2019最新高等数学(上册)期末考试试题(含答案)LA

合集下载

2019最新高等数学(上册)期末考试试题(含答案)VE

2019最新高等数学(上册)期末考试试题(含答案)VE

2019最新高等数学期末考试试题(含答案)一、解答题1.利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x →; ⑵ 3π2ln sin lim (2)x x x π→-; ⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin lim x a x a x a→--; ⑸ lim m mn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x→+∞+; ⑺ 0ln lim cot x x x +→; ⑻ 0lim sin ln x x x +→; ⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )x x x+→; ⑾ 2lim (arctan )πx x x →+∞⋅; ⑿ 10lim(1sin )x x x →+; ⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]e x x x x →+.解:⑴ 原式=2π3cos33lim 5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1lim lim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++. ⑷ 原式=cos lim cos 1x a x a →=. ⑸ 原式=11lim m m n n x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+.⑺ 原式=22001sin lim lim 0csc x x x x x x++→→=-=-. ⑻ 原式=001ln lim lim 0csc csc cot x x x x x x x++→→==-⋅. ⑼ 原式22200e e e e lim =lim (e 1)x x x x x x x x x x x →→----=-202e e 1=lim 2x x x x→-- 204e e 3=lim 22x x x →-=. ⑽ 原式=0lim(1ln )xx x +→- 令(1ln )xy x =- 00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++→→→→→⋅---==-===-- ∴原式=00lim e 1x y +→==. ⑾ 令2(arctan )πx y x =⋅,则 2222211lnln arctan πarctan 1lim ln lim lim 1112 lim arctan 1πx x x x x x x y x xx x x →+∞→+∞→+∞→+∞+⋅+==-=-⋅=-+ ∴原式=2πe -.⑿ 令1(1sin )x y x =+,则000cos ln(1sin )1sin limln lim lim 11x x x xx x y x →→→++=== ∴原式=e =e '.⒀ 原式00ln lim(ln )lim 1x x x x x x ++→→=⋅=0021=lim =lim()01x x x x x++→→-=-⒁原式lim x x→+∞= 2234232311111=lim (1)(23)=33x x x x x x x x ----→+∞+++⋅++⋅ ⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -→-=-sin 00e (sin )=lim =e =1sin x x x x x x→⋅-- ⒃ 令12sin ()x x y x =,则 200023002220011cos ln sin ln sin lim ln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x xx y x xx x x x x x x x x x x x x x x x →→→→→→→--==--==---===- ∴原式=16e -.⒄ 令111[(1)]e x x y x =+,则11ln [ln(1)1]x y x x=+- 2000011ln(1)1lim ln lim lim 2111 lim .212x x x x x x xy x x x →→→→-+-+===-=-+2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)3.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑; (2) 1cos 2n n nx ∞=∑; (3) 1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()2341111112311111231111112112311n n n n p n n n n p n n n n p n p n p n n pn n n +++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+ 当P 为奇数时, ()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n p n n n n p n p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+ 因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()12121cos cos cos 12222111222111221121112212n n n p n n n p n p n p n xn p x x n n ++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭< 于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则 ()()()()()121111113113123133213223231131132161112n n n p U U U n n n n nn n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.4.写出下列级数的一般项:(1)1111357++++;2242468x x ++⋅⋅⋅⋅;(3)35793579a a a a -+-+; 解:(1)121n U n =-;(2)()2!!2nn x U n =;(3)()211121n n n a U n ++=-+; 5.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力. 解:如图20,建立坐标系,直线AB 的方程为 y =-x 10+5. 压力元素为 d F =x ·2y d x =2x ⎝⎛⎭⎫-x 10+5d x所求压力为F =⎠⎛0202x ⎝⎛⎭⎫-x 10+5d x =⎣⎡⎦⎤5x 2-115x 3200 =1467(吨) =14388(KN)6. 求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2;解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛021+1y 2d x =2⎠⎛021y 1+y 2d y 22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪20=25+ln(2+5) b) y =ln x ,3≤x ≤8;解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32. c) y =⎠⎜⎛−π2x cos t d t , −π2≤t ≤π2; (20)解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x =⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2 =42sin x 2⎪⎪⎪π20=4.7.求下列旋转体的体积: (1) 由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转; 解: 求两曲线交点⎩⎨⎧y =x 2y 2=x 3得(0,0),(1,1) V =π⎠⎛01()x 3-x 4d x =π⎣⎡⎦⎤14x 4-15x 510=π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎛02x 6d x =1287π V y =π⎠⎛08⎝⎛⎭⎫22-y 23d y =645π. (2)星形线x 2/3+y 2/3=a 2/3绕x 轴旋转; 解:见图15,该曲线的参数方程是: ⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π20()a sin 3t 2d ()a cos 3t =6πa 3⎠⎜⎛0π2sin 7t cos 2t d t =32105πa 3 (15)8.求由参数式2020sin d cos d t t x u u y u u ⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot .d d sin d yy t t t x x tt===9.利用定义计算下列定积分:(1) d ();ba x x ab <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n -=+=-记每个小区间1[,]i i x x -长度为,i b a x n-∆=取, 1,2,,,i i x i n ξ== 则得和式 211()2(1)()[()]()2n n i i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得 220122()(1) d lim ()lim[()]21 ().2n bi i a n i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰ (2) 10e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-记每个小区间长度1,i x n ∆=取 (1,2,,),i i x i n ξ==则和式111()in n n i i i i f x e nξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i n nxn n n n n n i n n n n n n n n n x n n n n n n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰10.利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭; 证明:令 ()n f x x = 12(),()(1)0n n f x nx f x n n x --'''==-> , 则曲线y =f (x )是凹的,因此,x y R +∀∈, ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e ()2x y x yx y ++>≠ ; 证明:令f (x )=e x()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠ 则 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 2e e e 2x yx y++<. (3) ln ln ()ln (0,0,)2x y x x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x '''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+, 即 ln ln ()ln2x y x x y y x y ++>+.11.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+ 610y x ''=-,令0y ''=可得53x =.当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)xxy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的, 故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).12.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=-令0V '=,得.h =时,其体积为最大.13.已知a >0,试证:11()11f x x x a =+++-的最大值为21aa++. 证明: 11,01111(),01111,11x x x a f x x a x x a x a x x a⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2ax =,且422a f a⎛⎫= ⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得 故 {}max 242(),,0121a af x a a a++==+++.14.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰15.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlimsin x x x x →; ⑵ lim (1)x x k x→+∞+; ⑶ sin lim sin x x xx x→∞-+; ⑷ e e lim .e e x x xx x --→+∞-+ 解:⑴ ∵200111sin2sin coslimlim sin cos x x x x x x x x x→→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1limlim sin 0sin x x x x x x x→→==, 故不能使用洛必达法则. ⑶ ∵sin 1cos limlimsin 1cos x x x x xx x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x x x x xx x x→∞→∞--==++故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xxx x x x x x x x ------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2). 16.证明:11(1)arcsin h ln( (2)arctan h ln,1121xx x x xx+==-<<-证: (1)由e esinh2x xy x--==得2e2e10x xy--=解方程2e2e10x xy--=得e x y=因为e0x>,所以e x y=ln(x y=所以sinhy x=的反函数是arcsin h ln(().y x x x==+-∞<<+∞(2)由e etanhe ex xx xy x---==+得21e1xyy+=-,得1112ln,ln121y yx xy y++==--;又由11yy+>-得11y-<<,所以函数tanhy x=的反函数为11arctan h ln (11).21xy x xx+==-<<-17.设()f x在[,]a b上有(1)n-阶连续导数,在(,)a b内有n阶导数,且(1)()()()()0.nf b f a f a f a-'=====试证:在(,)a b内至少存在一点ξ,使()()0nfξ=.证明:首先,对()f x在[,]a b上应用罗尔定理,有1(,)a a b∈,即1a a b<<,使得1()0f a'=;其次,对()f x'在[,]a b上应用罗尔定理,有21(,)a a b∈,即12a a a b<<<,使得2()0;,f a''=一般地,设在(,)a b内已找到1n-个点121,,,,na a a-其中121,na a a a b-<<<<<使得(1)1()0nnf a--=,则对(1)()0nf x-=在1[,]na b-上应用罗尔定理有1(,)(,),na b a bξ-∈⊂使得()()0nfξ=.18.球的半径以速率v改变,球的体积与表面积以怎样的速率改变?解:324dπ,π,.3drV r A r vt===2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅19.利用微分求下列各数的近似值: ⑴⑵ ln 0.99; ⑶ arctan1.02.解:⑴113x ≈+,有112(1) 2.0083380==≈⋅+⨯=. ⑵ 利用近似公式ln(1)x x +≈,有ln 0.99ln(10.01)0.0100.=-≈-⑶ 取()arctan f x x =,令01,0.02x x ==, 而21()1f x x'=+,则 21arctan1.02arctan10.0211=0.7954.≈+⨯+20.求由下列参数方程所确定函数的二阶导数22d d yx:⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩ (a 为常数);⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d y y a t tt x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1=(1-cos )(1cos )1=.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅---⑵ d d ()()()d d d ()d y y f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.21.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=22.试求曲线exy -=在点(0,1)及点(-1,0)处的切线方程和法线方程.解:231e e (1)3xxy x ---'=-⋅+12. 3x x y y ==-''=-=∞故在点(0,1)处的切线方程为:21(0)3y x -=--,即2330x y +-=法线方程为:21(0)3y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =- 法线方程为:0y =23.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x y a ===24.设()()f x x a x ϕ=-,其中a 为常数,()x ϕ为连续函数,讨论()f x 在x a =处的可导性. 解:()()()()()lim lim ()()()()()()lim lim ()x a x a x a x a f x f a x a x f a a x a x af x f a a x x f a a x a x aϕϕϕϕ++--+→→-→→--'===----'===---.故当()0a ϕ=时,()f x 在x a =处可导,且()0f a '= 当()0a ϕ≠时,()f x在x a =处不可导.25.求下列函数的导数: (1) y =解:y '=(2) y =解:5323yx -'=-(3) 2y =解:2512326y x x +-==561.6y x -'=26.求下列函数在0x 处的左、右导数,从而证明函数在0x 处不可导.(1) 03sin ,0,0;,0,x x y x x x ≥⎧==⎨<⎩证明:00()(0)sin (0)lim lim 1,0x x f x f xf x x+++→→-'===- 300()(0)(0)lim lim 0,0x x f x f x f x x---→→-'===- 因(0)(0)f f +-''≠,故函数在00x =处不可导.(2) 10,0,0;1e 0,0,xx x y x x ⎧≠⎪==+⎨⎪=⎩证明:100()(0)1(0)lim lim 0,01e xx x f x f f x +++→→-'===-+ 100()(0)1(0)lim lim 1,01e xx x f x f f x ---→→-'===-+ 因(0)(0)f f +-''≠,故函数在00x =处不可导.(3) 021,1.,1,x y x x x ≥==<⎪⎩证明:11()(1)1(1)lim lim ,12x x f x f f x +++→→-'===- 211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 因(1)(1)f f +-''≠,故函数在01x =处不可导.27.设函数2,1,(),1.x x f x ax b x ⎧≤=⎨+>⎩ 为了使函数()f x 在1x =点处连续且可导,,a b 应取什么值?解:因211lim ()lim 1(1)x x f x x f --→→=== 11lim ()lim()x x f x ax b a b ++→→=+=+ 要使()f x 在1x =处连续,则有1,a b +=又211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===-- 111(1)lim lim ,11x x ax b ax af a x x +++→→+--'===-- 要使()f x 在1x =处可导,则必须(1)(1)f f -+''=, 即 2.a =故当2,1a b ==-时,()f x 在1x =处连续且可导.28.设()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明:方程()()f x f x a =+在[0,a ]内至少有一根.证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=, 即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根, 综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.29.当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.30.试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有 π3π0()(coscos3)3x f a x x ='==+,得a =2. 又 π3π0()(2sin 3sin 3)3x f xx =''=<=--,所以π3x =是极大值点,极大值为π()3f =【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)OK

