ DBF,点 A、 B、C、 D 共线,若 AC= 5,BC= 2,则 CD 的长度等于
.
14. 如图, △ ABC 中,∠ C= 90°, AD 平分∠ BAC, AB= 5, CD= 2,则 △ABD 的面积是
.
15.计算 (2x y)(2 x y)(4 x2 y 2 ) =
∠MAC =
°.

(第 13题)
(第 14题)
三 .解答题 (本大题共 46 分)
19. 计算(本题共两小题,每小题 6 分,共 12分)
( 1)计算: (2a b)(a b) (8a 3b 4a 2 b 2 ) 4ab
(第 18题)
( 2)分解因式: x3 y 4x 2 y 2 4xy 3
A.2
B. -2
C.(- 2,3)
D.(- 3,2)
3. 已知三角形的两边长分别是 4 和 10,那么这个三角形第三边长可能是(

A.5
B.6
C.11
D.16
4. 如图,在 △ABC 中,点 D 在 BC 上, AB=AD=DC,∠ B=80 °,则∠ C 的度数为(

A . 30°
B . 40°
C. 45°
D .60°
D .一底角、底边分别相等
9.若 x y 2,xy
yx
2 ,则
的值是(

xy
2
16.若 4x 2(k 3)x 9是完全平方式,则 k =
.
x 17.若关于 x 的方程
x2
a 2x
1 无解,则 a =
.
18. 如图,在 △ABC 中, AB =BC,在 BC 上分别取点 M 、 N,使 M N=NA,若∠ BAM =∠ NAC, 则

《试卷3份集锦》安徽省名校2018-2019年八年级上学期数学期末学业水平测试试题

《试卷3份集锦》安徽省名校2018-2019年八年级上学期数学期末学业水平测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知4y 2+my+9是完全平方式,则m 为( )A .6B .±6C .±12D .12 【答案】C【分析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my+9是完全平方式,∴m=±2×2×3=±1.故选:C .【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.2 )A .5B .﹣5CD .【答案】C【解析】解:∵,而5∴故选C .3.若函数2(1)1y k x k =++-是正比例函数,则k 的值为( )A .1B .0C .±1D .1-【答案】A【分析】先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可.【详解】∵函数y=(k +1)x +k 2﹣1是正比例函数, ∴21010k k +≠⎧⎨-=⎩, 解得:k=1.故选A .【点睛】本题考查的是正比例函数的定义,即形如y=kx (k ≠0)的函数叫正比例函数.4.如图,在ABC ∆中,AQ PQ =,PR PS =,PR AB ⊥于R ,PS AC ⊥于S ,则三个结论①AS AR =;②//QP AR ;③BPR QPS ∆≅∆中,( )A .全部正确B .仅①和②正确C .仅①正确D .仅①和③正确【答案】B 【分析】只要证明t t R APR R APS △≌△ ,推出AR AS = ,①正确;BAP PAS =∠∠ ,由AQ PQ =,推出PAQ APQ =∠∠ ,推出BAP APQ =∠∠,可得//QP AB ,②正确;不能判断BPR QPS ∆≅∆,③错误.【详解】在t R APR △和t R APS △中PS PR AP AP =⎧⎨=⎩∴t t R APR R APS △≌△∴AR AS =,BAP PAS =∠∠ ,①正确∵AQ PQ =∴PAQ APQ =∠∠∴BAP APQ =∠∠∴//QP AB ,②正确在△BRP 与△QSP 中,只能得到PR PS = ,PSQ PRB =∠∠ ,不能判断三角形全等,因此只有①②正确故答案为:B .【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、平行线的性质以及判定定理是解题的关键.5.如图,△ABC 中,∠C =90°,ED 垂直平分AB ,若AC =12,EC =5,且△ACE 的周长为30,则BE 的长为( )A .5B .10C .12D .13【答案】D 【分析】ED 垂直平分AB ,BE =AE ,在通过△ACE 的周长为30计算即可【详解】解:∵ED 垂直平分AB ,∴BE =AE ,∵AC =12,EC =5,且△ACE 的周长为30,∴12+5+AE =30,∴AE =13,∴BE =AE =13,故选:D .【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.6.已知△ABC 的一个外角为70°,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形【答案】C【分析】利用三角形外角与内角的关系计算即可.【详解】∵△ABC 的一个外角为70°,∴与它相邻的内角的度数为110°,∴该三角形一定是钝角三角形,故选:C .【点睛】本题考查三角形内角、外角的关系及三角形的分类,熟练掌握分类标准是解题的关键.7.如图,下列条件中,不能证明△ABC ≌ △DCB 是( )A .,AB DC AC DB ==B .,AC BD ABC DCB =∠=∠ C .,BO CO A D =∠=∠D .,AB DC A D =∠=∠【答案】B 【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,根据以上内容逐个判断即可.【详解】A. AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC ≌△DCB ,故本选项错误;B. BC=BC,,AC BD ABC DCB =∠=∠,SSA 不符合全等三角形的判定定理,即不能推出△ABC ≌△DCB ,故本选项正确;C. 在△AOB 和△DOC 中,AOB DOC A DOB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOB ≌△DOC(AAS),∴AB=DC ,∠ABO=∠DCO ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠ABC=∠DCB ,在△ABC 和△DCB 中,AB DC ABC DCB BC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DCB(SAS),即能推出△ABC ≌△DCB ,故本选项错误;D. AB=DC,∠A=∠D,根据AAS 证明△AOB ≌△DOC,由此可知OA=OD,OB=OC,所以OA OC=OD OB,即AC=DB,从而再根据SSS 证明△ABC ≌△DCB. ,故本选项错误.故选B.【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.8..已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是( )A .5BC .5D .不能确定【答案】C【解析】由于“两边长分别为3和4,要使这个三角形是直角三角形”指代不明,因此,要讨论第三边是直角边和斜边的情形.【详解】当第三条线段为直角边,4;,故选C..【点睛】此题主要考查了勾股定理的应用,关键是要分类讨论,不要漏解.9.下列表述中,能确定准确位置的是( )A .教室第三排B .聂耳路C .南偏东40︒D .东经112︒,北纬51︒ 【答案】D【分析】根据坐标的定义对各选项分析判断即可;【详解】解:选项A 中,教室第三排,不能确定具体位置,故本选项错误;选项B 中,聂耳路,不能确定具体位置,故本选项错误;选项C 中,南偏东40︒,不能确定具体位置,故本选项错误;选项D 中,东经112︒,北纬51︒,能确定具体位置,故本选项错误;【点睛】本题主要考查了坐标确定位置,掌握坐标的定义是解题的关键.10.一个正多边形,它的每一个外角都等于45°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形 【答案】C【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【详解】解:360÷45=8,所以这个正多边形是正八边形.故选C .二、填空题11.若关于x 的方程2221151k k x x x x x---=--+有增根1x =-,则k 的值为____________. 【答案】9【分析】根据题意先将分式方程化为整式方程,再将增根代入求得k 的值即可.【详解】解:方程两边同乘以(1)(1)x x x -+,去分母得(1)(1)(5)(1)x k x k x --+=--,将增根1x =-代入得1(1)(11)(5)(11)k k ----+=---,解得9k =.故答案为:9.【点睛】本题考查分式方程的增根,根据题意把分式方程的增根代入整式方程是解题的关键.12.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)【答案】>【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.13.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.【答案】 (a+2)(a ﹣2)=a 2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a ﹣2),图②中阴影部分面积=a 2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a ﹣2)=a 2﹣1,故答案为:(a+2)(a ﹣2)=a 2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.14.已知,x y 为实数,且22994y x x =---+,则x y -=______.【答案】1-或7-.【解析】根据二次根式有意义的条件可求出x 、y 的值,代入即可得出结论.【详解】∵290x -且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值. 15.如图,在ABC ∆中,AB AC =,点D 、E 在BC 的延长线上,G 是AC 上一点,且CG CD =,F 是GD 上一点,且DF DE =.若100A ∠=︒,则E ∠的大小为__________度.【答案】10【解析】根据三角形外角的性质,结合已知DF DE =,得∠E=12∠CDG ,同理, CG CD =,∠CDG=12∠ACB , AB AC =,得出∠ACB=∠B ,利用三角形内角和180°,计算即得. 【详解】∵DE=DF ,CG=CD , ∴∠E=∠EFD=12∠CDG , ∠CDG=∠CGD=12∠ACB , 又∵AB=AC , ∴∠ACB=∠B=12(180°-∠A )=12(180°-100°)=40°, ∴∠E=1140=1022⨯⨯︒︒, 故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.16.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____.【答案】9727 xy⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x yx y+=⎧⎨+=⎩①②,①×5﹣②×4,可得:7x=9,解得:x=97,把x=97代入①,解得:y=27,∴原方程组的解是:9727xy⎧=⎪⎪⎨⎪=⎪⎩.故答案为:9727xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.17.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约____千克.【答案】90【分析】根据题意先算出50户家庭可回收垃圾为15千克,再用300户家庭除以50户家庭乘以15即可解答【详解】100×15%=15千克30050×15=90千克 故答案为90千克【点睛】此题考查扇形统计图,解题关键在于看懂图中数据三、解答题18.如图,已知两条射线OM ∥CN ,动线段AB 的两个端点A 、B 分别在射线OM 、CN 上,且∠C=∠OAB=108°,F 在线段CB 上,OB 平分∠AOF .(1)请在图中找出与∠AOC 相等的角,并说明理由;(2)判断线段AB 与OC 的位置关系是什么?并说明理由;(3)若平行移动AB ,那么∠OBC 与∠OFC 的度数比是否随着AB 位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.【答案】(1)与AOC ∠相等的角是,ABC BAM ∠∠;(2)//AB OC ,证明详见解析;(3)OBC ∠与OFC ∠的度数比不随着AB 位置的变化而变化,1:2OBC OFC ∠∠= 【分析】(1)根据两直线平行,同旁内角互补可得AOC ∠、ABC ∠,再根据邻补角的定义求出BAM ∠即可得解;(2)根据两直线的同旁内角互补,两直线平行,即可证明//AB OC ;(3)根据两直线平行,内错角相等可得,OBC AOB OFC AOF ∠=∠∠=∠,再根据角平分线的定义可得2AOF AOB ∠=∠,从而得到比值不变.【详解】(1)//,OM CN180********AOC C ∴∠=-∠=-=∴180********ABC OAB ∠=-∠=-=又180********BAM OAB ∠=-∠=-=∴与AOC ∠相等的角是,ABC BAM ∠∠;(2)//AB OC理由是:72,108AOC OAB ∠=∠=即180,AOC OAB ∴∠+∠=//AB OC ∴(3)OBC ∠与OFC ∠的度数比不随着AB 位置的变化而变化//,OM CN,OBC AOB OFC AOF ∴∠=∠∠=∠ OB 平分AOF ∠,2AOF AOB ∴∠=∠2,OFC OBC ∴∠=∠ 1:2OBC OFC ∴∠∠=【点睛】 本题考查了平行线的性质,掌握平行线的性质以及判定定理是解题的关键.19.如图,已知在平面直角坐标系中,△ABC 三个顶点的坐标分别是A(1,1),B (4,2),C(3,4). (1)画出△ABC 关于y 轴对称的△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应);(2)通过画图,在x 轴上确定点Q ,使得QA 与QB 之和最小,画出QA 与QB ,并直接写出点Q 的坐标.点Q 的坐标为 .【答案】(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1;(2)作点A 关于x 轴的对称点A',连接A'B ,交x 轴于点Q ,则QA 与QB 之和最小.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,点Q即为所求,点Q的坐标为(2,0).故答案为:(2,0).【点睛】本题考查了利用轴对称作图以及最短距离的问题,解题的关键是最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.20.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【答案】甲每小时做24个零件,乙每小时做1个零件.【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做11个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:1201004x x=-,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=1.答:甲每小时做24个零件,乙每小时做1个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲a 7 7 1.2 乙 7b 8 c(1)写出表格中a ,b ,c 的值; (2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.【答案】(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a 、b 、c 的值; (2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1)5162748291712421a ⨯+⨯+⨯+⨯+⨯==++++, 将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击的中位数787.52b +==, ∵乙射击的次数是10次,∴2222222(37)(47)(67)2(77)3(87)(97)(107)c ⎡⎤=-+-+-+⨯-+⨯-+-+-⎣⎦=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.22.先化简后求值:当3m =时,求代数式221211•()()22111m m m m m m m +---+-+的值. 【答案】12【分析】先根据分式的运算法则进行化简,再代入已知值计算即可.【详解】解:221211•()()22111m m m m m m m +---+-+\ =()()()()2214•211211m m m m m m m +---++ =()()()()122111m m m m m --+-+ =()()1212m m m -+- =()()()1211m m m -+- =21m + 当3m =时,原式=21m +=12【点睛】 考核知识点:分式化简求值.根据分式运算法则化简分式是关键.23.勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.【答案】见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:222211()42422a b ab a b ab ab c +-⨯=++-⨯= 整理得:222a b c +=.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.24.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,BE AC ⊥于点E .26CAD ∠=︒,求ABE ∠的度数.【答案】38ABE ∠=︒.【分析】根据等腰三角形的性质得=52BAE ∠︒,再根据直角三角形的性质,即可得到答案.【详解】∵AB AC =,AD BC ⊥,26CAD ∠=︒,∴252BAE CAD ∠=∠=︒,∵BE AC ⊥,∴90AEB =︒∠,∴905238ABE ∠=︒-︒=︒.【点睛】本题主要考查等腰三角形的性质以及直角三角形的性质定理,掌握等腰三角形“三线合一”是解题的关键.25.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.【答案】(1)±4;(2)5【解析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4, ∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y xy x=-+⎧⎨=+⎩,解得:13xy=-⎧⎨=⎩,把(-1,3)代入y=2x+b,∴3=-2+b,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b的值,本题属于基础题型.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ). A .120012002(120%)x x -=+ B .120012002(120%)x x -=- C .120012002(120%)x x -=+ D .120012002(120%)x x -=- 【答案】A【解析】设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm ,由题意得,()120012002120%x x-=+. 故选A.2.某文具超市有,,,A B C D 四种水笔销售,它们的单价分别是5元,4元,3元,1.2元.某天的水笔销售情况如图所示,那么这天该文具超市销售的水笔的单价的平均值是( )A .4元B .4.5元C .3.2元D .3元【答案】D 【分析】首先设这天该文具超市销售的水笔共有x 支,然后根据题意列出关系式求解即可.【详解】设这天该文具超市销售的水笔共有x 支,则其单价的平均值是510%425%340% 1.225%0.5 1.20.33x x x x x x x x x x⨯+⨯+⨯+⨯+++== 故选:D.【点睛】此题主要考查平均数的实际应用,熟练掌握,即可解题.3.在平面直角坐标系中,将点P(1,4)向左平移3个单位长度得到点Q ,则点Q 所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】向左平移,纵坐标不变,横坐标减3即可.【详解】解:平移后点Q 的坐标为(1﹣3,4),即Q (﹣2,4),∴点Q 所在的象限是第二象限,故选择:B .【点睛】本题考查点在象限问题,关键上掌握平移特征,左右平移纵坐标不变,横坐标减去或加上平移距离.4.如果(x+y﹣4)2+3x y-=0,那么2x﹣y的值为()A.﹣3 B.3 C.﹣1 D.1【答案】C【解析】根据非负数的性质列出关于x、y的二元一次方程组求解得到x、y的值,再代入代数式进行计算即可得解.【详解】根据题意得,4030x yx y+-=⎧⎨-=⎩①②,由②得,y=3x③,把③代入①得,x+3x﹣4=0,解得x=1,把x=1代入③得,y=3,所以方程组的解是13 xy=⎧⎨=⎩,所以2x﹣y=2×1﹣3=﹣1.故选C.5.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE【答案】D【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩【答案】C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.7.分式11x-有意义时x的取值范围是()A.x≠1B.x>1 C.x≥1D.x<1【答案】A【解析】试题解析:根据题意得:x−1≠0,解得:x≠1.故选A.点睛:分式有意义的条件:分母不为零.8.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【分析】3 1.732-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可. 【详解】3 1.732-≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.9.下列运算中,不正确的是( )A .34x x x ⋅=B .53222x x x ÷=C .()23264x y x y =D .()239-x x = 【答案】D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A 、34x x x ⋅=,正确;B 、53222x x x ÷=,正确;C 、()23264x y x y =,正确; D 、()236x x -=,故D 错误;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.10.下列各式不是最简二次根式的是( ).AB .CD .2 【答案】A【分析】最简二次根式:分母没有根号;被开方数不能再进行开方;满足以上两个条件为最简二次根式,逐个选项分析判断即可.【详解】A.B. 是最简二次根式;C.D.2是最简二次根式; 故选A【点睛】本题考查最简二次根式,熟练掌握最简二次根式的要求是解题关键.二、填空题11.若分式||44y y --的值为0,则y 的值为____________. 【答案】-4 【分析】分式等于零时:分子等于零,且分母不等于零.【详解】由分式的值为零的条件得40y -=且40y -≠,由,40y -=得44y y =-=或,由40y -≠,得4y ≠,综上所述,分式||44y y --的值为0,y 的值是−4. 故答案为:−4.【点睛】此题考查分式的值为零的条件,解题关键在于掌握其性质.12.如图,ABC ∆中,ABC ∠、ACB ∠的平分线交于P 点,126BPC ∠=︒,则BAC ∠=________.【答案】72°【分析】先根据三角形内角和定理求出∠1+∠2的度数,再由角平分线的性质得出∠ABC+∠ACB 的度数,由三角形内角和定理即可得出结论.【详解】解:∵在△BPC 中,∠BPC=126°,∴∠1+∠2=180°-∠BPC=180°-126°=54°,∵BP 、CP 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×54°=108°,∴在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-108°=72°.故答案为:72°.【点睛】此题考查了三角形的内角和定理,平分线性质.运用整体思想求出∠ABC+∠ACB=2(∠1+∠2)是解题的关键.13.计算:232484x x yy -=___________ 【答案】38x y -【分析】根据分式的乘法则计算即可.【详解】23324884x x y x y y-=-, 故答案为:38x y -.【点睛】本考查了分式的乘法,熟练掌握分式的乘法则是解题的关键.14.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【分析】根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.15.如图,AB 是Rt ABC 和Rt ABD △的公共斜边,AC=BC ,32BAD ∠=,E 是AB 的中点,联结DE 、CE 、CD ,那么ECD ∠=___________________.【答案】1【分析】先证明A 、C 、B 、D 四点共圆,得到∠DCB 与∠BAD 的是同弧所对的圆周角的关系,得到∠DCB 的度数,再证∠ECB=45°,得出结论.【详解】解:∵AB 是Rt △ABC 和Rt △ABD 的公共斜边,E 是AB 中点,∴AE=EB=EC=ED ,∴A 、C 、B 、D 在以E 为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC ,E 是Rt △ABC 的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=1°.故答案为:1.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.16.分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 17.4的平方根是 .【答案】±1.【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1.考点:平方根.三、解答题18.某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?【答案】(1)第一次每支铅笔的进价为4元.(2)每支售价至少是2元.【解析】(1)方程的应用解题关键是找出等量关系,列出方程求解.本题等量关系为:第一次购进数量-第二次购进数量=1;(2)设售价为y元,求出利润表达式,然后列不等式解答.利润表达式为:第一次购进数量×第一次每支铅笔的利润+第二次购进数量×第二次每支铅笔的利润第一次购进数量×第一次每支铅笔的利润+第二次购进数量×第二次每支铅笔的利润【详解】解:(1)设第一次每支铅笔进价为x元,由第二次每支铅笔进价为54x元.第一次购进数量-第二次购进数量=1600 x -6005x4=1.(2)设售价为y元,由已知600 4·()y4-+600544⋅·5y44⎛⎫-⋅⎪⎝⎭≥420,解得y≥2.答:每支售价至少是2元.19.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y 轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.【答案】(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)如图,△A2B2C2为所作;(3)△A 1B 1C 1和△A 2B 2C 2关于直线x =3对称,如图.【点睛】本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.20.计算:(1)2+1)(2)(227216(63)8【答案】(12;(2)526.【分析】(1)根据二次根式的混合运算法则,去括号,同类二次根式合并化简即可;(2)根据二次根式的混合运算法则,先算除法和利用完全平方公式计算,进一步化简合并即可.【详解】(1)原式=22222+2= 2;(2)原式32(6623)=-32962526=+= 故答案为:526.【点睛】本题考查了二次根式的混合运算法则,完全平方公式的应用,注意计算结果化成最简.21.先化简,再求值:(2x+y )(2x ﹣y )﹣(x 2y+xy 2﹣y 3)÷y ,其中x =﹣13,y =12. 【答案】3x 2﹣xy ,12【分析】直接利用整式的混合运算法则化简,再把已知数据代入得出答案.【详解】原式2222()4x y x xy y =+--- 22224x y x xy y =--+-23x xy =- 当11,32x y =-=时,原式2111111)()333(2362---⨯=+==⨯. 【点睛】本题考查了整式的化简求值,利用多项式乘以多项式、多项式除以单项式、及整数的加减法则正确化简是解题关键.22.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由AD ⊥BC ,CE ⊥AB ,易得∠AFE=∠B ,利用全等三角形的判定得△AEF ≌△CEB ;(2)由全等三角形的性质得AF=BC ,由等腰三角形的性质“三线合一”得BC=2CD ,等量代换得出结论.【详解】(1)证明:由于AB=AC ,故△ABC 为等腰三角形,∠ABC=∠ACB ;∵AD ⊥BC ,CE ⊥AB ,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB ,在Rt △AEF 和Rt △CEB 中∠AEF=∠CEB ,AE=CE ,∠EAF=∠ECB ,所以△AEF ≌△CEB (ASA )(2)∵△ABC 为等腰三角形,AD ⊥BC ,故BD=CD ,即CB=2CD ,又∵△AEF ≌△CEB ,∴AF=CB=2CD .23.如图, 90,,BAC AB AC BD ∠=︒=平分ABC ∠交AC 于D ,交CF 于E ,AD AF =.(1)求证:ABD ACF ∠=∠;(2)BC BF =.【答案】(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD ≌△ACF 即可得到结论;(2)由(1)得∠ABD=∠ACF ,∠CDE=∠BDA ,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE ⊥CF ,结合BD 平分∠ABC 可证明BC=BF .【详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF ,又∵AB=AC ,AD=AF ,∴△ABD ≌△ACF ,∴∠ABD=∠ACF ;(2)在△CDE 和△BDA 中∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°又∠ABD=∠ACF ,∠CDE=∠BDA ,∴∠CED=∠BDA=90°,∴∠CEB=∠FEB=90°,∵BD 平分∠ABC∴∠CBE=∠FBE又BE 为公共边,∴△CEB ≌△FEB ,∴BC=BF .【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理,证明三角形全等是证明线段或角相等的重要手段.24.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.【答案】21x+;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.25.如图所示,在等腰三角形ABC中,AB = AC,AD是△ABC的角平分线,E是AC延长线上一点.且CE = CD,AD= DE.(1)求证:ABC是等边三角形;(2)如果把AD改为ABC的中线或高、其他条件不变),请判断(1)中结论是否依然成立?(不要求证明)【答案】(1)见解析;(2)成立【分析】(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°.再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.【详解】(1)证明:∵CD=CE,∴∠E=∠CDE,∴∠ACB=2∠E.又∵AD=DE,∴∠E=∠DAC,∵AD是△ABC的角平分线,∴∠BAC=2∠DAC=2∠E,∴∠ACB=∠BAC,∴BA=BC.又∵AB=AC,∴AB=BC=AC.。

