初一数学《有理数加减法》测试题考

合集下载

1-3 有理数的加减法 练习 人教版数学七年级上册

1-3 有理数的加减法 练习   人教版数学七年级上册

1.3 有理数的加减法一、选择题1.计算−3+(−1)的正确结果是()A.2 B.-2 C.4 D.-42.某城市一月份某一天的天气预报中,最低气温为−6℃,最高气温为2℃,这一天这个城市的温差为()A.8℃B.−8℃C.6℃D.2℃3.不改变原式的值,将1-(+2)-(-3)+(-4)写成省略加号和括号的形式是()A.-1-2+3-4 B.1-2-3-4C.1-2+3-4 D.1-2-3—44.超市出售的某种品牌的大米袋上,标有质量为(50±0.4) kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A.0.4 kg B.0.6 kg C.0.8 kg D.1 kg5.绝对值大于1且小于5的所有整数的和是()A.7 B.-7 C.0 D.56.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值正确的是()A.a=2,b=﹣1 B.a=﹣1,b=2C.a=﹣2,b=1 D.a=﹣1,b=﹣27.若m是-6的相反数,且m+n=-11,则n的值是()A.-5 B.5 C.-17 D.178.若|a|=8,|b|=5,且a+b>0,则a-b的值为()A.13或-1 B.13或3 C.3或-3 D.–3或-13二、填空题9.计算|−12|−12的结果是.10.A、B、C三点相对于海平面分别是-13m,6m,-21m,那么最高的地方比最低的地方高m.11.绝对值不大于3的所有整数的和为.12.小刚在计算21+n的时候,误将“+”看成“-”结果得-10,则21+n的值为.13.已知|m|=5,|n|=2,且n<0,则m+n的值是.三、解答题14.计算:(1)﹣3﹣4+19﹣11;(2)﹣9+(﹣3 34 )+3 34 ;(3)−12+(−16)−(−14)−(+23) ;(4)|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |;(5)8+(﹣ 14 )﹣5﹣(﹣0.25);(6)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).15.五袋白糖以每袋50kg 为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,-4,+2.3,-3.5,+2.5.这五袋白糖共超过多少kg ?总重量是多少kg ?16.有理数a 既不是正数,也不是负数,b 是最小的正整数,c 表示下列一组数:-2,1.5,0,130%, - 27 ,860,-3.4中非正数的个数,则a+b+c 等于多少?17.若|a|=5,|b|=3,(1)求a+b 的值;(2)若|a+b|=a+b ,求a ﹣b 的值.参考答案1.D2.A3.C4.C5.C6.C7.C8.B9.010.2711.012.5213.3或﹣714.(1)解:﹣3﹣4+19﹣11=19-18=1;(2)解:﹣9+(﹣3 34 )+3 34 =﹣9﹣3 34 +3 34 =-9;(3)解: −12+(−16)−(−14)−(+23)=−612−212+312−812= −1312 ;(4)解:|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |=2.5+2.5+1−|−1.5|=2.5+2.5+1−1.5=4.5;(5)解:8+(﹣ 14 )﹣5﹣(﹣0.25)=8-0.25-5+0.25=3;(6)解:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)=(1.4+3.6-5.2-4.3)+1.5=-4.5+1.5=-3.15.解:白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过(4.5﹣4+2.3﹣3.5+2.5)=1.8千克,故这五袋白糖共超过1.8千克;总重量是5×50+1.8=251.8千克,故五袋白糖的总重量是251.8千克.16.解:根据“有理数a既不是正数,也不是负数”,可得到a是0;b是最小的正整数,则b是1;-2,1.5,0,130%,- 27,860,-3.4这组数中,是非正数的有:-2,0,- 27,-3.4,一共有4个;所以a+b+c=5.17.解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.。