2019最新高等数学(上册)期末考试试题(含答案)OK

2019最新高等数学期末考试试题(含答案)一、解答题1.证明下列不等式: (1) 当π02x <<时, sin tan 2;x x x +> 证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时, 2e sin 1.2xx x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -'-+-,()=e sin 1e (sin 1)0x x f x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x -+<+2.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)3.设函数 f (x ) = x 2(0≤x <1),而()1s i n πnn s x b n x ∞==∑,-∞<x <+∞,其中()12s i n πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.4.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+5.求下列级数的和函数: (1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1] 记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑ 所以()()11201d arctan 01xS S x x x x -==+⎰即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()2211n n S x x x∞='==-∑。

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学期末考试试题(含答案)一、解答题1.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x→∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →, 2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=2.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑; (3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑; 解:(1)因为11lim lim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x n n →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1). (2)因为()()1111!11lim lim lim lim e 1!11n n n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n n n n n ∞=∑;应用洛必达法则求得()10e e 1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1. 当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212n n t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]3.求下列各曲线所围图形的面积: (1) y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2) (1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23 ∴ D 1+D 2=2π+43, D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.。

2019最新高等数学(上册)期末考试试题(含答案)YF

2019最新高等数学(上册)期末考试试题(含答案)YF

2019最新高等数学期末考试试题(含答案)一、解答题1.求数列的最大的项.解:令y =y '===令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<, 所以x =1000为函数y的极大值点,也是最大值点,max (1000)2000y y ==.故数列1000n ⎧⎫⎨⎬+⎩⎭的最大项为1000a =.2.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑3.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x ) = ln(2+x ); (2)f (x ) = cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2nnn n x n ∞=-=+-∑ (-1≤x ≤1)故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑ ()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑4.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21nn U∞=∑收敛,211n n∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛, 因而1nn U n ∞=∑绝对收敛.5.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+6.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰7.证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题五8.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim cos lim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰9.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰10.证明下列等式:2321(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立. (2)若()[,]f x C a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.11.求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x+⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x -=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+ ⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.12.用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x =-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++(5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰11cos 2sin 248x x x c =-++.32(ln )(9)d x x x ⎰;解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又 32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+13.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .14.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)15.在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=-令0V '=,得.3h =时,其体积为最大.16.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h h S S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.17.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.18.曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+令0k '=,得π2x =为唯一驻点. 在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫ ⎪⎝⎭内,0k '<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为 23/2π2(1cos )1sin x x R x=+==.19.计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- , 故 23/22.(1)y k y ''=='+20.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时. 解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=21.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=22.求下列函数在指定点的高阶导数:⑴()f x =求(0)f '';⑵ 21()e,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .解: ⑴322()(1)f x x -'==- 5223()(1)22f x x x -''=--⋅故(0)0f ''=.⑵ 21()2ex f x -'=2121()4e ()8e x x f x f x --''='''=故4(0)e f ''=,8(0)ef '''=. ⑶ 5()6(10)f x x '=+43(4)2(5)(6)()30(10)()120(10)()360(10)()720(10)()720f x x f x x f x x f x x f x ''=+'''=+=+=+= 故(5)(0)720107200f=⨯=,(6)(0)720f =23.若11()e x x f x+=,求()f x '.解:令1t x=,则 1()e t tf t +=,即1()ex xf x +=121()e(1)x xf x x +'=-24.如果()f x 为偶函数,且(0)f '存在,证明:(0)0.f '= 证明:000()(0)()(0)(0)limlim()(0)lim (0),x x x f x f f x f f x xf x f f x∆→∆→∆→∆--∆-'==∆∆-∆-'=-=--∆故(0)0.f '=25.若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.习题二26.试证:方程21x x ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-= 即方程21x x ⋅=有一个小于1的正根.27.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim e lim elim ee e x x x x x x x x xx x x xx x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116eee .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦28.根据数列极限的定义证明:21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+.(3) 0ε∀>,要使2221a n ε=<<,只要n >取n =,则当n>N 时,1ε<-,从而lim 1n n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.29.下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.30.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

高等数学期末考试试卷(含答案)完整版本

高等数学期末考试试卷(含答案)完整版本

高等数学期末考试试卷(含答案)完整版本一、高等数学选择题
1.点是函数的极值点.
A、正确
B、不正确
【答案】B
2.不定积分.
A、
B、
C、
D、
【答案】A
3.微分方程的通解是().
A、
B、
C、
D、
【答案】B
4.设函数,则.
A、正确
B、不正确
【答案】A
5.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
6..
A、正确
B、不正确
【答案】A
7.函数的图形如图示,则函数的单调减少区间为
( ).
A、
B、
C、
D、
【答案】D
8.设函数,则().A、
B、
C、
D、
【答案】A
9.极限.
A、正确
B、不正确
【答案】A
10.设函数,则().A、
B、
C、
D、
【答案】A
11. ( ).
A、
B、
C、
D、
【答案】B
12.不定积分( ).
A、
B、
C、
D、
【答案】B
13.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
14.是偶函数.
A、正确
B、不正确
【答案】A
15.函数在点处连续.
A、正确
B、不正确
【答案】A。