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷(解析版)

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷(解析版)

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定4.(4分)函数的自变量x的取值范围是()A.x>3B.x≥3C.x<3D.x≤35.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.6.(4分)一次函数y=kx+k的图象可能是()A.B.C.D.7.(4分)“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形8.(4分)已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD的长为()A.3B.4C.5D.610.(4分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是.12.(5分)把直线y=﹣x向下平移个单位得到直线y=﹣x﹣2.13.(5分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.(5分)如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三、解答题(共9小题,满分60分)15.(6分)如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.16.(6分)正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.17.(6分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.18.(6分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.(7分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.20.(7分)如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.21.(7分)如图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数.22.(7分)如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.2.(4分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.6【解答】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.3.(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【解答】解:∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵﹣3<2,∴y1<y2.故选:B.4.(4分)函数的自变量x的取值范围是()A.x>3B.x≥3C.x<3D.x≤3【解答】解:根据题意得:3﹣x≥0,解得x≤3.故选:D.5.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.6.(4分)一次函数y=kx+k的图象可能是()A.B.C.D.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选:B.7.(4分)“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形【解答】解:“等腰三角形两底角相等”的逆命题是有两个角相等的三角形是等腰三角形,故选D.8.(4分)已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选:B.9.(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD的长为()A.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.10.(4分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故此选项正确,故选:D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是(1,2).【解答】解:∵A、B两点关于x轴对称,∴点B的坐标是(1,2).故答案为:(1,2).12.(5分)把直线y=﹣x向下平移2个单位得到直线y=﹣x﹣2.【解答】解:∵0﹣(﹣2)=2,∴根据“上加下减”的原则可知,把直线y=﹣x向下平移2个单位得到直线y=﹣x ﹣2.故答案为:2.13.(5分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.14.(5分)如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是m=4n+2.【解答】解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.三、解答题(共9小题,满分60分)15.(6分)如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.【解答】解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.16.(6分)正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.【解答】解:(1)∵正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),∴把点P(1,m)代入得:,把①代入②得:k=5;(2)根据题意,如图:∵点P(1,2),∴三角形的高就是2,∵y=﹣3x+5,∴A(0,),∴OA=,∴S△AOP=××2=17.(6分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.【解答】证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴∠BAD=∠CAD.18.(6分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.19.(7分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF=DE=2.20.(7分)如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.【解答】解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(,1).21.(7分)如图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数.【解答】解:∵∠B=90°,∠A=40°,∴∠ACB=50°,∵MN是线段AC的垂直平分线.∴AE=CE.在△ADE和△CDE中,..∴△ADE≌△CDE(SAS)∴∠DCA=∠A=40°∴∠BCD=∠ACB﹣∠DCA=50°﹣40°=10°.22.(7分)如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)【解答】解:解法一:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,求证:∠1=∠2.证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠CAE,∴∠1=∠2.解法二:如果AB=AC,AD=AE,∠1=∠2,那么BD=CE.已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2,求证:BD=CE.证明:∵∠1=∠2,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE.23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)。