人教版七年级数学有理数的加减法——计算题练习

人教版七年级数学有理数的加减法——计算题练习

有理数的加减法——计算题练习1、加法计算(直接写出得数,每小题1分):(1) (-6)+(-8)=(2) (-4)+2.5= (3) (-7)+(+7)= (4) (-7)+(+4)=(5) (+2.5)+(-1.5)= (6) 0+(-2)= (7) -3+2=(8) (+3)+(+2)= (9) -7-4= (10) (-4)+6= (11) ()31-+= (12) ()a a +-=2、减法计算(直接写出得数,每小题1分):(1) (-3)-(-4)=(2) (-5)-10= (3) 9-(-21)= (4) 1.3-(-2.7)=(5) 6.38-(-2.62)= (6) -2.5-4.5= (7) 13-(-17)=(8) (-13)-(-17)= (9) (-13)-17= (10) 0-6= (11) 0-(-3)= (12) -4-2=(13) (-1.8)-(+4.5)= (14) 1143⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭= (15) 1( 6.25)34⎛⎫--- ⎪⎝⎭= 3、加减混合计算题(每小题3分):(1) 4+5-11; (2) 24-(-16)+(-25)-15 (3) -7.2+3.9-8.4+12(4) -3-5+7 (5) -26+43-34+17-48 (6) 91.26-293+8.74+191(7) 12-(-18)+(-7)-15 (8) )15()41()26()83(++-+++-(9) )2.0(3.1)9.0()7.0()8.1(-++-+++- (10) (-40)-(+28)-(-19)+(-24)-(32)(11) (+4.7)-(-8.9)-(+7.5)+(-6) (12) -6-8-2+3.54-4.72+16.46-5.284、加减混合计算题: (1)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2) (-1.5)+134⎛⎫+ ⎪⎝⎭+(+3.75)+142⎛⎫- ⎪⎝⎭(3)()⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-41153141325 (4) 222348312131355⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5) )75.1(321432323+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛- (6) 711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7) ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-411433212411211 (8) 151.225 3.4( 1.2)66⎛⎫⎛⎫-+------ ⎪ ⎪⎝⎭⎝⎭(9)1111122389910++++⨯⨯⨯⨯ (10) 11111335979999101++++⨯⨯⨯⨯ 有理数的加减法——提高题练习一、选择题:1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若的值为( )A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为()A.-3 B.-9 C.-3或-9 D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数6、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定8、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、410、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0D 、a -b >011、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +c B 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c )12、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数13、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,切被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能14、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b15、下列结论不正确的是( )A 、若0a <,0b >,则0a b -<B 、若0a >,0b <,则0a b ->C 、若0a <,0b <,则()0a b -->D 、若0a <,0b <,且a b >,则0a b -<16、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )A 、xB 、x y +C 、x y -D 、y17、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( )A 、m >m -n >m +nB 、m +n >m >m -nC 、m -n >m +n >mD 、m -n >m >m +n18、若,则下列各式中正确的是( ) A 、 B 、 C 、 D 、19、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <0二、填空题:20、已知的值是那么y x y x +==,213,6 .21、 三个连续整数,中间一个数是a ,则这三个数的和是___________.22、若8a =,3b =,且0a >,0b <,则a b -=________.23、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______.24、若0a <,那么()a a --等于___________.25、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是 .26、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。

七年级数学上学期第一章有理数的加减法练习试题

七年级数学上学期第一章有理数的加减法练习试题

币仍仅州斤爪反市希望学校二零二零—二零二壹教数学七年级上册第一章有理数加减法运算一、加减法法那么、运算律的复习。

A.△同号两数相加,取__________________,并把____________________________。

1、〔–3〕+〔–9〕2、85+〔+15〕3、〔–361〕+〔–332〕 4、〔–〕+〔–532〕△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。

1、(–45) +〔+23〕2、〔–5〕+53、412+〔–5〕4、〔–9〕+7一个数同0相加,仍得_____________。

1、〔–9〕+ 0=______________;2、0 +〔+15〕=_____________。

B.加法交换律:a + b = ___________ 加法结合律:(a + b) + c = _______________1、〔–6〕+〔–15〕+ (–4)2、23+〔–17〕+〔+7〕+〔–13〕21世纪教育网3、〔+ 341〕+〔–253〕+ 543+〔–852〕 4、52+112+〔–52〕C.有理数的减法可以转化为_____来进行,转化的“桥梁〞是___________。