2019最新高等数学(上册)期末考试试题(含答案)ZQ

2019最新高等数学(上册)期末考试试题(含答案)ZQ

2019最新高等数学期末考试试题(含答案)一、解答题1.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++ 即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明: 11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b --<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>2.将函数()f x =(x -1)的幂级数.解:因为()()()()()2111111!2!m nm m mm m m x xx x n---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑18.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001);(2)cos2o (误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯.因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈3.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 2221n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1). 记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nxx ∞-==∑则()1011xn n xS x x x∞===-∑⎰于是()()12111x S x x x'⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211nn S x x x ∞='==-∑, 故()1011d ln21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x x S xS x x x x+==<-4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.5.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰6.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为 V =⎠⎛-RRA ()x d x =⎠⎛-R R3()R 2-x 2d x =433R 3.7.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰8.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-9.一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.10.利用基本积分公式及性质求下列积分:2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰ 22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2xx ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d5x x x c=+⎰.(9)解:原式=25322d3x x x c--=-+⎰.2(10)(32)d;x x x-+⎰解:原式=32132.32x x x c-++422331(11)d;1x xxx+++⎰解:原式=23213d d arctan.1x x x x x cx+=+++⎰⎰3(12)d2e x xx⎛⎫+⎪⎝⎭⎰;解:原式=2e3ln.x x c++(13)e d;1xx x-⎛⎝⎰解:原式=e d e.x xx x c-=-⎰2352(14)d;3x xxx⋅-⋅⎰解:原式=5222d5d2233ln3x xx x x c⎛⎫⎛⎫-=-⋅+⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec(sec tan)dx x x x-⎰;解:原式=2sec d sec tan d tan secx x x x x x x c-=-+⎰⎰.1(16)d1cos2xx+⎰;解:原式=22111d sec d tan2cos22x x x x cx==+⎰⎰.cos2(17)dcos sinxxx x-⎰;解:原式=(cos sin)d sin cos.x x x x x c+=-+⎰22cos 2(18)d cos sin xx x x⎰.解:原式=2211d d cot tan .sin cos x x x x c x x -=--+⎰⎰ 11.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .12.试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k , 只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k=. 由于(1,4k ),(-1,4k )在此法线上,因此148k k=±, 得22321, 321k k ==-(舍去)故k ==13.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩ 解得 39,22a b =-=.14.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑ (0≤x ≤2)15.试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值.证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.16.已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot S BC h hϕ=-. 000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h h S S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.17.如果()f x '在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x '''≥>证明:()()f b f a >.证明:因为()f x '在[a , b ]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b ξ∃∈<<,使得()()()0f x f a f x aξ''-''=>-, 于是()()0f x f a ''>≥,故有()()f b f a >18.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三19.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=- 令()0L q '=,得650q =即为获得最大利润时的产量.(3) 盈亏平衡时: R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.20.利用麦克劳林公式,按x 乘幂展开函数23()(31)f x x x =-+.解:因为()f x 是x 的6次多项式,所以 (4)(5)(6)23456(0)(0)(0)(0)(0)()(0)(0).2!3!4!5!6!f f f f f f x f f x x x x x x ''''''=++++++ 计算出:(0)1,(0)9,(0)60,(0)270f f f f ''''''==-==-,(4)(5)(6)(0)720,(0)1080,(0)720.f f f ==-=故23456()193045309.f x x x x x x x =-+-+-+21.求由下列方程确定的隐函数()y y x =的微分d y :⑴ 1e yy x =+; ⑵ 22221x y a b +=; ⑶ 1sin 2y x y =+; ⑷ 2arccos y x y -=. 解:⑴ 对等式两端微分,得d e d d(e )y y y x x =+即d e d e d y yy x x y =+ 于是e d d .1e yyy x x =- ⑵ 对等式两端微分,得22112d 2d 0x x y y a b⋅+⋅= 得22d d .b x y x a y=- ⑶ 对等式两端微分,得1d d cos d 2y x y y =+ 解得2d d .2cos y x y=- ⑷ 对等式两端微分,得2d d y y x y -=解得d .y x =22.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-:⑴ 当1,0.1x x =∆=时;解: 2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时.解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=23.求由下列参数方程所确定函数的二阶导数22d d y x: ⑴ (sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩(a 为常数); ⑵ (),()(),x f t y tf t f t '=⎧⎨'=-⎩设()f t ''存在且不为零.解:⑴ d d sin sin d d d (1cos )1cos d yy a t t t x x a t tt===-- 2222d d sin d sin 1()()d d d 1cos d 1cos d cos (1-cos )-sin sin 1 =(1-cos )(1cos )1 =.(1cos )y t t xx x t t t tt t t t t a t a t ==⋅--⋅⋅--- ⑵ d d ()()()d d d ()d yy f t tf t f t t t x x f t t''''+-==='' 22d d d 111()()1d d d d ()()d y t t x x x t f t f t t==⋅=⋅=''''.24. 求下列参数方程所确定的函数的导数d d y x : ⑴ cos sin ,sin cos ,x a bt b at y a bt b at =+⎧⎨=-⎩ (a ,b 为常数) 解:d d cos sin d d d sin cos d cos sin cos sin yy ab bt ab at t x x ab bt ab at tbt at at bt+==-++=-⑵ (1sin ),cos .x y θθθθ=-⎧⎨=⎩ 解: d d cos sin cos sin d d d 1sin (cos )1sin cos d yy x x θθθθθθθθθθθθθθ--===-+---25.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++ 证明: 1212121212()1[()()()()()()()()()]()()()()() .()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++26.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热;解:0()()lim ()T Q T T Q T Q T Tν∆→+∆-'==∆ ⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+. 27.若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立. 证: lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<. 而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞= 但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.28.根据数列极限的定义证明:21313(1)lim 0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个 证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim 212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<,只要n >取n =,则当n>N 时,1ε<-,从而lim 1n n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.29.对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有nx a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε==== 解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin 2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21nε>即可.取21Nε⎡⎤=⎢⎥⎣⎦,则当n N>时,有0nxε-<.当0.0001ε=时, 821100.0001N⎡⎤==⎢⎥⎣⎦或大于108的整数.30.判定下列曲线的凹凸性:(1) y=4x-x2;解:42,20y x y'''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h)y x=;解:cosh,sinh.y x y x'''==由sinh x的图形知,当(0,)x∈+∞时,0y''>,当(,0)x∈-∞时,0y''<,故y=sinh x的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x xx=+>;解:23121,0y yx x'''=-=>,故曲线图形在(0,)+∞是凹的.(4) y=x arctan x.解:2arctan1xy xx'=++,222(1)yx''=>+故曲线图形在(,)-∞+∞内是凹的.【参考答案】***试卷处理标记,请不要删除一、解答题1.无2.无3.无4.无5.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无28.无29.无30.无。

高等数学上册期末考试B卷及答案

高等数学上册期末考试B卷及答案

高等数学期末考试卷课程高等数学(A 、B 类)(A 卷)参考答案2018~2019学年第 1 学期一.填空题(每小题3分,共15分) 1.3sin 0lim 12x x x → += 32e2.设()f x 可导,则极限0(1)(1)lim x f h f h h αβ→+−−=()(1)f αβ′+3.不定积分2ln 2x dx =∫22ln 2xC+4.若连续函数()f x 满足:20()sin x f t dt x x π=∫,则(4)f =2π5.反常积分20x x e dx +∞−=∫ 2 。

二. 选择题(每小题3分,共15分)1.设麦克劳林公式221(),x e x ax o x −−=+则常数a =( B )(A )1 (B )12 (C )13 (D )162.设曲线11x y e =−水平渐近线的条数为a ,铅直渐近线的条数为b ,则( D )(A)0,1a b ==; (B)1,0a b ==; (C)1,1a b ==; (D)2,1a b ==。

3.设()ln 2,y x =则它的微分dy =( D )(A) 12||dx x (B) 12dx x (C)1||dx x (D) 1dxx 4.设定积分32231211ln ,ln ,I xdx I xdx ==∫∫则( C )(A )12I I = (B ) 1223I I = (C ) 12I I > (D ) 12I I <5.从原点()0,0引曲线y =( B )(A )y x = (B )12y x =(C )2y x =(D )23y x=三.计算(每小题8分,共48分)1.求极限x →解:原式=0x →0x x →→012x →=012x →=201cos x x x →−=2. 已知(ln ,y x =求11,x x dy y ==′′。

解:因为 y ′=所以1x dy dx ==y ′′=1x y =′′3、设函数()y f x =由方程x y e e xy −=所确定,求导数0,x y y =′′′ 解:由方程x y e e xy −=的两边对x 求导,得x y e e y y xy ′′−=+,从而可解得x y e y y e x+′=+且当0x = 时得0y =,将0x =,0y =代入上式得(0)1y ′=再由方程x y e e y y xy ′′−=+的两边对x 求导数得 2x y y e e y e y y y xy ′′′′′′′−−=++,将0x =,0y =,(0)1y ′=代入上式得02x y =′′=−。