2018-2019学年安徽省淮南市八年级(上)期末数学试卷

2018-2019学年安徽省淮南市八年级(上)期末数学试卷

2018-2019学年安徽省淮南市⼋年级(上)期末数学试卷2018-2019学年安徽省淮南市⼋年级(上)期末数学试卷(120分钟150分)⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.(4分)在以下绿⾊⾷品、回收、节能、节⽔四个标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.x6?x2=x12B.x6÷x2=x3C.(x2)3=x5D.(xy)5=x5y53.(4分)若⼀个多边形的内⾓和为540°,则这个多边形是()A.三⾓形B.四边形C.五边形D.六边形4.(4分)下列分解因式错误的是()A.m(x﹣y)+n(x﹣y)=(x﹣y)(m+n)B.x3﹣x2+x=x(x2﹣x)C.3mx﹣6my=3m(x﹣2y)D.x2﹣y2=(x+y)(x﹣y)5.(4分)下⾯各组线段中,能组成三⾓形的是()A.4,5,6 B.3,7,3 C.2,4,6 D.1,2,36.(4分)分式与的最简公分母是()A.6y B.3y2C.6y2D.6y37.(4分)要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠8.(4分)若x2+(k﹣1)x+64是⼀个完全平⽅式,那么k的值是()A.9 B.17 C.9或﹣7 D.17或﹣159.(4分)已知等腰三⾓形的两边长分别为7和5,则它的周长是()A.12 B.17 C.19 D.17或1910.(4分)若3x=4,3y=6,则3x﹣2y的值是()A.B.9 C.D.3⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.⼀副三⾓板如图放置,若∠1=90°,则∠2的度数为.12.在平⾯直⾓坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为.13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三⾓形OBC,将点C向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为.14.如图,∠1=∠2,∠C=∠B,下列结论中正确的是.(写出所有正确结论的序号)①△DAB≌△DAC;②CD=DE;③∠CFD=∠CDF;④∠BED=2∠1+∠B.三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.如图,在△ABC中,∠BAC是钝⾓,按要求完成下列画图.(不写作法,保留作图痕迹)(1)⽤尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)⽤三⾓板作AC边上的⾼BD.16.如图,在边长为1个单位长度的⼩正⽅形组成的⽹格中,给出了平⾯直⾓坐标系及格点△AOB.(顶点是⽹格线的交点)(1)画出将△AOB沿y轴翻折得到的△AOB1,则点B1的坐标为;(2)画出将△AOB沿射线AB1⽅向平移2.5个单位得到的△A2O2B2,则点A2的坐标为;(3)请求出△AB1B2的⾯积.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.如图,已知CD是AB的中垂线,垂⾜为D,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)若线段CE的长为3 cm,BC的长为4 cm,求BF的长.18.已知:如图1,在Rt△ABC和Rt△A'B'C'中,AB=A'B',AC=A'C',C=∠C'=90°.求证:Rt△ABC和Rt△A'B'C'全等.(1)请你⽤“如果…,那么…”的形式叙述上述命题;(2)将△ABC和△A'B'C'拼在⼀起,请你画出两种拼接图形;例如图2:(即使点A与点A'重合,点C与点C'重合.)(3)请你选择你拼成的其中⼀种图形,证明该命题.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.⼩明平时喜欢玩“宾果消消乐”游戏.本学期在学校组织的⼏次数学反馈性测试中,⼩明的数学成绩如下表:⽉份x 91111213(第⼆年元⽉)14(第⼆年2⽉)成绩y(分)9876……(1)以⽉份为x轴,成绩为y轴,根据上表提供的数据在平⾯直⾓坐标系中描点;(2)观察(1)中所描点的位置关系,猜想y与x之间的函数关系,并求出所猜想的函数表达式;(3)若⼩明继续沉溺于“宾果消消乐”游戏,照这样的发展趋势,请你估计元⽉(此时x=13)份的考试中⼩明的数学成绩,并⽤⼀句话对⼩明提出⼀些建议.20.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.则线段DE和BF在数量和位置上有什么关系?请说明理由.六、(本题满分12分)21.某学校开展“青少年科技创新⽐赛”活动,“喜洋洋”代表队设计了⼀个遥控车沿直线轨道AC做匀速直线运动的模型.甲、⼄两车同时分别从A,B出发,沿轨道到达C处,在AC 上,甲的速度是⼄的速度的1.5倍,设t分后甲、⼄两遥控车与B处的距离分别为d1,d2(单位:⽶),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:⼄的速度v2=⽶/分;(2)写出d1与t的函数表达式;(3)若甲、⼄两遥控车的距离超过10⽶时信号不会产⽣相互⼲扰,试探究什么时间两遥控车的信号不会产⽣相互⼲扰?七、(本题满分12分)22.在平⾯直⾓坐标系xOy中,已知定点A(1,0)和B(0,1).(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三⾓形的点C有⼏个?(2)如图2,过点A,B向过原点的直线l作垂线,垂⾜分别为M,N,试判断线段AM,BN,MN之间的数量关系,并说明理由.⼋、(本题满分14分)23.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的⼀动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直⾓三⾓形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三⾓形?请说明理由.。

2018-2019学年人教版八年级数学上学期学期期末考试试题含解答

2018-2019学年人教版八年级数学上学期学期期末考试试题含解答

2018-2019学年人教版八年级数学上学期学期期末考试试题一、选择题:本题共10小题,共30分。

1. 下列运算正确的是( )A .m 6÷m 2=m3B .3m 3﹣2m 2=mC .(3m 2)3=27m6D . m •2m 2=m 22. 把a 2﹣4a 多项式分解因式,结果正确的是( )A .a (a ﹣4)B .(a +2)(a ﹣2)C .a (a +2)(a ﹣2)D .(a ﹣2)2﹣4 3. 分式12x 有意义,则x 的取值范围是( ) A . x ≠1B . x =1C . x ≠﹣1D . x =﹣14. 如图,AB ∥CD ,∠B =68°,∠E =20°,则∠D 的度数为( )A .28°B .38°C .48°D .88°5. 下列图形中,是轴对称图形的是( )6. 计算a •a 5﹣(2a 3)2的结果为( ) A .a 6﹣2a5 B .﹣a6C .a 6﹣4a5D .﹣3a 67. 如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF8. 如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个9. 某机加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A . =B .×30=×20C .=D .=10. 如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个 二、填空题:本大题共10小题,共30分.11. 一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为 . 12. 计算:82016×(﹣0.125)2017= .13. 使分式112+-x x 的值为0,这时x = .14. 正多边形的一个内角是150°,则这个正多边形的边数为 . 15. 把多项式324my mx -因式分解的结果是 .16. 计算)1(22b a ab a b +-÷-的结果是 .17. 分式方程21311x x x+=--的解是 . 18. 如图所示,小华从A 点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是 .19. 如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是.20. 填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a +b +c = .三、解答题:本大题共6小题,共58分。

【推荐】2019秋安徽省淮南市八年级上册期末数学试卷(有答案).doc

【推荐】2019秋安徽省淮南市八年级上册期末数学试卷(有答案).doc

安徽省淮南市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)以下列各组数据为边长,能构成三角形的是()A.4,4,8 B.2,4,7 C.4,8,8 D.2,2,72.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.83.(3分)如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A.AD=BC B.∠DAB=∠CBA C.△ACE≌△BDE D.AC=CE4.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=4,△ABC的面积是()A.25 B.84 C.42 D.215.(3分)下列图形中不是轴对称图形的是()A.B.C.D.6.(3分)若+y=2,y=﹣2,则+的值是()A.2 B.﹣2 C.4 D.﹣47.(3分)下列等式从左到右的变形,属于因式分解的是()A.(a+b)(a﹣b)=a2﹣b2B.a2+4a+1=a(a+4)+1C.3﹣=(+1)(﹣1)D.8.(3分)某煤矿原计划天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()A.==﹣3 B.﹣3C.﹣3 D.=﹣39.(3分)下列算式中,你认为正确的是()A.B.C.D.10.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)当=时,分式值为零.12.(3分)若多项式2+a﹣2分解因式的结果为(+1)(﹣2),则a的值为.13.(3分)如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=8,则BC=,∠BCD=,BD=.14.(3分)如图,在△ABC中AC=3,中线AD=5,则边AB的取值范围是.15.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=.16.(3分)如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为.17.(3分)若﹣y≠0,﹣2y=0,则分式的值.18.(3分)如图所示,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC,其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共46分)19.(6分)先化简,再求值:[(﹣2y)2﹣2y(2y﹣)]÷2,其中=2,y=1.20.(8分)已知2+y2﹣4+6y+13=0,求2﹣6y+9y2的值.21.(8分)如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.22.(8分)如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.证明:(1)△ABD≌△ACE(2)BD⊥CE.23.(8分)某单位计划购进一品牌的毛笔和墨汁,已知购买一支毛笔比购买一瓶墨汁多用12元.若用300元购买毛笔和用120元购买墨汁,则购买毛笔的支数是购买墨汁瓶数的一半,求购买一支毛笔、一瓶墨汁各需要多少元?24.(8分)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB、AC引垂线,垂足分别为E、F点.(1)当点D在BC的什么位置时,DE=DF?并证明.(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?并请给予写出.(3)过C点作AB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.安徽省淮南市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)以下列各组数据为边长,能构成三角形的是()A.4,4,8 B.2,4,7 C.4,8,8 D.2,2,7【解答】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;故选:C.2.(3分)一个凸多边形的内角和等于540°,则这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5,故选:A.3.(3分)如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A.AD=BC B.∠DAB=∠CBA C.△ACE≌△BDE D.AC=CE【解答】证明:在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴∠BAD=∠ABC,AD=BC,∴AE=BE,又∵∠C=∠D=90°,∠AEC=∠BED,∴△ACE≌△BDE.故选:D.4.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=4,△ABC的面积是()A.25 B.84 C.42 D.21【解答】解:连接OA,作OE⊥AB于E,OF⊥AC于F,如图,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE=4,OD=OF=4,∴△ABC的面积=S△AOB+S△BOC+S△AOC=•OE•AB+•OD•BC+•OF•AC=×4×(AB+BC+AC)=×4×21=42.故选:C.5.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.6.(3分)若+y=2,y=﹣2,则+的值是()A.2 B.﹣2 C.4 D.﹣4【解答】解:∵+y=2,y=﹣2,∴原式====﹣4.故选:D.7.(3分)下列等式从左到右的变形,属于因式分解的是()A.(a+b)(a﹣b)=a2﹣b2B.a2+4a+1=a(a+4)+1C.3﹣=(+1)(﹣1)D.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.8.(3分)某煤矿原计划天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()A.==﹣3 B.﹣3C.﹣3 D.=﹣3【解答】解:设原计划天生存120t煤,则实际(﹣2)天生存120t煤,根据题意得,=﹣3.故选:D.9.(3分)下列算式中,你认为正确的是()A.B.C.D.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选:D.10.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1 B.2 C.3 D.4【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)当=﹣2时,分式值为零.【解答】解:当||﹣2=0,且﹣2≠0,即=﹣2时,分式值为零.故答案是:﹣2.12.(3分)若多项式2+a﹣2分解因式的结果为(+1)(﹣2),则a的值为﹣1.【解答】解:根据题意得:2+a﹣2=(+1)(﹣2)=2﹣﹣2,则a=﹣1,故答案为:﹣113.(3分)如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=8,则BC=4,∠BCD= 30°,BD=2.【解答】解:∵∠ACB=90°,∠A=30°,AB=8,∴BC=AB=×8=4,∵CD⊥AB,∴∠BCD+∠B=90°,又∵∠A+∠B=180°﹣∠ACB=180°﹣90°=90°,∴∠BCD=∠A=30°.∴BD=BC=2.故答案为:4,30°,2.14.(3分)如图,在△ABC中AC=3,中线AD=5,则边AB的取值范围是7<AB<13.【解答】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=5,∴AE=5+5=10,∵10+3=13,10﹣3=7,∴7<CE<13,即7<AB<13.故答案为:7<AB<13.15.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=48°.【解答】解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵FE是BC的中垂线,∴FB=FC,∴∠FCB=∠DBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°,故答案为:48°.16.(3分)如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为6﹣4.【解答】解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=,则EF=BE=,BD=DF=2﹣,在Rt△BED中,DE2+BE2=BD2,∴2+2=(2﹣)2,解得1=﹣2﹣2(负值舍去),2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.17.(3分)若﹣y≠0,﹣2y=0,则分式的值9.【解答】解:∵﹣2y=0,∴=2y,∴===9.故答案为:9.18.(3分)如图所示,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC,其中正确的结论是①②③(填写所有正确结论的序号).【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④A错误;所以答案为:①②③.三、解答题(本大题共46分)19.(6分)先化简,再求值:[(﹣2y)2﹣2y(2y﹣)]÷2,其中=2,y=1.【解答】解:[(﹣2y)2﹣2y(2y﹣)]÷2=[2﹣4y+4y2﹣4y2+2y]÷2=(2﹣2y)÷2=,当=2,y=1时,原式==0.20.(8分)已知2+y2﹣4+6y+13=0,求2﹣6y+9y2的值.【解答】解:2+y2﹣4+6y+13=0,2﹣4+4+y2+6y+9=0,(﹣2)2+(y+3)2=0,解得:=2,y=﹣3,2﹣6y+9y2=(﹣3y)2=[2﹣3×(﹣3)]2=121.21.(8分)如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.【解答】解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,∵AD、BD分别是∠EAB,∠ABF的平分线,∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°,∴∠DAB+∠DBA=×90°+90°=135°,在△ABD中,∠D=180°﹣135°=45°.22.(8分)如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.证明:(1)△ABD≌△ACE(2)BD⊥CE.【解答】(1)证明:∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)证明:∵△ABD≌△ACE,∴∠ADB=∠AEC,∴∠DEM+∠MDE=∠DEM+∠ADB+∠ADE=∠DEM+∠AEC+∠ADE=∠DAE+∠ADE=90°,在△DEM中,∠DME=180°﹣(∠DEM+∠MDE)=180°﹣90°=90°,∴BD⊥CE.23.(8分)某单位计划购进一品牌的毛笔和墨汁,已知购买一支毛笔比购买一瓶墨汁多用12元.若用300元购买毛笔和用120元购买墨汁,则购买毛笔的支数是购买墨汁瓶数的一半,求购买一支毛笔、一瓶墨汁各需要多少元?【解答】解:设购买一支毛笔需要元,则购买一瓶墨汁需要(﹣12)元,依题意得:=×,解得:=15,经检验,=15是原方程得解.∴购买一瓶墨汁为﹣12=3(元)答:购买一支毛笔需要15元,则购买一瓶墨汁需要3元.24.(8分)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB、AC引垂线,垂足分别为E、F点.(1)当点D在BC的什么位置时,DE=DF?并证明.(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?并请给予写出.(3)过C点作AB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.【解答】(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:有3对全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,∵由(1)知△BED≌△CFD,∴DE=DF,BE=CF,∵AB=AC,∴AE=AF,在△AED和△AFD中,∴△AED≌△AFD(SSS),∵在△ADB和△ADC中∴△ADB≌△ADC(SSS),∴有3对全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;(3)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.。

