认识无理数 公开课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2.1 认识无理数
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】:已知22
a=,请问:①a可能是整数吗?②a可能是分数吗?
【释一释】:释1.满足22
a=的a为什么不是整数?
释2.满足22
a=的a为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,
那么a一定不是有理数,这表明:有理数不够用了,为“新
数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出
长度不是有理数的线段
目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣
效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段 2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数 2.只有两边长是有理数
3.只有一边长是有理数 4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足()220x x =>的x
解: (右2)
仿:在数轴上表示满足()250x x =>的x
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.4.4一次函数的应用
第1课时确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.
二、合作探究
探究点一:确定正比例函数的表达式
求正比例函数y =(m -4)m 2-15的表达式.
解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.
方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式
【类型一】 根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.
解:设一次函数的表达式为y =kx +b ,根据题意得,
∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩
⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】 根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.
解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.
解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)
是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52
.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52
=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52
. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】 根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5数量x/千克
售价y/元 1
8+0.4 2
16+0.8 3
24+1.2 4
32+1.6 5
40+2.0 … …
解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.
2.2 平方根
第1课时 算术平方根
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.根据算术平方根的概念求出非负数的算术平方根;(重点)
3.了解算术平方根的性质.(难点)
一、情境导入
上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长
为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学
过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?
二、合作探究
探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214
;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.
解:(1)∵82=64,∴64的算术平方根是8;
(2)∵(32)2=94=214,∴214的算术平方根是32
; (3)∵0.62
=0.36,∴0.36的算术平方根是0.6;
(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.
方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.
(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
【类型二】 利用算术平方根的定义求值
3+a 的算术平方根是5,求a 的值.
解析:先根据算术平方根的定义,求出3+a 的值,再求a.
解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.
方法总结:已知一个数的算术平方根,可以根据平方运算来解题.
探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.
解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.
解:49+9+16-225=7+5-15=-3.
方法总结:解题时容易出现如9+16=9+16的错误.
【类型二】 算术平方根的非负性
已知x ,y 为有理数,且x -1+3(y -2)2
=0,求x -y 的值.
解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和
为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.
解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.
方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.
三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作
a 性质:双重非负性⎩⎨⎧a≥0,
a ≥0
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.
4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.
二、合作探究
探究点一:确定正比例函数的表达式
求正比例函数y =(m -4)m 2-15的表达式.
解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.
方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式
【类型一】 根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.
解:设一次函数的表达式为y =kx +b ,根据题意得,
∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩
⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】 根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.
解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.
解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)
是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52
.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52
=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52
. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】 根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
数量x/千克
售价y/元 1
8+0.4 2
16+0.8 3
24+1.2 4
32+1.6 5
40+2.0 … …
解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式⎩
⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。