2019最新高等数学(上册)期末考试试题(含答案)RO

2019最新高等数学(上册)期末考试试题(含答案)RO

2019最新高等数学期末考试试题(含答案)一、解答题1.证明恒等式:222arctan arcsinπ (1).1xx x x +=≥+ 证明:令22()2arctan arcsin 1xf x x x =++,22222222(1)22()1(1)2211x x xf x x x x x +-⋅'=++=-=++ 故()f x C ≡,又因(1)πf =,所以()πf x =,即222arctan arcsinπ.1xx x +=+2.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)3.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩4.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x ) = ln(2+x ); (2)f (x ) = cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑ ()()()()2211!!211!!2nn n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑5.设某企业固定成本为50,边际成本和边际收入分别为 C ′(x )=x 2-14x +111,R ′(x )=100-2x . 试求最大利润. 解: 设利润函数L (x ). 则L (x )=R (x )-C (x )-50由于L ′(x )=R ′(x )-C (x )=(100-2x )-(x 2-14x +111)=-x 2+12x -11 令L ′(x )=0得x =1,x =11.又当x =1时,L ″(x )=-2x+12>0.当x =11时L ″(x )<0,故当x =11时利润取得最大值.且最大利润为 L (11)=1120(1211)d 50x x x -+--⎰311013341[611]50111.333x x x =-+--==6.设星形线的参数方程为x =a cos 3t ,y =a sin 3t ,a >0求d) 星形线所围面积;e) 绕x 轴旋转所得旋转体的体积; f) 星形线的全长.解:(1)D =4⎠⎛0ay d x =4⎠⎜⎛π2a sin 3t d ()a cos 3t =12a 2⎠⎜⎛0π2sin 4t cos 2t d t=12a 2⎠⎜⎛0π2()sin 4t−sin 6t d t =38πa 2.(2)V x =2π⎠⎛0a y 2d x =2π⎠⎜⎛π2()a sin 3t 2d ()a cos 3t =6πa 3⎠⎜⎛0π2 sin 7t cos 2t d t=32105πa 3(3)x t ′=-3a cos 2t sin t y t ′=3a sin 2t cos t x t ′2+y t ′2=9a 2sin 2t cos 2t ,利用曲线的对称性,l =4⎠⎜⎛0π2x t ′2+ y t ′2d t =4⎠⎜⎛π2 3a sin 2t cos 2t d t=12a ⎠⎜⎛0π214sin 22t d t =6a ⎠⎜⎛0π2 sin2t d t =[]3a ()-cos2t π2=6a .7.求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2; 解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛21+1y 2d x=2⎠⎛021y 1+y 2d y 22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪20=25+ln(2+5)b) y =ln x ,3≤x ≤8; 解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32.c) y =⎠⎜⎛−π2xcos t d t , −π2≤t ≤π2;解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x=⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2 =42sinx 2⎪⎪⎪π2=4.8.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为 V =⎠⎛-RRA ()x d x =⎠⎛-R R3()R 2-x 2d x=433R 3.9.证明下列等式:2321(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立. (2)若()[,]f x C a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.10.一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.11.求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数()y y x =的导数.解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =-故 cos sin 1xy x '=-.12.用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .13.试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k , 只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k=. 由于(1,4k ),(-1,4k )在此法线上,因此148k k=±, 得22321, 321k k ==-(舍去)故8k ==±14.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰15.设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和ba为端点的闭区间上, 而 22(0)0,bb y y a a ⎛⎫== ⎪⎝⎭,故当a >0时,函数的最大值为22bb y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22bb y a a ⎛⎫= ⎪⎝⎭.16.利用重要极限1lim(1)e uu u →+=,求下列极限:2221232cot 0113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x x x x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11xxxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim e lim elim ee e x x x x x x x x xx x x xx x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦17.求曲线y =ln x 在与x 轴交点处的曲率圆方程.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,1 1.x x x x y xy x ===='==''=-=-故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=.18.设一路灯高4 m ,一人高53m ,若人以56 m ·min -1的等速沿直线离开灯柱,证明:人影的长度以常速增长.证明:如图,设在t 时刻,人影的长度为y m.则 53456yy t=+化简得 d 7280,40,40d yy t y t t=== (m ·min -1). 即人影的长度的增长率为常值.19.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t=== 2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅20.求下列函数在0x x =处的三阶泰勒展开式: ⑴04);y x = ⑵ 0(1)ln (1).y x x x =-=解:⑴ 1357(4)222211315 , , ,.24816y x y x y x y x ----''''''==-==-所以113(4) , (4) ,(4)432256y y y ''''''==-=(4)7215[4(4)]16[4(4)]y x x θθ+-=-+-423721115(4)(4)(4)(4) (01).464512128[4(4)]x x x x x θθ----+--<<+-⑵ 2344ln(1)234(1)x x x x x x θ+=-+-+ 234434524(1)ln (1)ln[1(1)](1)(1)(1) (1){(1)}234[1(1)](1)(1)(1) (1).234[1(1)]y x x x x x x x x x x x x x x x θθ∴=-=-+----=---+-+----=--+-+-21.设0a >,且b 与n a 相比是很小的量,证明:1.n b a na -≈+11x n≈+,有11(1)n n b b a a n a na -=≈+⋅=+.22.在括号内填入适当的函数,使等式成立: ⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=; ⑶ 1d( )d 1x x=+; ⑷ 2d( )e d x x -=; ⑸ d( )x=; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x xx =; ⑻ d( )x =. 解: ⑴(sint)cos t '=d(sin )cos d t C t t ∴+=.⑵11(cos )(sin )sin x x x ωωωωω'-=-⋅-=1d(cos )sin d x C x x ωωω∴-+=.⑶ 1[ln(1)]1x x'+=+ 1d[ln(1)]d 1x C x x∴++=+. ⑷ 22211(e )(2)e =e 22x x x ---'-=-⋅-221d(e )e d 2x x C x --∴-+=.⑸ (2)2x '=)C x∴=. ⑹2211(tan3)sec 33sec 333x x x '=⋅⋅=21d(tan3)sec 3d 3x C x x ∴+=.⑺ 21111(ln )2ln ln 22x x x x x'=⋅⋅=211d(ln )ln d2x C x x x∴+=.⑻ 2(1(2)x x '--=-= d()C x ∴=.23.设()f x 具有二阶连续导数,且(0)0f =,试证:(), 0,()(0), 0,f x xg x xf x ⎧≠⎪=⎨⎪'=⎩ 可导,且导函数连续.证明:因()f x 具有二阶连续导数,故0x ≠时,()g x 可导,又002000()(0)()(0)(0)lim lim 0()(0)()(0)lim lim 2()(0)lim ,22x x x x x f x f g x g x g x xf x f x f x f x xf x f →→→→→'--'==-'''-⋅-==''''== 故 ()g x 是可导的,且导函数为 2()(), 0,()(0), 0, 2xf x f x x xg x f x '-⎧≠⎪⎪'=⎨''⎪=⎪⎩又因2()()lim ()limx x xf x f x g x x →→'-'=000()()()lim2()(0)lim lim (0) 22x x x f x xf x f x xf x fg →→→''''+-='''''===故()g x 的导函数是连续的.24.设()y f x =是由方程组2323,e sin 1,yx t t y t ⎧=++⎪⎨=+⎪⎩ 所确定的隐函数,求202d d t y x=.解:分别对已知方程组的两边关于x 求导,得:d d 162,d d d d de sin e cos ,d d d y y t t t x xy y t t t xx x ⎧=⋅+⎪⎪⎨⎪=+⎪⎩ 再对x 求一次导,得2222222222d d d 06()62,d d d d d dy d d d (e )sin 2e cos e sin ()e cos ,d d d d d d y y y y xt t t t x x xy y t t t t t t t x x x x x x ⎧=++⎪⎪⎨⎪'=+⋅⋅-+⋅⎪⎩ 将00,1t t y===代入上述各式,得002022202d 1d e, ,d 2d 2d 3, d 4d e 3e.d 24t t t t t y x x t x y x =======-=-25.设()ln(1)f x x =+,求()().n f x解:()1(1)!(ln )(1)n n nn x x --=-⋅()()1(1)!()[ln(1)](1)(1)n n n nn f x x x --∴=+=-⋅+.26.求函数11ln21xy x+=-的反函数()x y ϕ=的导数. 解:21[ln(1)ln(1)]2d 1111()d 2111y x x y x x x x =+--=+=+--故反函数的导数为:2d 11d d d x x yy x==-.27.3arccos 3x y -=-求3x y ='.解:21(6)3x x y x ---'=- 313x y ='=28.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a . 证明:在双曲线上任取一点00(,),M x y则222220, , x a a a y y y x xx =''==-=-,则过M 点的切线方程为:20020()a y y x x x -=--令220000002202x y x a y x x x x a a=⇒=+=+=得切线与x 轴的交点为0(2,0)x ,令2000000002x y a x y y y y x x =⇒=+=+=得切线与y 轴的交点为0(0,2)y , 故 2000012222.2S x y x y a ===29.若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.习题二30.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =. 当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)xxy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的,故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无 10.无 11.无 12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)EZ