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定4.(4分)函数的自变量x的取值范围是()A.x>3B.x≥3C.x<3D.x≤35.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.6.(4分)一次函数y=kx+k的图象可能是()A.B.C.D.7.(4分)“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形8.(4分)已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD的长为()A.3B.4C.5D.610.(4分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是.12.(5分)把直线y=﹣x向下平移个单位得到直线y=﹣x﹣2.13.(5分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.(5分)如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三、解答题(共9小题,满分60分)15.(6分)如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.16.(6分)正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.17.(6分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.18.(6分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.(7分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.20.(7分)如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.21.(7分)如图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数.22.(7分)如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.。

2018-2019年八年级数学上册期末试卷含答案解析

2018-2019年八年级数学上册期末试卷含答案解析

八年级数学上册期末模拟练习卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)x 11.若分式f的值为0,则x的值为()x+2A. 0B. — 1C. 1D. 22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为(A. 25B. 25 或20C. 20D. 153.如图,点B、F、C、E在一条直线上,AB//ED, AC//FD ,那么添加下列一个条件后,仍无法判定△ ABC^ADEF的是( )A. AB=DEB. AC=DFC. /A=/DD. BF=EC4.下列因式分解正确的是()A.m2 + n2 = (m+n)(m—n)B.x2+2x-1 = (x- 1)2C, a2— a = a(a—1) D. a2 + 2a+1 = a(a+ 2)+15.如图,在△ ABC中,AB = AC, /BAC=100°, AB的垂直平分线分别交AB、BC于A 点D、E,则/ BAE的大小为( )A. 80B. 60C. 50D. 40 /《----- c6.已知2m+3n = 5,则4m 8n的值为( )A. 16B. 25C. 32D. 647.已知1m2+ 1n2 = n—m— 2,则工一1的值为( )4 4 m n1A. 1B. 0C. — 1D. — /48.如图,在△ ABC中,/C = 40°,将△ ABC沿着直线l折叠,点C落在点D的位置,则/ 1 —/2的度数是()A. 40B. 80C. 90D. 1409.若关于x的分式方程x — a=x+ 1a无解,则a的值为(A. 1B. - 1C.由D. 010.如图,在Rt^ABC 中,/ BAC = 90 , AB = AC, 点D为BC的中点,直角/ MDN绕点D旋转,DM, DN分别与边AB, AC交于E, F两点,下列结论:①A DEF 是等腰直角三角形;②AE=CF; ©ABDE^AADF;④BE+CF = EF.其中正确的是A.①②④B.②③④二、填空题(每小题3分,共24分)11.如图,/ ACD 是4ABC 的外角,若/ ACD=125°, / A= 75°,则/ B = _____________12.计算:(-8)2018X 0.1252017 =13. (1)分解因式:ax2-2ax+a =(2)计算: 4 + 2xx2—1 (x— 1) (x+ 2)14.如图,AB=AC, AD = AE, / BAC= / DAE,点D 在线段BE 上.若/1 = 25°, /2=30°,则/ 3的度数为15.如图,在△ ABC 中,D 为AB 上一点,AB = AC, CD=CB.若/ ACD = 42°,则/ BAC =16.若x2 + bx+c= (x+ 5)(x-3),其中b, c 为常数,则点P(b, c)关于y轴对称的点的坐标是17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为w18.如图,五边形 ABCDE 中,/B=/E=90°, AB= CD = AE= BC+DE = 2,则这个20. (6分)现要在三角地ABC 内建一中心医院,使医院到 A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.R21. (10分)(1)已知 a+b=7, ab= 10,求 a 2+b 2, (a —b)2的值;⑵先化简,再求值:(a —2 —,其中a=(3-兀计1.22. (10 分)如图,在五边形 ABCDE 中,/ BCD=/EDC=90 , BC= ED, AC = AD.(1)求证:A ABC^AAED;五边形ABCDE 的面积是. 三、解答题(共66分)19. (8分)计算: (1)x(x-2y)-(x+ y)2;+ a — 2a 2—2a+1a a+2(2)当/B= 140时,求/ BAE的度数.23.(10分)如图,在AABC中,D是BC的中点,过点D的直线GF交AC于F,交AC 的平行线BG于点G, DEXDF,交AB于点E,连接EG, EF.(1)求证:BG = CF;(2)请你判断BE + CF与EF的大小关系,并说明理由.G24.(10 分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的 1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?25.(12 分)如图①,CA=CB, CD=CE, /ACB=/DCE=& AD, BE 相交于点M, 连接CM.(1)求证:BE = AD;(2)用含0c的式子表示/ AMB的度数;⑶当%= 90°时,分别取AD, BE的中点为点P, Q,连接CP, CQ, PQ,如图②所示, 判断4CPQ的形状,并加以证明.参考答案与解析1. B 2,A 3.C 4.C 5.D 6.C 7.C 8,B9. C 解析:在方程两边同乘x+1,得x —a=a(x+ 1),整理得(1 — a)x = 2a.当1 — a=0 时,即a=1,整式方程无解;当x+ 1 = 0,即x= -1时,分式方程无解,把x = -1代入(1 —a)x=2a,得—(1 —a)=2a,解得 a= — 1.故选 C.10. C 解析:•.在 Rtz\ABC 中,/BAC=90 ,AB=AC,点 D 为 BC 的中点,/.ADXBC,/ B = / C= / BAD = / CAD = 45 , 「. / ADB = /ADC= 90 , AD = CD = BD.「/MDN 是直角,「./ ADF + /ADE = 90 .../BDE+/ADE = /ADB = 90 ,[/ B=/ FAD,・•./ADF = /BDE.在 ABDE 和 AADF 中,{BD = AD, l/BDE=/ADF,BDEBADF(ASA) ,「.DE = DF, BE = AF,「.△ DEF 是等腰直角三角形,故 ①③正确;: AE = AB —BE, CF = AC —AF, AB = AC, BE = AF,「.AE = CF,故 ②正确;:BE+CF = AF + AE, AF + AE>EF, BE+ CF>EF,故④错误.综上 所述,正确的结论有①②③.故选C.18 . 4 解析:如图,延长 DE 至 F,使 EF=BC,连接 AC, AD, AF.v AB = CD = AE= BC+DE = 2, /B=/AED = 90,CD = EF + DE = DF.在△ ABC 与△ AEF 中, [AB=AE,〈/ABC= /AEF,「.△ABC 二△AEF(SAS),AC= AF.在AACD 与AAFD 中, [BC = EF,AC=AF,<CD = FD, .•.△ACD 二△AFD(SSS), [AD =AD ,11. 50 12.813.(1)a(x- 1)2(2) 土x 114. 55 15.32 16.(— 2, —15) 1480 17. 丁= x1480x+701 1「•五边形 ABCDE 的面积 S= 2S A ADF = 2X] DF AE=2X]X2X2=4.故答案为 4.19 .解:(1)原式=x 2—2xy —x 2 —2xy — y2=-4xy-y 2.(4 分)20 .解:如图,作AB 的垂直平分线EF, (2分)作/BAC 的平分线AM,两线交于P,(5分)则P 为这个中心医院的位置.(6分)H卓21 .解:(1)「a+b=7, ab=10, •. a 2+ b 2= (a+b )2— 2ab=72— 2X10 = 49 — 20 = 29,(2 分)(a —b )2= (a + b )2—4ab=72— 4X 10 = 49 — 40 = 9.(5 分)-用“(a —2) (a+2) - 52 (a+ 2) (a+3) (a —3) 2 (a+2)⑵原式= ---------- a ^ -------- .二1=-aJ^一 丁1= 2a- = 1+4 = 5,原式=2X5+6=16.(10分) 22 . (1)证明:AC=AD,ACD=/ADC.又・. / BCD=/EDC =90 ,ACB =[BC=ED,/ADE.(3 分)在 AABC 和 AAED中,</ACB=/ADE, [AC = AD,・ .△ABB △AED(SAS ). (6 分)(2)解:由(1)知△ABC^^AED,E=/B=140 .又「。

安徽省淮南市八年级上学期数学期末考试试卷

安徽省淮南市八年级上学期数学期末考试试卷

安徽省淮南市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七下·钦州期末) 下列的点在第二象限的是()A . (2,3)B . (﹣2,3)C . (2,﹣3)D . (﹣2,﹣3)2. (2分) (2017八下·鄞州期中) 下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A . 1B . 2C . 3D . 43. (2分)如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A . BD+ED=BCB . DE平分∠ADBC . AD平分∠EDCD . ED+AC>AD4. (2分)(2017·平房模拟) 下列各数中最小的是()A . |﹣5|B . ﹣23C . ﹣(+3)D .5. (2分)(2019·梧州) 下列函数中,正比例函数是()A . y=﹣8xB . y=C . y=8x2D . y=8x﹣46. (2分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A . ∠M=∠NB . AM∥CNC . AC=BDD . AM=CN7. (2分)如图,在数轴上表示不等式组的解集,其中正确的是()A .B .C .D .8. (2分)(2018·衢州模拟) 如图,在射线OA,OB上分别截取OA1=OB1 ,连接A1B1 ,在B1A1 , B1B 上分别截取B1A2=B1B2 ,连接A2B2 ,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A .B .C .D .9. (2分)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A . 7x+9﹣9(x﹣1)>0B . 7x+9﹣9(x﹣1)<8C .D .10. (2分)某地出租车计费方式如下:3 km以内只收起步价8元,超过3 km的除收起步价外,每超出1 km 另加收2元;不足1 km的按1 km计费.则能反映该地出租车行驶路程x(km)与所收费用y(元)之间的函数关系的图象是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2020八下·北京月考) 将直线y=2x向下平移3个单位长度得到的直线解析式为________.12. (1分) (2018八上·浏阳期中) 已知M(a,3)和N(4,b)关于x轴对称,则a+b的值为________.13. (1分)(2020·通辽模拟) 在中, , ,则面积为________.14. (1分) (2017·市中区模拟) 不等式的解集是________.15. (1分) (2019八下·开封期末) 把直线向下平移2个单位长度,得到直线的解析式是________.16. (1分)若商品原价为5元,如果降价x%后,仍不低于4元,那么x的取值为________.17. (1分)拖拉机的油箱有油升,每工作小时耗油升,则油箱的剩余油量(升)与工作时间(小时)之间的函数关系式为________.18. (1分)如图,将正方形ABCD沿BM,CN(M,N为边AD上的点)向正方形内翻折,点A与点D均落在P点处,连结AC,AP,则 ________.三、解答题 (共6题;共57分)19. (6分) (2017八下·南京期中) 如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)①若将线段AB绕点O逆时针旋转90°得到线段A1B1 ,试在图中画出线段A1B1 .②若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2 .(2)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标(写出一个即可).20. (5分)如图,CD平分∠ACB ,DE∥BC ,∠AED=80°,求∠ECD的度数.21. (6分)如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.22. (10分) (2017八上·无锡期末) 如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若, DB=2 ,求BE的长.23. (10分) (2019九上·海淀月考) 对于平面上A、B两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点A、B的“领域”.(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为________.(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B ,点A、B的“领域”的面积不超过16,直接写出m的取值范围.24. (20分) (2019八下·埇桥期末) 如图,等边的边长是4,,分别为,的中点,延长至点,使,连接和.(1)求证:;(2)求的长;(3)求四边形的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共57分)19-1、19-2、20-1、答案:略21-1、21-2、答案:略22-1、答案:略22-2、答案:略23-1、23-2、答案:略24-1、答案:略24-2、答案:略24-3、。

2018-2019学年度第一学期八年级数学期末试卷(解析版) (1)

2018-2019学年度第一学期八年级数学期末试卷(解析版) (1)

2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是A. B. C. D.【答案】A【解析】解:A、在第四象限,故本选项正确;B、在第一象限,故本选项错误;C、在第二象限,故本选项错误;D、在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.小亮的体重为,用四舍五入法将精确到的近似值为A. 48B.C. 47D.【答案】B【解析】解:精确到的近似值为.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为A. B. 2 C. D.【答案】D【解析】解:,该三角形是直角三角形,.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B.C. D.【答案】B【解析】解:一次函数,y随着x的增大而减小,,一次函数的图象经过第二、四象限;,,图象与y轴的交点在x轴下方,一次函数的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到,而,则,所以一次函数的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数、b为常数,是一条直线,当,图象经过第一、三象限,y随x的增大而增大;当,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为.6.如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A. B. C. D.【答案】C【解析】解:,,可添加条件,理由:在和中,,≌ ;故选:C.根据得出,添加条件,则利用SAS定理证明 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.【答案】D【解析】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选:D.根据三角形内角和定理求出,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,计算即可.此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图2所示下列叙述正确的是A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,,所以小苏跑全程的平均速度小于小林跑全程的平均速度,而路程相同,根据速度路程时间故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏,根据行程问题的数量关系可以求出甲、乙用的时间多,而路程相同,根据速度路程时间的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】【解析】解:,的平方根是.故答案为:.根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点,关于y轴对称的点的坐标为______.【答案】【解析】解:首先可知点,再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是.故答案为:.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数,,,,中,无理数有______个【答案】2【解析】解:,,,是有理数,,是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点在函数的图象上,则______.【答案】【解析】解:点在函数的图象上,,解得,,故答案为:.根据点在函数的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系.【答案】【解析】解:下列关于建立平面直角坐标系的认识,合理的有,尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系,故答案为:根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边中,D、E分别是边AB、AC上的点,且,则______【答案】180【解析】解:是等边三角形,≌.,,,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知,利用SAS判定≌ ,从而得出,所以,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在中,,AD平分,,,则点D到直线AB的距离是______.【答案】【解析】解:作于E,,,,,平分,,,.故答案为:.作于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条【答案】7【解析】解:如图所示:当,,,,,,时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:,即,.的整数部分为1.的小数部分为解决问题:已知a是的整数部分,b是的小数部分,求的平方根.【答案】解:,,,,,,,,,则25的平方根是.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地如图是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.填空:______km,AB两地的距离为______km;求线段PM、MN所表示的y与x之间的函数表达式;求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:由题意和图象可得,千米,A,B两地相距:千米,故答案为:240,390由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:MN所表示的函数关系式为:由得,解得:由得,解得:由图象可知当行驶时间满足:,小汽车离车站C的路程不超过60千米根据图象中的数据即可得到A,B两地的距离;根据函数图象中的数据即可得到两小时后,货车离C站的路程与行驶时间x之间的函数关系式;根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:,求x的值.【答案】解:,,.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:.【答案】解:原式.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在中,,BE、CD是中线求证:.【答案】证明:,,、CD是中线,,,,在和中,,≌ ,.【解析】由等腰三角形的性质得出,由已知条件得出,证明≌ ,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是内部的一点,,过点D作,,垂足分别为E、F,且求证:为等腰三角形.【答案】证明:,,.在和中,≌ ,,,,,即,.【解析】欲证明,只要证明即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.完成下列步骤,画出函数的图象;列表、填空;描点:连线观察图象,当x______时,y随x的增大而增大;结合图象,不等式的解集为______.【答案】2 0【解析】解:填表正确画函数图象如图所示:由图象可得:时,y随x的增大而增大;由图象可得:不等式的解集为;故答案为:2;0;;.根据函数值填表即可;根据图象得出函数性质即可;根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价元与产品的日销售量件之间的关系如表:已知日销售量y是销售价x的一次函数.求日销售量件与每件产品的销售价元之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:设日销售量件与每件产品的销售价元之间的函数表达式是,,解得,,即日销售量件与每件产品的销售价元之间的函数表达式是;当每件产品的销售价定为35元时,此时每日的销售利润是:元,即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量件与每件产品的销售价元之间的函数表达式;根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.问题解决:如图1,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y 轴交于点B,以AB为腰在第二象限作等腰直角,,点A、B的坐标分别为A______、B______.求中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点请你借助小明的思路,求出点C的坐标;类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标,点B坐标,过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数图象上一动点,若是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】【解析】解:针对于一次函数,令,,,令,,,,故答案为,;如图1,由知,,,,,过点C作轴于E,,,,,,是等腰直角三角形,,在和中,,≌ ,,,,;如图2,过点D作轴于F,延长FD交BP于G,,点D在直线上,设点,,轴,,,同的方法得, ≌ ,,,如图2,,,,或,或,当时,,,,,当时,,,,,即:,或,利用坐标轴上点的特点建立方程求解,即可得出结论;先构造出 ≌ ,求出AE,CE,即可得出结论;同的方法构造出 ≌ ,分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。

淮南市八年级上学期期末数学试卷

淮南市八年级上学期期末数学试卷

淮南市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:. (共12题;共24分)1. (2分) (2019八下·靖远期中) 下列图形既是轴对称图形又是中心对称图形的图形是()A . 等腰三角形B . 等边三角形C . 长方形D . 梯形2. (2分)下列图形具有稳定性的是()A . 三角形B . 梯形C . 长方形D . 正方形3. (2分) (2018八上·番禺期末) 若分式的值为0,则x的值为()A . 0B . 1C . -1D .4. (2分)如图,AD⊥BC,GC⊥BC,CF⊥AB,D,C,F是垂足,下列说法中错误的是()A . △ABC中,AD是BC边上的高B . △ABC中,GC是BC边上的高C . △GBC中,GC是BC边上的高D . △GBC中,CF是BG边上的高5. (2分)下列计算正确的是()A . a3+a2=a5B . a3﹣a2=aC . (a3)2=a5D . a3•a2=a56. (2分)如图,将三角尺的直角顶点放在直尺的一边,∠1=30°,∠2=70°,则∠3等于()A . 20°B . 30°C . 40°D . 50°7. (2分)如图,用直尺和圆规作一个角等于已知角,能得出的依据是()A . (SAS)B . (SSS)C . (ASA)D . (AAS)8. (2分)(2019·岳麓模拟) 若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 10C . 8或10D . 69. (2分)(2016·平武模拟) 下列运算中,正确的是()A . 2xa+xa=3x2a2B . (a2)3=a6C . 3a•2a=6aD . 3﹣2=﹣610. (2分) (2019八上·灌云月考) 如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=().A . 35°B . 30°C . 25°D . 20°11. (2分)如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则三角形BEC的周长为()A . 11B . 12C . 13D . 1412. (2分)甲、乙两人各自安装10台仪器,甲比乙每小时多安装2台,结果甲比乙少用1小时完成安装任务。

2018-2019八年级(上)期末数学试卷(五四学制)(解析版)

2018-2019八年级(上)期末数学试卷(五四学制)(解析版)