2019最新高等数学(上册)期末考试试题(含答案)EZ

2019最新高等数学期末考试试题(含答案)一、解答题1.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少? 解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三2.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn n n x n x a f x x x x n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑ (0≤x ≤2)3.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩ (2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x(4)()()cos ππ2=-≤≤xf x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰ 于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑ (x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππn n a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3n n f x nx n∞==+-⋅∑ (-∞<x <∞) (3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n n b f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos 2x f x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),。

2019最新高等数学(上册)期末考试试题(含答案)AJA

2019最新高等数学(上册)期末考试试题(含答案)AJA

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列极限问题中,能使用洛必达法则的有().⑴21sinlimsinxxxx→;⑵lim(1)xxkx→+∞+;⑶sinlimsinxx xx x→∞-+;⑷e elim.e ex xx xx--→+∞-+解:⑴∵200111sin2sin coslim limsin cosx xx xx x xx x→→-=不存在,(因1sinx,1cosx为有界函数)又2001sin1lim lim sin0 sinx xxx xx x→→==,故不能使用洛必达法则.⑶∵sin1coslim limsin1cosx xx x xx x x→∞→∞--=++不存在,而sin1sinlim lim 1.sinsin1x xxx x xxx xx→∞→∞--==++故不能使用洛必达法则.⑷∵e e e e e e lim lim lime e e e e ex x x x x xx x x x x x x x x------→+∞→+∞→+∞-+-==+-+利用洛必达法则无法求得其极限.而22e e1elim lim1e e1ex x xx x xx x----→+∞→+∞--==++.故答案选(2).2.设f(x)是周期为2的周期函数,它在[-1,1]上的表达式为f(x)=e-x,试将f(x)展成傅里叶级数的复数形式.解:函数f(x)在x≠2k+1,k=0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x x l n i n in i n ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰ 故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in x n in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)3.写出下列级数的一般项: (1)1111357++++;(2)22242462468x x ++++⋅⋅⋅⋅⋅⋅; (3)35793579a a a a -+-+; 解:(1)121n U n =-; (2)()2!!2nn x U n =; (3)()211121n n n a U n ++=-+; 4.求对数螺线a r e θ=相应θ=0到θ=φ的一段弧长. 解:l =⎠⎛0φr 2+r ′2d θ=⎠⎛0φe 2a θ+a 2e 2a θd θ =1+a 2a ()e a φ-1.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.。

2019最新高等数学(上册)期末考试试题(含答案)DZ

2019最新高等数学(上册)期末考试试题(含答案)DZ

2019最新高等数学期末考试试题(含答案)一、解答题1.利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭; 证明:令 ()n f x x = 12(),()(1)0n n f x nx f x n n x --'''==-> ,则曲线y =f (x )是凹的,因此,x y R +∀∈, ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e ()2x y x yx y ++>≠ ; 证明:令f (x )=e x()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠则 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 2e e e 2x yx y++<. (3) ln ln ()ln (0,0,)2x y x x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x '''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有 ()()22f x f y x y f ++⎛⎫< ⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+, 即 ln ln ()ln2x y x x y y x y ++>+.2.求下列级数的和函数:(1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n n xn ∞-=-∑; (4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1]记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑ 所以()()11201d arctan 01xS S x x x x -==+⎰ 即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xx x S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x +-=-,S (0)=0 所以()11ln 21x S x x+=-,(|x |<1) (3)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()1011d e !!11n n xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim 111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].。

2019最新高等数学(上册)期末考试试题(含答案)JC

2019最新高等数学(上册)期末考试试题(含答案)JC

2019最新高等数学期末考试试题(含答案)一、解答题1.一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快?解:当水深为h 时,横截面为212s h ==体积为22212V sh '====d d 2d d Vhh t t =⋅当h =0.5m 时,31d 3m min d V t -=⋅.故有d 320.5d ht =⋅,得d d h t = (m 3·min -1).2.(1)解:112x n n =∞相当于P 级数中P x = 当1P >时 112p n n =∞收敛,1P ≤时,112p n n=∞发散. 从而当1x >时,112x n n =∞收敛,1x ≤时,112x n n=∞发散.从而112x n n =∞的收敛域为(1,)+∞ 从而111(1)2n x n n +=∞-的收敛域为(0,1)(1,)+∞.(2)解:当1x >时,112x n n =∞收敛,则111(1)2n x nn +=∞-收敛. 当0x ≤时,111(1)2n x n n +=∞-发散,(0)n U当01x <<时,111(1)2n x n n+=∞-收敛.(莱布尼兹型级数)3.用比值判别法判别下列级数的敛散性: (1) 213n n n ∞=∑; (2)1!31n n n ∞=+∑; (3)232333331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.4.求下列函数在[-a ,a ]上的平均值:(1)()f x =。

2019最新高等数学(上册)期末考试试题(含答案)MA

2019最新高等数学(上册)期末考试试题(含答案)MA

2019最新高等数学期末考试试题(含答案)一、解答题1.设21lim51x x mx nx →++=-,求常数m , n 的值. 解:要使21lim51x x mx nx →++=-成立,则21lim()0x x mx n →++=,即10m n ++= 又2112limlim 2511x x x mx n x mm x →→+++==+=- 得3,4m n ==-2.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x(4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]3.证明,若21n n U ∞=∑收敛,则1nn U n ∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n ∞=∑绝对收敛.4.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+5.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n→∞==>+,故原级数发散. (2) ()1lim01ln 1n n n→∞==<+,故原级数收敛. (3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nn n +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn+++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.8.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为 (x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上的许多薄片都上提2R 的高度时需作功的和的极限。