2018-2019八年级(上)期末数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.在,,﹣3xy+y2,,,分式的个数为()A.2B.3C.4D.52.下列图形中,是轴对称图形的是()A.B.C.D.3.下列运输正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+14.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变5.下列二次根式中最简二次根式是()A.B.C.D.6.已知等腰三角形的一个底角为50°,则其顶角为()A.50°B.80°C.100°D.150°7.若x2+kx+9是完全平方式,则k的值是()A.6B.﹣6C.9D.6或﹣68.等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣19.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20B.﹣=20C.﹣=D.﹣=10.如图,在锐角三角形ABC中,∠BAC=60°,BF,CE为高,点D为BC的中点,连接EF,ED,FD,有下列四个结论:①ED=FD;②∠ABC=60°时,EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.12.当x时,分式有意义.13.计算:﹣=.14.把多项式4m2﹣16n2分解因式的结果是.15.当x时,分式的值为正.16.如果a+b=3,ab=2,那么代数式a2+b2的值为.17.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE=.18.自由落体的公式为s=gt2(g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m,则下落的时间t是s.19.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.20.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,以AB为斜边在△ABC内部作Rt=9,则线段AD的长度为.△ABD,连接CD,若∠ADC=135°,S△ABD三、解答题(第21-25题各8分,第26-27题各10分,共计60分)21.(8分)计算:(1)(2x+3y)(x﹣y)(2)(a2b﹣3)﹣2•(a﹣2b3)2.22.(8分)先化简,再求值:,其中x=.23.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.24.(8分)如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.25.(8分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?26.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.27.(10分)如图,在平面直角坐标系中,点O是坐标原点,点B(0,12),点A在第一象限内,△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,点D从点B出发,以每秒2个单位的速度沿y轴向终点O运动,连接DA,过点A作AE⊥AD,射线AE交x轴于点E,连接BE,交线段AC于点F,交线段OA于点G.(1)请直接写出A的坐标;(2)点D运动的时间为t秒时,用含t的代数式表示△ACD的面积S,并写出t的取值范围;(3)在(2)的条件下,当四边形DAEO的面积等于6S时,求△AGF的面积.2018-2019学年八年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.在,,﹣3xy+y2,,,分式的个数为()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.下列运输正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.4.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.【解答】解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.5.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.已知等腰三角形的一个底角为50°,则其顶角为()A.50°B.80°C.100°D.150°【分析】根据三角形的内角和是180°以及等腰三角形的两个底角相等进行分析.【解答】解:由题意得,顶角=180°﹣50°×2=80°.故选:B.【点评】本题主要考查了等腰三角形的性质以及三角形的内角和定理的运用,难度不大.7.若x2+kx+9是完全平方式,则k的值是()A.6B.﹣6C.9D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.【解答】解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.8.等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1【分析】根据二次根式的乘法法则适用的条件列出不等式组解答即可.【解答】解:∵,∴,解得:x≥1.故选:A.【点评】本题考查的是二次根式的乘法法则,即•=(a≥0,b≥0).9.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.10.如图,在锐角三角形ABC中,∠BAC=60°,BF,CE为高,点D为BC的中点,连接EF,ED,FD,有下列四个结论:①ED=FD;②∠ABC=60°时,EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】①由BF、CE为高,D为BC的中点,根据直角三角形斜边上的中线等于斜边的一半,即可证得FD=ED;②由两角对应相等,易证得△AEF∽△ABC,然后由∠BAC=60°与∠ABC=60°,可得△ABC是等边三角形,则易得∠AEF=∠ABC=60°,即可得EF∥BC;③根据锐角三角函数的定义,可得③错误;④可证△ABF∽△ACE,可得结论.【解答】解:①∵BF、CE为高,∴∠BEC=∠BFC=90°,∵D为BC的中点,∴FD=ED,故①正确;②∵BF、CE为高,∴∠BFA=∠CEA=90°,∵∠A=∠A,∴△BFA∽△CEA,∵∠BAC=60°,∠ABC=60°,∴△ABC是等边三角形,∴△AEF也是等边三角形,∴∠AEF=∠ABC=60°,∴EF∥BC,故②正确;③∵∠ABC=60°,tan60°==,∴BF=AF,故③错误;④∵∠AFB=∠AEC=90°,∠A=∠A,∴△ABF∽△ACE,得AF:AB=AE:AC.故④正确;本题正确的个数有3个:①②④;故选:C.【点评】此题考查了直角三角形的性质,等边三角形的判定与性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是直角三角形斜边上的中线性质的应用.二、填空题(每小题3分,共计30分)11.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【分析】因为0.0000025<1,所以0.0000025=2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.【点评】本题考查了较小的数的科学记数法,10的次数n是负数,它的绝对值等于非零数字前零的个数.12.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.【解答】解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.13.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.【解答】解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.14.把多项式4m2﹣16n2分解因式的结果是4(m+2n)(m﹣2n).【分析】首先提取公因式进而利用平方差公式法分解因式得出即可.【解答】解:4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n).【点评】此题主要考查了提取公因式法与公式法综合应用分解因式,注意分解因式要彻底是解题关键.15.当x>时,分式的值为正.【分析】因为分母是x2>0,所以主要分子的值是正数则可,从而列出不等式.【解答】解:∵分式的值为正,x2>0,∴2x﹣1>0,解得x>.故答案是:>.【点评】本题考查不等式的解法和分式值的正负条件,解不等式时当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向,当未知数的系数是正数时,两边同除以未知数的系数不需改变不等号的方向.16.如果a+b=3,ab=2,那么代数式a2+b2的值为5.【分析】首先把a+b=3的两边平方,再代入计算,即可得出结果.【解答】解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2×2=5;故答案为:5.【点评】本题考查了完全平方公式、代数式的求值;熟练掌握完全平方公式是解决问题的关键.17.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE= 6.【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.【解答】解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.18.自由落体的公式为s=gt2(g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m,则下落的时间t是4s.【分析】把物体下落的高度s=78.4、g=9.8代入,利用算术平方根计算即可.【解答】解:将s=78.4、g=9.8代入=gt2,得:78.4=×9.8t2,整理可得:t2=16,则t=4或t=﹣4(舍),即下落的时间t是4s,故答案为:4.【点评】此题考查算术平方根,关键是根据实际问题分析.19.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为60或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.20.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,以AB为斜边在△ABC内部作Rt=9,则线段AD的长度为3.△ABD,连接CD,若∠ADC=135°,S△ABD【分析】作辅助线,构建三角形AEB,由旋转的性质可得△AED和是等腰直角三角形△BED是等腰直角三角形,设AD=AE=x,则ED=BE=x,BD=x×=2x,根据S△ABD=9,可求得x的值,即AD的长.【解答】解:将△ADC绕点A顺时针旋转90°得到△AEB,连接ED,∴∠EAD=90°,AE=AD,∠AEB=∠ADC=135°,∴△AED是等腰直角三角形,∴∠AED=∠ADE=45°,∴∠BED=135°﹣45°=90°,∵∠ADB=90°,∴∠BDE=45°,∴△BED是等腰直角三角形,设AD=AE=x,则ED=BE=x,BD=x×=2x,=9,∵S△ABD∴AD•BD=9,•x•2x=9,x2=9,x1=3,x2=﹣3,∴AD=3,故答案为:3.【点评】本题主要考查了等腰直角三角形的性质和判定,勾股定理,三角形的面积,解本题的关键是判断△AED和是等腰直角三角形△BED是等腰直角三角形,难点是已知的面积求AD的长.三、解答题(第21-25题各8分,第26-27题各10分,共计60分)21.(8分)计算:(1)(2x+3y)(x﹣y)(2)(a2b﹣3)﹣2•(a﹣2b3)2.【分析】(1)直接利用多项式乘法计算得出答案;(2)直接利用积的乘方运算法则以及负指数幂的性质分别化简得出答案.【解答】解:(1)(2x+3y)(x﹣y)=2x2﹣2xy+3xy﹣3y2=2x2+xy﹣3y2;(2)(a2b﹣3)﹣2•(a﹣2b3)2=a﹣4b6•a﹣4b6=a﹣8b12=.【点评】此题主要考查了多项式乘法以及负指数幂的性质,正确掌握运算法则是解题关键.22.(8分)先化简,再求值:,其中x=.【分析】根据分式的运算法则即可求出答案.【解答】解:由于x==﹣2原式=×﹣=﹣===【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(﹣4,﹣1),B1(﹣3,﹣3),C1(﹣1,﹣2);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是4.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣4,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2),故答案为:﹣4、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC1C2的面积是×2×4=4,故答案为:4.【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.24.(8分)如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.【分析】(1)根据直角三角形的性质得到BD⊥AC,∠DBC=45°,根据角平分线的定义得到∠BAF=22.5°,根据三角形内角和定理计算,根据等腰三角形的判定定理证明即可;(2)根据等腰三角形的概念解答.【解答】(1)证明:∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD⊥AC,∠DBC=45°,∵AF是∠BAC的平分线,∴∠BAF=22.5°,∴∠BFE=67.5°,∴∠BEF=180°﹣∠EBF﹣∠EFB=67.5°,∴∠BFE=∠BEF,∴BE=BF;(2)∵∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD=AD=CD,∴△ABD、△CBD是等腰三角形,由已知得,△ABC是等腰三角形,由(1)得,△BEF是等腰三角形,∵AF是∠BAC的平分线,BD是∠ABC的平分线,∴点E是△ABC的内心,∴∠EAC=∠ECA=22.5°,∴△AEC是等腰三角形.【点评】本题考查的是等腰三角形的判定和性质、直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.25.(8分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?【分析】(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.【解答】解:(1)设购买一个乙礼品需要x元,根据题意得:=,解得:x=60,经检验x=60是原方程的根,∴x+40=100.答:甲礼品100元,乙礼品60元;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意得:100m+60(30﹣m)≤2000,解得:m≤5.答:最多可购买5个甲礼品.【点评】此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.26.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.【分析】(1)根据等边三角形的性质、三角形的外角的性质得到∠EDB=∠B,根据等腰三角形的判定定理证明;(2)取AB的中点O,连接CO、EO,分别证明△ACD≌△OCE和△COE≌△BOE,根据全等三角形的性质证明;(3)取AB的中点O,连接CO、EO、EB,根据(2)的结论得到△CEG≌△DCO,根据全等三角形的性质解答.【解答】(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.【点评】本题考查的是等边三角形的性质、全等三角形的判定和性质以及直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(10分)如图,在平面直角坐标系中,点O是坐标原点,点B(0,12),点A在第一象限内,△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,点D从点B出发,以每秒2个单位的速度沿y轴向终点O运动,连接DA,过点A作AE⊥AD,射线AE 交x轴于点E,连接BE,交线段AC于点F,交线段OA于点G.(1)请直接写出A的坐标;(2)点D运动的时间为t秒时,用含t的代数式表示△ACD的面积S,并写出t的取值范围;(3)在(2)的条件下,当四边形DAEO的面积等于6S时,求△AGF的面积.【分析】(1)先确定出OB=12,再用等腰直角三角形的性质得AC=BC=OC=OB=6,即可得出结论;(2)当点D在线段BC上时(不包括点C),即:0≤t<3,得出CD=BC﹣BD=6﹣2t,利用三角形面积公式即可;当点D在线段BC上时(不包括点C),即:3<t≤6,如图2,CD=BD﹣BC=2t﹣6,最后利用三角形面积公式即可;(3)①当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,先判断出S△ACD=S△AME ,进而S四边形DOEA=S正方形ACOM=AC2=36,即可求出S,进而t=2,CD=EM=2,OE=4,再求出AF=AC﹣CF=4=OE,最后判断出△AFG≌△OEG,求出PG=QG=6即可得出结论;②当点D在线段OC上(不包括点C),即:3<t≤6,如图2,同①的方法知,S=6,t=4,CD=EM=2,OE=8,同①的方法得,OF=4,即AF=AC﹣OF=2,再判断出△AFG∽△OEG,得出h'=4h,即可得出h=即可得出结论.【解答】解:(1)∵B(0,12),∴OB=12,∵△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,∴AC=BC=OC=OB=6,∴A(6,6);(2)当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,由运动知,BD=2t,∴CD=BC﹣BD=6﹣2t,∴S=S△ACD=CD×AC=18﹣6t,当点D在线段BC上时(不包括点C),即:3<t≤6,如图2,由运动知,BD=2t,∴CD=BD﹣BC=2t﹣6,∴S=S△ACD=CD×AC=6t﹣18;(3)①当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,过点A作AM⊥x轴于M,∴四边形OCAM是矩形,∵A(6,6),∴AC=AM,∴矩形OCAM是正方形,∴OM=AC=6,∠CAM=90°,∵∠DAE=90°,∴∠CAD=∠EAM,在△ACD和△AME中,,∴△ACD≌△AME,=S△AME,∴S△ACD=S△ACD+S四边形COEA=S△AMF+S四边形COEA=S正方形ACOM=AC2=36,∴S四边形DOEA∵四边形DAEO的面积等于6S,∴6S=36,∴S=6,由(2)知,S=18﹣6t,∴18﹣6t=6,∴t=2,∴CD=EM=6﹣2t=2,∵OM=6,∴OE=OM﹣EM=4,∵AC∥OM,OC=BC,∴CF=OE=2,∴AF=AC﹣CF=4=OE,过点G作GQ⊥OM于Q,交AC于P,∴PG⊥AC,∴四边形OCPQ是矩形,∴PQ=OC=6,易知,△AFG≌△OEG,∴PG=QG=6,=AF×PG=6;∴S△AFG②当点D在线段OC上(不包括点C),即:3<t≤6,如图2,同①的方法知,S=6,∵S=6t﹣18,∴6t﹣18=6,∴t=4,∴CD=EM=2,∴OE=8,同①的方法得,OF=4,∴AF=AC﹣OF=2,∵AC∥OM,∴△AFG∽△OEG,设△AFG的边AF上的高为h,△OEG的边OE上的高为h',∴=.∴h'=4h,∵h+h'=6,∴h=,=AF×h=.∴S△AFG【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的面积公式,用分类讨论的思想是解本题的关键.。

安徽省淮南市八年级(上)期末数学试卷 含解析

安徽省淮南市八年级(上)期末数学试卷  含解析

2018-2019学年八年级(上)期末数学试卷一.选择题(共10小题)1.中国文字博大精深,而且有许多是轴对称图形,在这四个美术字中,是轴对称图形的是()A.B.C.D.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b63.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=﹣1 C.x=1 D.x=04.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个5.如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF 的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°6.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB 于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCDC.OD=CD D.OC垂直平分DE7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)8.下列各式中,计算正确的是()A.x(2x﹣1)=2x2﹣1 B.=C.(a+2)2=a2+4 D.(x+2)(x﹣3)=x2+x﹣69.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α10.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个二.填空题(共8小题)11.点(﹣2018,2019)关于x轴对称的点的坐标为.12.已知等腰三角形的一个内角是50°,则等腰三角形的顶角等于°.13.(π﹣3.14)0=.14.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.15.计算+的结果是.(结果化为最简形式)16.已知关于x的方程﹣2=有一个正数解,则m的取值范围.17.把长方形OABC放在如图所示的平面直角坐标系中,点F、E分别在边OA和AB上,若点F(0,3),点C(9,0),且∠FEC=90°,EF=EC,则点E的坐标为.18.如图,在等边三角形ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM 交AC于点N,连结DM、CM.以下说法:①AD=AM,②DE=ME,③CN=EC,④S△ABD=S中,正确的是.△ACM三.解答题(共5小题)19.(1)计算:(1﹣2a)2﹣(2a+1)(2a﹣1)(2)分解因式:a3b﹣ab20.先化简,再求值:,从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1的坐标(直接写答案):C1;(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.22.列分式方程解应用题“互联网+”已经成为我们生活中不可或缺的一部分,例如OFO.摩拜等互联网共享单车就为城市短距离出行难提俱了解决方案,小明每天乘坐公交汽车上学,他家与公交站台相距1.2km,现在每天租用共享单车到公交站台所花时间比过去步行少12min,已知小明骑自行车的平均速度是步行平均速度的2.5倍,求小明步行的平均速度是多少km/h?23.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)参考答案与试题解析一.选择题(共10小题)1.中国文字博大精深,而且有许多是轴对称图形,在这四个美术字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选:D.3.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=﹣1 C.x=1 D.x=0【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x2﹣1=0且x+1≠0,解得x=1,故选:C.4.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.5.如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF 的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°【分析】由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.【解答】解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选:D.6.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB 于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCDC.OD=CD D.OC垂直平分DE【分析】利用画法可判定OE=OD,CE=CD,则根据“SSS”可判定△OCE≌△OCD,于是可对A、B、C进行判断;然后根据线段垂直平分线的判定方法可对D进行判断.【解答】解:由作法得OE=OD,CE=CD,而OC为公共边,所以可根据“SSS”可判定△OCE≌△OCD,所以∠1=∠2,S△OCE=S△OCD,因为OE=OD,CE=CD,所以OC垂直平分DE.故选:C.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)【分析】根据面积相等,列出关系式即可.【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.8.下列各式中,计算正确的是()A.x(2x﹣1)=2x2﹣1 B.=C.(a+2)2=a2+4 D.(x+2)(x﹣3)=x2+x﹣6【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.【解答】解:A、原式=2x2﹣x,错误;B、原式==,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选:B.9.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.10.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=PA;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠PAB;∴符合条件的点P有6个点.故选:B.二.填空题(共8小题)11.点(﹣2018,2019)关于x轴对称的点的坐标为(﹣2018,﹣2019).【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:点(﹣2018,2019)关于x轴对称的点的坐标是(﹣2018,﹣2019).故答案为:(﹣2018,﹣2019).12.已知等腰三角形的一个内角是50°,则等腰三角形的顶角等于50或80 °.【分析】先知有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.【解答】解:如图所示,△ABC中,设AB=AC.分两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,综上所述,这个等腰三角形的顶角为50°或80°.故答案为:50或80.13.(π﹣3.14)0= 1 .【分析】根据零指数幂的意义计算.【解答】解:(π﹣3.14)0=1.故本题答案为:1.14.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.15.计算+的结果是 2 .(结果化为最简形式)【分析】先通分,然后根据分式的加减法运算法则进行计算.【解答】解:+=﹣===2,故答案为:2.16.已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3 .【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠317.把长方形OABC放在如图所示的平面直角坐标系中,点F、E分别在边OA和AB上,若点F(0,3),点C(9,0),且∠FEC=90°,EF=EC,则点E的坐标为(6,6).【分析】根据矩形的性质得到AB=OC=9,∠FAE=∠B=90°,根据余角的性质得到∠AFE=∠CEB,根据全等三角形的性质得到AF=BE,AE=BC,设AF=BE=x,列方程即可得到结论.【解答】解:∵点F(0,3),点C(9,0),∴OF=3,OC=9,∵四边形ABCO是矩形,∴AB=OC=9,∠FAE=∠B=90°,∵∠FEC=90°,∴∠AEF+∠AFE=∠AEF+∠CEB=90°,∴∠AFE=∠CEB,∵EF=EC,∴△AEF≌△BCE(AAS),∴AF=BE,AE=BC,设AF=BE=x,∴AO=BC=AE=x+3,∴x+3+x=9,∴x=3,∴AE=BC=6,∴点E的坐标为(6,6),故答案为:(6,6).18.如图,在等边三角形ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM.以下说法:①AD=AM,②DE=ME,③CN=EC,④S△ABD=S中,正确的是①③④.△ACM【分析】证明△ABD≌△ACE(SAS),得出AD=AE,∠BAD=∠CAE,由折叠的性质得△ACM ≌△ACE,得出△ABD≌△ACM,S△ABD=S△ACM,故④正确;由全等三角形的性质和折叠的性质得出AD=AE=AM,故①正确,证出∠CEN=30°,得出CN=EC,故③正确;当∠DAE =30°或DM⊥AE时,DE=ME,故②错误;即可得出答案.【解答】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠ACE=∠BAC=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,由折叠的性质得:△ACM≌△ACE,∴△ABD≌△ACM,∴S△ABD=S△ACM,故④正确;∵△ACM≌△ACE,∴AE=AM,CE=CM,∠ACE=∠ACM,∴AD=AE=AM,故①正确,∴AC垂直平分线段EM,∵∠ECN=60°,∠CNE=90°,∴∠CEN=30°,∴CN=EC,故③正确;当∠DAE=30°或DM⊥AE时,DE=ME,故②错误;故答案为:①③④.三.解答题(共5小题)19.(1)计算:(1﹣2a)2﹣(2a+1)(2a﹣1)(2)分解因式:a3b﹣ab【分析】(1)根据因式分解的方法﹣提公因式法分解因式即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)(1﹣2a)2﹣(2a+1)(2a﹣1)=(1﹣2a)(1﹣2a+2a+1)=2(1﹣2a)=2﹣4a;(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).20.先化简,再求值:,从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【分析】先将原式化简,然后从0,1,﹣1,2四个数中选取使得原分式有意义的x的值代入化简后的分式即可解答本题.【解答】解:,=÷(+),=,=,=,∵x2﹣1≠0,x≠1,∴x≠±1,x≠0,∴当x=2时,原式==.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1的坐标(直接写答案):C1(1,﹣1);(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.【分析】(1)分别作出点A、B、C关于y轴的对称点A1、B1、C1即可.(2)根据点C1的位置即可解决问题.(3)利用分割法计算即可.(4)连接BC1与y轴的交点即为所求的点P.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图象可知:C1(1,﹣1);故答案为(1,﹣1).(3)S=3×5﹣×1×5﹣×2×3﹣×2×3=;故答案为.(4)如图,连接BC1与y轴的交点为P,点P即为所求.22.列分式方程解应用题“互联网+”已经成为我们生活中不可或缺的一部分,例如OFO.摩拜等互联网共享单车就为城市短距离出行难提俱了解决方案,小明每天乘坐公交汽车上学,他家与公交站台相距1.2km,现在每天租用共享单车到公交站台所花时间比过去步行少12min,已知小明骑自行车的平均速度是步行平均速度的2.5倍,求小明步行的平均速度是多少km/h?【分析】设小明步行的平均速度是xkm/h,小明骑自行车的平均速度是每小时2.5x千米,根据小明家与公交站台相距 1.2bm,现在每天租用共享单车到公交站台所花时间比过去步行少12min,可列方程求解.【解答】解:设小明步行的平均速度是xkm/h,小明骑自行车的平均速度是每小时2.5x 千米,依题意有﹣=,解得:x=3.6,经检验,x=3.6是所列方程的解,且符合题意.答:小明步行的平均速度是3.6km/h.23.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=4cm;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD= 4 cm.(请直接写出答案)【分析】(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【解答】解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=1cm,∴PC=BC﹣BP=4cm,∴CD=CP=4cm,故答案为:4.。

2018-2019学年上期八年级数学期末试卷(解析版)

2018-2019学年上期八年级数学期末试卷(解析版)

2018-2019学年上期八年级数学期末试卷一、填空题(本大题共12小题,共24.0分)1.9的平方根等于______.2.比较大小:-1______(填“>”、“=”或“<”).3.若式子有意义,则x的取值范围是______.4.△ABC中,AB=AC,且∠A=80°,则∠B=______°.5.在平面直角坐标系中,点A(2,-3)关于y轴对称的点的坐标为______.6.Rt△ABC中,两条直角边长分别为5和12,则斜边上的中线长等于______.7.正比例函数y=(m-1)x图象经过二、四象限,则m的值可以是______(写一个即可).8.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=______°.9.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=______.10.如图,根据函数图象回答问题:方程组的解为______.11.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.12.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.请你根据表格中的相关数据计算:.二、选择题(本大题共6小题,共18.0分)13.下面四个图形分别是低碳、节水、回收和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.14.数3.14、、π、、、中,无理数的个数为()A. 2个B. 3个C. 4个D. 5个15.关于一次函数y=1-2x,下列说法正确的是()A. 它的图象过点B. 它的图象与直线平行C. y随x的增大而增大D. 当时,总有16.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A. 1B. 2C. 3D. 417.某超市以每千克0.8元的价格从批发市场购进若干千克西瓜,在销售了部分西瓜之后,余下的每千克降价0.3元,直至全部售完.销售金额y与售出西瓜的千克数x 之间的关系如图所示,那么超市销售这批西瓜一共赚了()A. 20元B. 32元C. 35元D. 36元18.如图△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE沿着直线CE翻折,得到△CDE,连接AD,则线段AD的长等于()A. 8B.C.D. 10三、解答题(本大题共8小题,共78.0分)19.(1)求x的值:4x2-9=0;(2)计算:-+.20.已知直线y=kx+b与直线y=2x平行,且经过点A(4,4).(1)求k和b的值;(2)若直线y=kx+b与y轴相交于点B,求△AOB的面积.21.已知点A(1,3)、B(3,-1),利用图中的“格点”完成下列作图或解答:(1)在第三象限内找“格点”C,使得CA=CB;(2)在(1)的基础上,标出“格点”D,使得△DCB≌△ABC;(3)点M是x轴上一点,且MA-MB的值最大,则点M的坐标______.22.如图,四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD,垂足为E,BE=DA.(1)求证:△ABD≌△ECB;(2)若∠DBC=45°,BE=1,求DE的长(结果精确到0.01,参考数值:≈1.414,≈1.732)23.快递员张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间t(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义______;(2)图中a=______,直线BC的函数表达式为______.(3)出发t小时,快递员距离快递公司10千米,求t的值.24.如图,正比例函数y=x的图象与一次函数y=kx+b的图象交于点A(m,3),一次函数y=kx+b图象与x轴负半轴交于点B.(1)根据图象回答问题:不等式kx+b>x的解为______;(2)若AB=5,求一次函数的表达式;(3)在第(2)问的条件下,若点P是直线AB上的一个动点,则线段OP长的最小值为______.25.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.26.如图,在平面直角坐标系中,点B的坐标是(0,2),动点A从原点O出发,沿着x轴正方向移动,△ABP是以AB为斜边的等腰直角三角形(点A、B、P顺时针方向排列),当点A与原点O重合时,得到等腰直角△OBC(此时点P与点C重合).(1)BC=______;当OA=2时,点P的坐标是______;(2)设动点A的坐标为(t,0)(t≥0).①求证:点A在移动过程中,△ABP的顶点P一定在射线OC上;②用含t的代数式表示点P的坐标为:(______,______);(3)过点P做y轴的垂线PQ,Q为垂足,当t=______时,△PQB与△PCB全等.答案和解析1.【答案】±3【解析】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.直接根据平方根的定义进行解答即可.本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.【答案】<【解析】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.【答案】x≥-2【解析】解:根据题意得:x+2≥0,解得:x≥-2.故答案是:x≥-2.根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】50【解析】解:∵△ABC中,∠A=80°,AB=AC,∴∠B=∠C=(180°-∠A)÷2=(180°-80°)÷2=50°.故答案为:50.根据等腰三角形的性质:∠B=∠C,再根据三角形的内角和定理即可解答.本题考查了等腰三角形两底角相等的性质,是基础题.5.【答案】(-2,-3)【解析】解:点A(2,-3)关于y轴对称的点的坐标为(-2,-3),故答案为:(-2,-3).根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.6.【答案】6.5【解析】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.7.【答案】0(答案不唯一)【解析】解:∵正比例函数y=(m-1)x,它的图象经过二、四象限,∴m-1<0,解得m<1.∴m的值可以是0.故答案为:0(答案不唯一).先根据正比例函数y=(m-1)x,它的图象经过二、四象限得出关于m的不等式,求出m的取值范围即可.本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.8.【答案】25【解析】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°-35°=25°,故答案为25.由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC即可.本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】4【解析】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC-AE=4,故答案为:4.由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得AE的长.此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.10.【答案】【解析】解:根据图象知:y=kx+3经过点(-3,0),所以-3k+3=0,解得:k=1,所以解析式为y=x+3,当x=-1时,y=2,所以两个函数图象均经过(-1,2)所以方程组的解为,故答案为:.首先观察函数的图象y=kx+3经过点(-3,0),然后求得k值确定函数的解析式,最后求得两图象的交点求方程组的解即可;此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.11.【答案】2【解析】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=2∠POE=30°.∴PF=PE=OE=2.则PD=PF=2.故答案是:2.过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF 是解决的关键.12.【答案】6【解析】解:设一次函数解析式为:y=kx+b,…则可得:-k+b=m①;k+b=2②;2k+b=n③;m+2n=①+2③=3k+3b=3×2=6.故答案为:6.设y=kx+b,将(-1,m)、(1,2)、(2,n)代入即可得出答案.本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.13.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.【答案】A【解析】解:在所列实数中,无理数有、π这2个,故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.【答案】D【解析】解:A、当x=1时,y=-1.所以图象不过(1,-2),故错误;B、因为一次函数y=1-2x与直线y=2x的k不相等,所以它的图象与直线y=2x 平行,故错误;C、因为k=-2,所以y随x的增大而减小,故错误;D、因为y随x的增大而减小,当x=0时,y=1,所以当x>0时,y<1,故正确.故选:D.根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降进行分析即可.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b(k≠0)的性质.16.【答案】D【解析】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选:D.直接利用轴对称图形的性质得出符合题意的答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.17.【答案】B【解析】解:由图可求:60÷40=1.5元,由于后来每千克降价0.3元,可以求后来的出售的西瓜重量:(72-60)÷(1.5-0.3)=10 (千克)所有进货的总重量:10+40=50 (千克);所以进货总进价:50×0.8=40 (元)赚了:出售总价格-进货总价格=72-40=32 (元)故选:B.通过审题,发现题目中不知道购进的西瓜重量,而问题一共赚了多少元,由出售的总价格-进货的总价格=赚了多少和右图所示出售的总价格是72元,那么可以用一次函数求出购进的西瓜重重,就可以求出进货的总价格;考查一次函数的应用,经济问题相关公式,看图分析问题能力;要理解题目意思和看懂图中的信息,易错点是:看懂图中的信息,把两次不同价格出售的西瓜重量加起来.18.【答案】C【解析】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,CE为中线,∴CE=AE=BE,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴=,即=,∴CF=6.4,∴EF=CF-CE=1.4,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=2.8,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,AD===,故选:C.延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.19.【答案】解:(1)4x2-9=0,4x2=9,x2=x=±;(2)原式=6-3+2=5.【解析】(1)首先把-9移到等号右边,再两边同时除以4,然后再求的平方根即可;(2)首先化简二次根式和立方根,再计算有理数的加减即可.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【答案】解:(1)∵直线y=kx+b与直线y=2x平行,∴k=2,∴y=2x+b,把点A(4,4)代入y=2x+b得8+b=4,解得b=-4;∴k和b的值分别为2、-4;(2)由(1)得,一次函数解析式为:y=2x-4,令x=0,可得y=-4,∴B点坐标为(0,-4),∴△AOB的面积为:•|OB|•x A=×4×4=8.答:△AOB的面积为8.【解析】(1)由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(4,4)代入一次函数解析式可求出b的值;(2)由(1)的结果可得一次函数解析式,令x=0,可得B点坐标,利用三角形的面积公式可得结果.本题是一次函数综合题,主要考查了两条直线相交或平行问题,待定系数法,三角形的面积公式等知识.解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.21.【答案】(4,0)【解析】解:(1)格点C如图所示.(2)格点D如图所示.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).(1)点C想线段AB的垂直平分线上.(2)根据全等三角形的性质即可解决问题.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).本题考查作图-应用与设计,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:(1)∵∠A=90°,CE⊥BD∴∠A=∠BEC=90°∵AD∥BC∴∠ADB=∠DBC,且∠A=∠BEC,BE=DA,∴△ABD≌△ECB(AAS)(2)∵∠DBC=45°,∠A=90°,BE=AD=1∴∠ADB=∠ABD=45°∴AD=AB=1∴BD==∴DE=BD-BE≈1.414-1≈0.41【解析】.(1)由“AAS”可证△ABD≌△ECB;(2)由等腰三角形的性质可得AD=AB=1,由勾股定理可求BD的长,即可求DE的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,熟练运用全等三角形的判定是本题的关键.23.【答案】张师傅到达小区后将快递投放到快递专柜 3 y=-30x+90.【解析】解:(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;故答案为:张师傅到达小区后将快递投放到快递专柜(2)根据题意,OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,其速度为:30÷1.5=20(km/h),BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,故其速度为:20×1.5=30(km/h),故时间为:30÷30=1h,故a=2+1=3h;直线BC的函数函数图象为直线,设y=kx+b,把B(2,30),C(3,0)代入y=kx+b,得,解得,∴直线BC的函数表达式为:y=-30x+90.故答案为:3,y=-30x+90.(3)分为两种情况:当出发至离公司10千米时,t=10÷20=0.5h,当回公司至离公司10千米时,10=-30x+90,解得x=.(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;(2)OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,即可求出直线BC;(3)分为两种情况:当出发至离公司10千米时,当回公司至离公司10千米时,本题主要考查一次函数的图象和解析式,图象和函数函数结合的题目,看清图象是解题的关键.24.【答案】x<2【解析】解:(1)∵点A(m,3)在正比例函数y=x上,∴3=m,∴m=2,∴A(2,3),∴不等式kx+b>x的解为x<2,故答案为:x<2;(2)由(1)知,A(2,3),∵点B在x轴负半轴上,∴设B(n,0)(n<0),∵AB=5,∴(n-2)2+9=25,∴n=6(舍)或n=-2,∴B(-2,0),将点A(2,3),B(-2,0)代入y=kx+b中得,,∴,∴一次函数的表达式为y=x+;(3)如图,由(2)知,直线AB的解析式为y=x+,∴当OP⊥AB时,OP最小,由(1)知,A(2,3),由(2)知,B(-2,0),AB=5,∴S△AOC=OB•|y C|=AB•OP,最小∴×2×3=×5OP,最小∴OP=,最小故答案为.(1)将点A坐标代入正比例函数解析式中,求出m,即可得出结论;(2)设出点B坐标,利用AB=5,求出点B坐标,最后将点A,B坐标代入一次函数表达式中,即可求出k,b,即可得出结论;(3)点判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,两点间距离公式,求出直线AB的解析式是解本题的关键.25.【答案】2≤L≤10【解析】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2,①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变'(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE=BG=,最小∴L=2+6,最小当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=10,∴周长L的变化范围是2≤L≤10,故答案为2≤L≤10.(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.26.【答案】(2,2)2+2【解析】解:(1)作PM⊥y轴于M,PN⊥OA于N.∵△OBC是等腰直角三角形,OB=2,∴BC=OB•cos45°=,∵∠PMN=∠PNA=∠PNO=∠MON=90°,∴∠MPN=∠BPA=90°,四边形PMON是矩形,∴∠MPB=∠NPA,∵PB=PA,∴△PMB≌△PNA(AAS),∴PM=PN,BM=AN,∴OB+OA=OM-BM+ON+AN=2OM=4,∴OM=ON=2,∴四边形PMON是正方形,∴P(2,2).故答案为:,(2,2).(2)①由(1)可知:PM=PN,∵PM⊥OB,PN⊥OA,∴OP平分∠AOB,∵∠BOC=45°,∴OC平分∠AOB,∴点P在射线OC上.②由(1)可知:2OM=OB+OA=2+t,∴OM=ON=,∴P(,).故答案为,.(3)如图,作PN⊥OA于N.第21页,共21页由(1)可知:△PQC ≌△PNA .△PQC ≌△PBC ,∴QC=BC=AN=, ∵四边形PNOQ 是正方形,∴ON=OQ=PN=PQ=2+, ∴OA=2++=2+2,∴t=2+2, 故答案为2+2. (1)作PM ⊥y 轴于M ,PN ⊥OA 于N .证明△PMB ≌△PNA 即可解决问题. (2)①利用角平分线的判定定理证明OP 平分∠AOB 即可.②利用全等三角形的性质即可解决问题.(3)如图,作PN ⊥OA 于N .利用全等三角形的判定和性质即可解决问题. 本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