2019最新高等数学(上册)期末考试试题(含答案)CP

2019最新高等数学(上册)期末考试试题(含答案)CP

2019最新高等数学期末考试试题(含答案)一、解答题1.利用微分求下列各数的近似值:⑴⑵ln0.99;⑶arctan1.02.解:⑴113x≈+,有112(1) 2.0083380==≈⋅+⨯=.⑵利用近似公式ln(1)x x+≈,有ln0.99ln(10.01)0.0100.=-≈-⑶取()arctanf x x=,令1,0.02x x==,而21()1f xx'=+,则21arctan1.02arctan10.0211=0.7954.≈+⨯+2.将函数()arctandx tF txt=⎰展开成x的幂级数.解:由于()21arctan121nnnttn+∞==-+∑所以()()()()()200221200arctand d121d112121nx x nnn nx n nn nt tF t txt nt xtn n∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x|≤1)3.将()2132f xx x=++展开成(x+4)的幂级数.解:21113212x x x x=-++++而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑4.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1nn U ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又01111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.5.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nnn +++++⋅⋅⋅⋅;(4) 12!n nn n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.6.已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰7.利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1)d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i ix i n n==-记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==则和式111()i nnni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)lim lim 1e e 11e (e 1)1lim e 1.1i n n xn n nnn n i n nnnn n nn n x n n n n n n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰8.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.9.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩ 解得 39,22a b =-=.10.求数列的最大的项.解:令y =y '===令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<, 所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.11.函数()(2)(1)(1)(2)f x x x x x x =--++的导函数有几个零点?各位于哪个区间内? 解:因为(2)(1)(0)(1)(2)0f f f f f ===-=-=,则分别在[-2,-1],[-1,0],[0,1],[1,2]上应用罗尔定理,有1234(2,1),(1,0),(0,1),(1,2),ξξξξ∈--∈-∈∈使得1234()()()()0f f f f ξξξξ''''====.因此,()f x '至少有4个零点,且分别位于(2,1),(1,0),(0,1),(1,2)---内.12.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.13.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+14.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx xn-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)15.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t=== 2d d d 4πd d d d d d 8πd d d V V rr v t r tA A r r v t r t =⋅=⋅=⋅=⋅16.求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩ 即 40x x ≤⎧⎨≠⎩所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩ 即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1). (3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数).也即ππππ66k x k -+≤≤+ (k 为整数).所以函数的定义域是ππ[π,π]66k k -++, k 为整数.17.已知()f x ''存在,求22d d yx:⑴ 2()y f x =; ⑵ ln ()y f x =. 解:⑴ 22()y xf x ''=222222()22() 2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=18.用对数求导法求下列函数的导数: ⑴y =解:1(ln )[ln(2)4ln(3)5ln(1)]2y y y y x x x '''=⋅=⋅++--+45(3)145[](1)2(2)31x x x x x -=--++-+⑵ cos (sin );xy x =解:2cos (ln )(cos ln sin )1[(sin )ln sin cos cos ]sin cos (sin )(sin ln sin )sin xy y y y x x y x x x x xx x x x x'''==⋅=-+⋅⋅=- ⑶2x y =解:211(ln )[2ln(3)ln(5)ln(4)]22111 ].32(5)2(4)x y y y y x x x x x x x '''==++-+--=+--++-19.求下列隐函数的导数:⑴ 3330x y axy +-=; ⑵ ln()x y xy =;⑶ e e 10y xx y -=; ⑷ 22ln()2arctan y x y x+=; ⑸ ex yxy +=解:⑴ 两边求导,得:2233330x y y ay axy ''+⋅--=解得 22ay x y y ax-'=-.⑵ 两边求导,得:11ln()()y xy y y xy xy''=+⋅+ 解得 (ln ln 1)x yy x x y -'=++.⑶ 两边求导,得:e e e e 0y y x x x y y y ''+⋅++=解得 e e =e ey xy xy y x +'-+. ⑷ 两边求导,得:222211(22)21()y x yx yy y x y x x'-'⋅+=⋅⋅++ 解得 =x yy x y+'-.⑸ 两边求导,得:e (1)x y y xy y +''+=+解得 e =e x y x yyy x ++-'-.20.若π1()1,(arccos )3f y f x '==,求2d d x y x=.解:22d 11(arccos )(()d d π11(d 344x y f x x x y f x ='=⋅-'===21.已知2()max{,3}f x x =,求()f x '.解:23, (), x f x x x ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=,当x >时,()2f x x '=,2(((0,x x x f x f -+'===-'==故(f '不存在.又20,(x x x f f x -+'=='==+=故f '不存在. 综上所述知0, ()2, x f x x x ⎧<⎪'=⎨>⎪⎩22.已知sin ,0,(),0,x x f x x x <⎧=⎨≥⎩求()f x '.解:当0x <时,()cos ,f x x '= 当0x >时,()1,f x '= 当0x =时,0sin 0(0)lim 1,0x x f x --→-'==- 00(0)lim 1,0x x f x ++→-'==- 故(0) 1.f '=综上所述知cos ,0,()1,0.x x f x x <⎧'=⎨≥⎩23.求下列函数在0x 处的左、右导数,从而证明函数在0x 处不可导.(1) 03sin ,0,0;,0,x x y x x x ≥⎧==⎨<⎩证明:00()(0)sin (0)lim lim 1,0x x f x f xf x x+++→→-'===- 300()(0)(0)lim lim 0,0x x f x f x f x x ---→→-'===-因(0)(0)f f +-''≠,故函数在00x =处不可导.(2) 10,0,0;1e 0,0,xx x y x x ⎧≠⎪==+⎨⎪=⎩证明:100()(0)1(0)lim lim 0,01e x x x f x f f x +++→→-'===-+ 100()(0)1(0)lim lim 1,01e x x x f x f f x ---→→-'===-+ 因(0)(0)f f +-''≠,故函数在00x =处不可导.(3) 021,1.,1,x y x x x ≥==<⎪⎩证明:11()(1)1(1)lim lim ,12x x f x f f x +++→→-'===- 211()(1)1(1)lim lim 2,11x x f x f x f x x ---→→--'===--因(1)(1)f f +-''≠,故函数在01x =处不可导.24.(1) 设1()f x x=,求00()(0);f x x '≠解:00021()().x x f x f x x =''==-(2) 设()(1)(2)(),f x x x x x n =--⋅⋅-求(0).f '解:00()(0)(0)limlim(1)(2)()0(1)!x x n f x f f x x x n x n →→-'==--⋅⋅--=-25.当x =0时,下列函数无定义,试定义(0)f 的值,使其在x =0处连续:1tan 2(1)()(2)();1(3)()sin sin ;(4)()(1).x xf x f x x f x x f x x x ====+解:0003(1)lim ()2x x x f x →→→=== ∴补充定义3(0),2f =可使函数在x =0处连续.000tan 22(2)lim ()limlim 2.x x x x xf x xx →→→===∴补充定义(0)2,f =可使函数在x =0处连续. 01(3)limsin sin0x x x→=∴补充定义(0)0,f =可使函数在x =0处连续. 10(4)lim ()lim(1)e xx x f x x →→=+=∴补充定义(0)e,f =可使函数在x =0处连续.26.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦27.通过恒等变形求下列极限:2222214123(1)11(1)lim; (2)lim;1222168(3)lim; (4)lim ;154n n nx x n n xx x x x x x →∞→∞→→++++-⎛⎫+++⎪⎝⎭-+-+--+32233π5422(5)lim ; 1cot lim ;2cot cot (9)lim(1)(1)(1)(1);(10)nx x x x x xxx x x x x x →+∞→→→→∞---+++< 12231100)(1)113(11)lim ; (12)lim ;(1)11log (1)1(13)lim ; (14)lim n x x x x a x x x x x x x x x a x x→→→→→--+⎛⎫- ⎪---⎝⎭+-3sin 00;sin (15)lim(12); (16)lim ln .xx x x x x→→+解:22123(1)(1)111(1)lim lim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭ 1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n n n x x x x x x x x x x x x x x x x x x x x x x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---322000(5)lim lim lim 2.lim(1 2.x x xx x xx→+∞→→→=====-=-5555x xxx→→→→=====3333ππ4422π422π41cot1cot(8)lim lim2cot cot(1cot)(1cot)(1cot)(1cot cot)lim(1cot)(11cot cot)1cot cot3lim.2cot cot4x xxxx xx x x xx x xx x xx xx x→→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim111lim.11nnnxxxx x x xx x x xxxx x+→∞→∞→∞+++<-+++=--==--1121 121 1)(1))(1))(1)11.234!nxnn n n x nn n n x nxx x xx x xn n→--→-→-=++++=++++==⨯⨯⨯⨯22223111221113213(11)lim lim lim(1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x xx xx x x xx x x x x xx xx x xx x x x x→→→→→++-+-⎛⎫==-⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim01lim(1)1lim.(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a x a x x x+=+ 而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a→==0log (1)1lim.ln a x x x a→+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →.所以00011limlim ln log (1)log (1)limx x u a a u a u a u x u u→→→-===++(利用(13)题的结果). 1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6limlimln(12)sin sin 61ln e 6(15)lim(12)lim elim ee ee e .x xx x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim 1x x xu x→→==而1limln 0u u →= 所以0sin limln0.x xx→=28.下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.29.设()f x 定义在(-∞,+∞)上,证明:(1) ()()f x f x +-为偶函数; (2)()()f x f x --为奇函数.证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=- 故()()f x f x --为奇函数.30.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=【参考答案】***试卷处理标记,请不要删除一、解答题 1.无 2.无 3.无 4.无 5.无 6.无 7.无 8.无 9.无 10.无 11.无 12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)AP

2019最新高等数学(上册)期末考试试题(含答案)AP

2019最新高等数学期末考试试题(含答案)一、解答题1.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t ty y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=2.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰3. 求下列各曲线所围图形的面积: (1)y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2)(1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23∴ D 1+D 2=2π+43,D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.(2)y =1x与直线y =x 及x =2;解: D 1=⎠⎛12⎝⎛⎭⎫x -1x d x =⎣⎡⎦⎤12x 2-ln x 21=32-ln2.(2)(3)y =e x ,y =e -x 与直线x =1;解:D =⎠⎛01()e x -e -xd x =e+1e-2.(3)(4) y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n al n b e y d y =b -a .(4)(5)抛物线y =x 2和y =-x 2+2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(-1,1) D =⎠⎛-11()-x 2+2-x 2d x =4⎠⎛01()-x 2+1d x =83.(5)(6)y =sin x ,y =cos x 及直线x =π4,x =94π;解:D =2⎠⎜⎜⎛π45π4(sin x -cos x )d x=2[]-cos x -sin x 5π4π4=42.(6)(7) 抛物线y =-x 2+4x -3及其在(0,-3)和(3,0)处的切线;解:y′=-2x +4. ∴y ′(0)=4,y ′(3)=-2.∵抛物线在点(0,-3)处切线方程是y =4x -3 在(3,0)处的切线是y =-2x +6 两切线交点是(32,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t -sin t ),y =a (1-cos t )的一拱 (0≤t ≤2π)与x 轴;解:当t =0时,x =0, 当t =2π时,x =2πa .所以()()()2π2π002π2202d 1cos d sin 1cos d 3π.aS y x a t a t t at ta ==--=-=⎰⎰⎰(8)(9)极坐标曲线 ρ=a sin3φ;解:D =3D 1=3·a 22⎠⎜⎛0π3sin 23φd φ=3a 22 ·⎠⎜⎛0π3 1-cos6φ2d φ =3a 24 ·⎣⎡⎦⎤φ-16sin6φπ3=πa 24.(9)(10) ρ=2a cos φ;解:D =2D 1=2⎠⎜⎛0π212·4a 2·cos 2φd φ=4a 2⎠⎜⎛0π21+cos2φ2d φ =4a 2·12⎣⎡⎦⎤φ+12sin2φπ2=4a 2·12·π2=πa 2.(10)4.利用习题22(2)证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算a⎰(a 为正常数)证明:由习题22(2)可知ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5.利用被积函数奇偶性计算下列积分值(其中a 为正常数) (1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||aa xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln 3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰6.一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.7.作出下列函数的图形:2(1)()1xf x x =+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,列表讨论如下:函数有极大值1(1)2f=,极小值1(1)2f-=-,有3个拐点,分别为,4⎛-⎝⎭(0,0),4⎭,作图如上所示.(2) f(x)=x-2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx'=-+''=+令y′=0,可得x=±1,令y″=0,可得x=0.列表讨论如下:又()2lim lim(1arctan)1x xf xxx x→∞→∞=-=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞-=-=-故πy x=-是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=-,极大值π(1)12y-=-.(0,0)为拐点.作图如上所示.2(3) ()1xf xx=+;解:函数的定义域为,1x R x∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+-+'==≠-++''=+令0y'=得x=0,x=-2当(,2]x∈-∞-时,0,()y f x'>单调增加;当[2,1)x∈--时,0,()y f x'<单调减少;当(1,0]x∈-时,0,()y f x'<单调减少;当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0又211lim ()lim1x x x f x x →-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x →∞=, 且2lim(())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦, 故曲线另有一斜渐近线y =x -1. 综上所述,曲线图形为:(4)2(1)ex y --=.解:函数定义域为(-∞,+∞) .22(1)(1)22(1)e e2(241)x x y x y x x ----'=--''=⋅-+令0y '=,得x =1. 令0y ''=,得1x =±当(,1]x ∈-∞时,0,y '>函数单调增加; 当[1,)x ∈+∞时,0,y '<函数单调减少;当2(,1[1,)22x ∈-∞-++∞时,0y''>,曲线是凹的; 当[1x ∈时,0y ''<,曲线是凸的, 故函数有极大值f (1)=1,两个拐点:1122(1,e ),(1)22A B ---+, 又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:8.设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,000()()()()()()f x f x x x f xx f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.9.试证明:曲线211x y x -=+有三个拐点位于同一直线上. 证明:22221(1)x x y x -++'=+,y ''=令0y ''=,得1,22x x x =-=+=当(,1)x ∈-∞-时,0y ''<;当(1,2x ∈--时0y ''>;当(22x ∈-时0y ''<;当(2)x ∈++∞时0y ''>,因此,曲线有三个拐点(-1,-1),11(244--+-+. 因为111212--+因此三个拐点在一条直线上.10.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t+-==令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-,不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,2a ⎫⎪⎭及3,2a ⎛⎫⎪⎝⎭.11.求下列函数的极值: (1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==,126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-. (3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+, 令0y '=,得驻点121,3x x =-=.1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-.(4) ln(1)y x x =-+; 解: 1101y x'=-=+,令0y '=,得驻点0x =. 201,0(1)x y y x =''''=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-, 令0y '=,得驻点1231,0,1x x x =-==.210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+ 解: 1y '=-,令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点. (7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =(8) 223441x x y x x ++=++;解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++, 令0y '=,得驻点122,0x x =-=.2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos xy x =;解: e (cos sin )xy x x '=-, 令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin x y x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()e 2k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()k k y x +++=. (10) 1xy x =;解: 11211ln (ln )xx xy x x x x x-''==, 令0y '=,得驻点e x =.当e x >时, 0y '<,当e x <时, 0y '>, 故极大值为1e(e)e y =. (11) 2e e xxy -=+;解: 2e ex xy -'=-,令0y '=,得驻点ln 22x =-. ln 222e e ,0x x x y y -=-''''=+>,故极小值为ln 2()2y -=. (12) 232(1)y x =--; 解:y '=. y 的定义域为(,)-∞+∞,且y 在x =1处不可导,当x >1时0y '<,当x <1时, 0y '>,故有极大值为(1)2y =.(13) 1332(1)y x =-+; 解:y '=.无驻点.y 在1x =-处不可导,但y '恒小于0,故y 无极值. (14) tan y x x =+.解: 21sec 0y x '=+>, y 为严格单调增加函数,无极值点.12.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++ 即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明: 11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b --<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>13.利用洛必达法则求下列极限: ⑴ πsin 3limtan 5x x x →; ⑵ 3π2ln sin lim (2)x xx π→-;⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin limx a x ax a→--;⑸ lim mmn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x →+∞+; ⑺ 0ln lim cot x xx +→; ⑻ 0lim sin ln x x x +→;⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )xx x+→;⑾ 2lim (arctan )πxx x →+∞⋅; ⑿ 10lim(1sin )x x x →+;⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]ex x x x →+.解:⑴ 原式=2π3cos33lim5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1limlim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++.⑷ 原式=cos limcos 1x a xa →=.⑸ 原式=11limm m nn x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+.⑺ 原式=22001sin lim lim 0csc x x x x x x ++→→=-=-. ⑻ 原式=001ln lim lim 0csc csc cot x x x x x x x++→→==-⋅. ⑼ 原式22200e e e e lim =lim (e 1)x x x x x x x x x x x →→----=-202e e 1=lim 2x x x x →--204e e 3=lim 22x x x →-=.⑽ 原式=0lim(1ln )xx x +→- 令(1ln )xy x =-00020011()ln(1ln )1ln lim ln lim lim 111lim lim 011ln x x x x x x x x y x xx x x+++++→→→→→⋅---==-===-- ∴原式=0lim e 1x y +→==. ⑾ 令2(arctan )πx y x =⋅,则2222211lnln arctan πarctan 1lim ln lim lim1112lim arctan 1πx x x x x x x y x x x x x →+∞→+∞→+∞→+∞+⋅+==-=-⋅=-+∴原式=2πe-.⑿ 令1(1sin )xy x =+,则000cos ln(1sin )1sin limln lim lim 11x x x xx x y x →→→++=== ∴原式=e =e '.⒀ 原式00ln lim(ln )lim1x x x x x x ++→→=⋅=0021=lim =lim()01x x x x x++→→-=- ⒁原式limx x→+∞=2234232311111=lim (1)(23)=33x x x x x x x x ----→+∞+++⋅++⋅ ⒂ 原式sin sin 0e (e 1)limsin x x x x x x -→-=-sin 00e (sin )=lim =e =1sin x x x x x x →⋅-- ⒃ 令12sin ()x x y x=,则200023002220011cos ln sin ln sin lim ln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1lim lim .666x x x x x x x x x x x x y x x x x x x x xx x x x x x x x x x →→→→→→→--==--==---===-∴原式=16e-.⒄ 令111[(1)]e x xy x =+,则11ln [ln(1)1]x y x x=+-2000011ln(1)1lim ln lim lim 2111lim .212x x x x x xx y x x x →→→→-+-+===-=-+14.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