安徽省淮南市八年级上学期数学期末考试试卷

安徽省淮南市八年级上学期数学期末考试试卷

安徽省淮南市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·黄冈) 如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A . 50°B . 70°C . 75°D . 80°2. (2分) (2016九上·婺城期末) 四边形的内角和为()A . 90°B . 180°C . 360°D . 720°3. (2分)(2019·淮安) 下列长度的3根小木棒不能搭成三角形的是()A . 2cm,3cm,4cmB . 1cm,2cm,3cmC . 3cm,4cm,5cmD . 4cm,5cm,6cm4. (2分)(2012·河池) 下列运算正确的是()A . (﹣2a2)3=﹣8a6B . a﹣2a=aC . a6÷a3=a2D . (a+b)2=a2+b25. (2分) (2019七下·赣榆期中) 下列各多项式中,能用公式法分解因式的是()A . a2-b2+2abB . a2+b2+abC . 25n2+15n+9D . 4a2+12a+96. (2分) (2018八上·达州期中) 小马虎在下面的计算中只作对了一道题,他做对的题目是()A .B . a3÷a=a2C .D . =﹣17. (2分)利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A . 已知斜边和一锐角B . 已知一直角边和一锐角C . 已知斜边和一直角边D . 已知两个锐角8. (2分)(2019·河池模拟) 如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A . 30°B . 40°C . 50°D . 80°9. (2分) (2019八下·焦作期末) 要使分式的值为零,则x的取值应满足()A .B .C .D .10. (2分)点(3,2)关于x轴的对称点为A . (3,﹣2)B . (﹣3,2)C . (﹣3,﹣2)D . (2,﹣3)二、填空题 (共6题;共10分)11. (1分)(2020·衡阳) 一副三角板如图摆放,且,则∠1的度数为________.12. (5分) (2019八上·北京期中) 在△ABC中,已知AB=5,BC=6,∠B=30°,那么S△ABC为________.13. (1分) (2019七下·南浔期末) 分解因式:x2-4y2=________.14. (1分)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=________ .15. (1分) (2018八上·柘城期末) 某列车平均提速60km/h用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.若设提速前该列车的平均速度为xkm/h,则列出的方程为________16. (1分)(2019·临海模拟) 若关于x的方程的解为整数,且不等式组无解,则所有满足条件的非负整数a的和为________.三、解答题 (共9题;共70分)17. (5分) (2017九下·台州期中) 计算下列各题:(1)计算:(2)解方程18. (5分) (2018八上·硚口期末)(1)计算: .(2)先化简,再求值:,其中 .19. (10分)(2013·柳州) 如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC 翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.20. (5分) (2018八上·湖北月考) 如图,已在AB=AC,AD=AE,∠1=∠2,求证:∠B=∠C.21. (5分)(2019·大连) 如图,点,在上,,,,求证:.22. (10分) (2016七上·平定期末) 已知:(a+1)2+|b+2|=0,求代数式﹣a2b+(3ab2﹣a2b)的值.23. (15分) (2019七下·丹东期中) 阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.24. (5分) (2017八上·东城期末) 北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.25. (10分) (2018九上·丹江口期末) 以△ABC的边AB,AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,M为EG的中点,连接AM.(1)如图1,∠BAC=90°,试判断AM与BC关系?(2)如图2,∠BAC≠90°,图1中的结论是否成立?若不成立,说明理由;若成立,给出证明.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共70分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:。

初二期末数学试卷寿县

初二期末数学试卷寿县

一、选择题(每题4分,共40分)1. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b2. 下列数中,不是有理数的是()A. -3.14B. 1/2C. √4D. π3. 下列各式中,正确表示绝对值的是()A. |a| = aB. |a| = -aC. |a| = a²D. |a| = a² ± 2a4. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 2x + 5 = 3x - 2D. 4x - 7 = 2x + 35. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 三角形D. 梯形6. 若x² - 4x + 3 = 0,则x的值为()A. 1B. 3C. 1或3D. 2或-27. 下列函数中,是奇函数的是()A. y = x²B. y = -x²C. y = x³D. y = -x³8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则|a| > |b|D. 若a > b,则a + c > b + c9. 下列数中,不是实数的是()A. √-1B. -√4C. 0.001D. 1/310. 下列各式中,正确表示相反数的是()A. -a = aB. -a = |a|C. -a = -a²D. -a = a²二、填空题(每题5分,共50分)11. 若x² - 3x + 2 = 0,则x的值为______。

12. 若a > b,则|a - b|的值为______。

13. 若a = -3,则a² - 4a + 3的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定4.(4分)函数的自变量x的取值范围是()A.x>3B.x≥3C.x<3D.x≤35.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.6.(4分)一次函数y=kx+k的图象可能是()A.B.C.D.7.(4分)“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形8.(4分)已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD的长为()A.3B.4C.5D.610.(4分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是.12.(5分)把直线y=﹣x向下平移个单位得到直线y=﹣x﹣2.13.(5分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.(5分)如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三、解答题(共9小题,满分60分)15.(6分)如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.16.(6分)正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.17.(6分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.18.(6分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.(7分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.20.(7分)如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.21.(7分)如图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数.22.(7分)如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.2018-2019学年安徽省淮南市寿县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.2.(4分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.6【解答】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.3.(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【解答】解:∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵﹣3<2,∴y1<y2.故选:B.4.(4分)函数的自变量x的取值范围是()A.x>3B.x≥3C.x<3D.x≤3【解答】解:根据题意得:3﹣x≥0,解得x≤3.故选:D.5.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.6.(4分)一次函数y=kx+k的图象可能是()A.B.C.D.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选:B.7.(4分)“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形【解答】解:“等腰三角形两底角相等”的逆命题是有两个角相等的三角形是等腰三角形,故选D.8.(4分)已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选:B.9.(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD的长为()A.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.10.(4分)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故此选项正确,故选:D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是(1,2).【解答】解:∵A、B两点关于x轴对称,∴点B的坐标是(1,2).故答案为:(1,2).12.(5分)把直线y=﹣x向下平移2个单位得到直线y=﹣x﹣2.【解答】解:∵0﹣(﹣2)=2,∴根据“上加下减”的原则可知,把直线y=﹣x向下平移2个单位得到直线y=﹣x ﹣2.故答案为:2.13.(5分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.14.(5分)如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是m=4n+2.【解答】解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.三、解答题(共9小题,满分60分)15.(6分)如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.【解答】解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.16.(6分)正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.【解答】解:(1)∵正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),∴把点P(1,m)代入得:,把①代入②得:k=5;(2)根据题意,如图:∵点P(1,2),∴三角形的高就是2,∵y=﹣3x+5,∴A(0,),∴OA=,∴S△AOP=××2=17.(6分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.【解答】证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴∠BAD=∠CAD.18.(6分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.19.(7分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF=DE=2.20.(7分)如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.【解答】解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(,1).21.(7分)如图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数.【解答】解:∵∠B=90°,∠A=40°,∴∠ACB=50°,∵MN是线段AC的垂直平分线.∴AE=CE.在△ADE和△CDE中,..∴△ADE≌△CDE(SAS)∴∠DCA=∠A=40°∴∠BCD=∠ACB﹣∠DCA=50°﹣40°=10°.22.(7分)如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)【解答】解:解法一:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,求证:∠1=∠2.证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠CAE,∴∠1=∠2.解法二:如果AB=AC,AD=AE,∠1=∠2,那么BD=CE.已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2,求证:BD=CE.证明:∵∠1=∠2,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE.23.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)。

相关文档
最新文档