2019最新高等数学(上册)期末考试试题(含答案)RG

2019最新高等数学(上册)期末考试试题(含答案)RG

2019最新高等数学期末考试试题(含答案)一、解答题1.一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=2.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年3.求下列函数在[-a ,a ]上的平均值:(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰4.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰5.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-6.证明下列等式:2321(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立. (2)若()[,]f x C a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.7.求不定积分max(1,)d x x ⎰.解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰8.a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.9.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=.10.求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =. 当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧. 因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) e xy x -=;解:(1)e , e (2)x xy x y x --'''=-=- 令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0xxy x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的, 故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).11.判定下列曲线的凹凸性: (1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的. (2) sin(h )y x =;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y x x '''=-=>,故曲线图形在(0,)+∞是凹的. (4) y =x arctan x . 解:2arctan 1xy x x '=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.12.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x+'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2, 而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14.13.确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x'=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =; 解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加.(4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加.(5) e (0,0)n xy x n x -=>≥; 解: 函数定义域为[0,)+∞,11e e e ()n xn x x n y nxx x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+; 解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈--1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈,函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+--函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.14.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x ) = ln(2+x ); (2)f (x ) = cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑ ()()()()2211!!211!!2nn n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑15.设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元) (2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.16.某厂生产某种产品,年销售量为106件,每批生产需要准备费103元,而每件的年库存费为0.05元,如果销售是均匀的,求准备费与库存费之和的总费用与年销售批数之间的函数(销售均匀是指商品库存数为批量的一半). 解: 设年销售批数为x , 则准备费为103x ;又每批有产品610x 件,库存数为6102x 件,库存费为6100.052x ⨯元. 设总费用为,则63100.05102y x x⨯=+.17.求下列函数在0x x =处的三阶泰勒展开式: ⑴04);y x = ⑵ 0(1)ln (1).y x x x =-=解:⑴ 1357(4)222211315 , , ,.24816y x y x y x y x ----''''''==-==-所以113(4) , (4) ,(4)432256y y y ''''''==-=(4)7215[4(4)]16[4(4)]y x x θθ+-=-+-423721115(4)(4)(4)(4) (01).464512128[4(4)]x x x x x θθ----+--<<+-⑵ 2344ln(1)234(1)x x x x x x θ+=-+-+ 234434524(1)ln (1)ln[1(1)](1)(1)(1) (1){(1)}234[1(1)](1)(1)(1) (1).234[1(1)]y x x x x x x x x x x x x x x x θθ∴=-=-+----=---+-+----=--+-+-18.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x →∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴==⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →,2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=19.在括号内填入适当的函数,使等式成立: ⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=; ⑶ 1d( )d 1x x=+; ⑷ 2d( )e d x x -=; ⑸d( )x =; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x x x =; ⑻d( )x =. 解: ⑴(sint)cos t '=d(sin )cos d t C t t ∴+=.⑵11(cos )(sin )sin x x x ωωωωω'-=-⋅-=1d(cos )sin d x C x x ωωω∴-+=.⑶ 1[ln(1)]1x x'+=+ 1d[ln(1)]d 1x C x x∴++=+. ⑷ 22211(e )(2)e =e 22x x x ---'-=-⋅-221d(e )ed 2x x C x--∴-+=.⑸(2)2x '= )C x ∴=. ⑹2211(tan3)sec 33sec 333x x x '=⋅⋅=21d(tan3)sec 3d 3x C x x ∴+=.⑺ 21111(ln )2ln ln 22x x x x x'=⋅⋅=211d(ln )ln d 2x C x x x∴+=.⑻ 2(1(2)x x '--=-= d()C x ∴=.20.求下列函数的高阶导数: ⑴ e sin ,xy x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y;⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x x x x x x y x x x x x y x x y x x x x x''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()ix i i i yC x -==∑ 22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x x x x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i yC x x -==∑ 2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--21.求n 次多项式1101nn n n y a x a x a x a --=++++的n 阶导数.解: 1()()1()()()()0100()()()()=()=!n n n n n n n n n n n ya x a x a x a a x a n --=++++⋅22.已知e sin ,e cos ,ttx t y t ⎧=⎪⎨=⎪⎩求当π3t =时d d y x 的值. 解:d de cos e sin cos sin d d d e sin e cos sin cos d t t t t yy t t t tt x x t t t tt--===++π3ππcos sind 332ππd sin cos 33t y x =-==+.23.求函数11ln21xy x+=-的反函数()x y ϕ=的导数. 解:21[ln(1)ln(1)]2d 1111()d 2111y x x y x x x x =+--=+=+--故反函数的导数为:2d 11d d d x x yy x ==-.24.求下列函数的导数: ⑴ π3ln sin 7S t =+; 解:3S t '= ⑵y x =;解:12)y x x x '=+=+ ⑶ 2(1)sin (1sin )y x x x =-⋅⋅-; 解:222222sin (1sin )(1)cos (1sin )(1)sin (cos ) 2sin 2sin cos cos sin 2sin 2y x x x x x x x x x x x x x x x x x x x=--+--+--=-+--+⑷ 1sin 1cos x y x-=-;解:22cos (1cos )(1sin )sin 1sin cos (1cos )(1cos )x x x x x xy x x ------'==--⑸ πtan e y x =+; 解:2sec y x '=⑹ sec 3sec xy x x=-; 解:2sec tan sec 3sec tan x x x xy x x x -'=-⑺ 2ln 2lg 3log y x x x =-+; 解:11112323(1)ln10ln 2ln1012y x x x x n '=-+⋅=-+⋅⋅ ⑻ 211y x x=++. 解:22(12)(1)x y x x -+'=++25.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.26.垂直向上抛一物体,其上升高度与时间t 的关系式为:21()10(m),2h t t gt =-求: ⑴ 物体从t =1(s)到t =1.2(s)的平均速度:解:11112 1.4410(1.2)(1)220.78 (m s )1.210.2g gh h v --⨯-+-===-⋅- ⑵ 速度函数v (t ); 解:()()10v t h t gt '==-. ⑶ 物体何时到达最高.解:令()100h t gt '=-=,得10(s)t g=, 即物体到达最高点的时刻为10 s.t g=27.已知2()max{,3}f x x =,求()f x '.解:23, (), x f x x x ⎧≤⎪=⎨>⎪⎩当x <时,()0f x '=,当x >时,()2f x x '=,2(((0,x x x f x f -+'===-'==故(f '不存在.又20,(x x x f f x -+'=='==+=故f '不存在. 综上所述知0, ()2, x f x x x ⎧<⎪'=⎨>⎪⎩28.试证:方程21x x ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-= 即方程21x x ⋅=有一个小于1的正根.29.研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x ≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 221(3)()lim ;(4)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续,又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+ 当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n --→∞→∞→∞---====+++1,0,()lim0,0,1,0.xxx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续, 又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=- 知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim0,1nn n x f x x x →∞-==+ 当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn n n n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-530.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.习题三【参考答案】***试卷处理标记,请不要删除一、解答题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无13.无14.无15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2019最新高等数学(上册)期末考试试题(含答案)WE

2019最新高等数学(上册)期末考试试题(含答案)WE
解:均方根公式为

8. 求下列旋转体的体积:
(1)由y=x2与y2=x3围成的平面图形绕x轴旋转;
解:求两曲线交点得(0,0),(1,1)
.(14)
(2)由y=x3,x=2,y=0所围图形分别绕x轴及y轴旋转;
解:见图14,

(2)星形线绕x轴旋转;
解:见图15,该曲线的参数方程是:

由曲线关于x轴及y轴的对称性,所求体积可表示为
解:
20.利用泰勒公式求下列极限:
⑴ ⑵ (3)
解:⑴

(3)令 ,当 时, ,
21.在括号内填入适当的函数,使等式成立:
⑴ ;⑵ ;
⑶ ;⑷ ;
⑸ ;⑹ ;
⑺ ;⑻ .
解:

.

.

.

.

.

.

.

.
22.求由下列方程所确定的隐函数 的二阶导数 :
⑴ ;⑵ ;
⑶ ;⑷ .
解:⑴两边对 求导,得
.
(9)因为当 时, ,所以
(10)因为当 时, ,所以
(11)因为当 时, 所以
(12)因为当 时, 所以
解:(1)当C′(x)=R′(x)时总利润最大.
即2=7-2x,x=5/2(百台)
(2)L′(x)=R′(x)-C′(x)=5-2x.
在总利润最大的基础上再多生产100台时,利润的增量为
ΔL(x)= .
即此时总利润减少1万元.
7.已知电压u(t)=3sin2t,求
(1)u(t)在 上的平均值;
解:
(2)电压的均方根值.
2019最新高等数学期末考试试题(含答案)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新高等数学期末考试试题(含答案)
一、解答题
1.利用一阶微分形式的不变性,求下列函数的微分,其中f 和ϕ均为可微函数: ⑴ 34
(())y f x x ϕ=+; ⑵ (12)3sin ()y f x f x =-+.
解:⑴ 3434d [()]d[()]y f x x x x ϕϕ'=++ 34234=[()][34()]d f x x x x x x ϕϕ''++
⑵ d d (12)3dsin ()y f x f x =-+
=(12)d(12)3cos ()d ()
(12)(2)d 3cos ()()d [2(12)3cos ()()]d .
f x x f x f x f x x f x f x x f x f x f x x '--+''=--+''=--+
2.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++
=12111111()[1()](1)!222(2)(3)2
n n n n n ++++++++ 122111111()[1()](1)!212(1)2n n n n +<++++++ 1111()1(1)!212(1)
n n n +=+-+ 11()!(21)2
n n n =+ 从而 111()!(21)2n n R n n +<+
3.用比值判别法判别下列级数的敛散性:
(1) 2
13n n n ∞=∑;
(2)1
!31n n n ∞=+∑; (3)23
23
33331222322n n
n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133
n n n n n n U n U n ++→∞→∞+=⋅=<,
由比值审敛法知,级数收敛. (2) ()()111!311lim lim 31!31lim 131
n n n n n n
n n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞
所以原级数发散. (3) ()()11132lim lim 2313lim
21312
n n
n n n n n n
n U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散. (4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n n
n n n n n n
n
n n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭
==<⎛⎫+ ⎪⎝⎭
故原级数收敛.
4.
把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少
功?
解:如图19,区间[x ,x +d x ]上的一个薄层水,有微体积d V =10·6·d
x
(19)
设水的比重为1,,则将这薄水层吸出池面所作的微功为
d w =x ·60g d x =60gx d x .
于是将水全部抽出所作功为
w =⎠⎛05
60gx d x
=60g 2x 2⎪⎪5
=750g (KJ) .。

相关文档
最新文档