△减法法那么:减去一个数,等于_____________________________。

即a–b = a + ( )1、〔–3〕–〔–5〕2、341–〔–143〕 3、0–〔–7〕D.加减混合运算可以统一为_______运算。

即a + b–c = a + b + _____________。

1、〔–3〕–〔+5〕+〔–4〕–〔–10〕2、341–〔+5〕–〔–143〕+〔–5〕△把––〔–〕+〔–〕+ (+)写成略加号的和的形式是______________,21世纪教育网读作:__________________________,也可以读作:__________________________。

有理数的加减法测试题及答案

有理数的加减法测试题及答案

七年级数学《有理数的加减法》测试卷 班级 姓名 学号一、选择题:(每题 3 分,共 30分)1、-2014的绝对值是( )A 、-2014B 、2014C 、1D 、-12、下列计算结果正确的是( )A 、3-8=5B 、-4+7=-11C 、-6-9=-15D 、0-2=23、算式-3-5不能读作( )A 、-3 与 5 的差B 、-3 与 -5 的差C 、-3 与 -5 的和D 、-3 减去 5 4、较小的数减去较大的数,所得的差一定是( )A 、零B 、正数C 、负数D 、零或负数5、数一定是( )A 、正数B 、零C 、零或正数D 、无法确定6、计算:=--3132( )A 、31- B 、1- C 、0 D 、-27、-2 与 3 的相反数的差为( )A 、-5B 、-1C 、1D 、58、若 =1,b =3,则 a +b=( )A 、4 或 2B 、2C 、4D 、-29、6 的相反数与5 的和为( )A 、11B 、-11C 、1D 、-110、若 a +b <0,且-(-a)>0,则( )A 、a >0,b <0B 、a <0,b >0C 、a <0,b >0D 、a <0,b <0二、填空题:(每题 3 分,共 30 分)11、(-3)+(+2)的结果的符号为 。

12、-3 与 -1 的和等于 。

13、(-1) - (-2)=(-1)+( )14、比 -3 小 2 的数是 。

15、计算:-(-6)-(-3)+(-4) = 。

16、计算:-3-(+2)= 。

17、已知:-16-6 = 。

18、从海拔12m 的地方乘电梯到海拔-10m 的地方,一共下降了m。

19、比-5 大3。

20、数轴上表示-1 的点与表示2的点的距离是。

三、计算:(每题2分,共10 分)21、(-12)+13 222、-3-(-2)23、-(-19.5)+(-1.5)24、8-(9-10)25、3-[(-2)-10]四、列式计算:(每题5分,共10 分)26、-4.5的相反数与-3.25的和的相反数是多少?27、-1 减去-2 与11的和,所得的差是多少?五、计算:(每题5 分,共10 分)28、(-7.3)+(-2.6)+(+4.3)-(-4.6)29、-(-2.4)-(-4.7)+(-0.5)-(+3.2)六、(10分)电力公司的一个检修小组从 A 地出发,在公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3(1)求收工时距 A 地多远?(2)若每千米耗油0.3 升,问从出发到收工共耗油多少升?。

七年级上册数学有理数的加减法练习题(有答案)

七年级上册数学有理数的加减法练习题(有答案)

七年级上册数学有理数的加减法练习题(有答案)2、下面是小华做的数学作业,其中算式中正确的是( )A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于( )A、-B、C、D、5、一个数加上-12得-5,那么这个数为( )A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A、10米B、15米C、35米D、5米7、计算:所得结果正确的是( )A、 B、 C、 D、8、若,则的值为( )A、 B、 C、 D、三、解答题(共52分)1、列式并计算:(1)什么数与的和等于 ?(2)-1减去的和,所得的差是多少?2、计算下列各式:(1)(2)(3)3、下列是我校七年级5名学生的体重情况,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克) 34 45体重与平均体重的差 -7 +3 -4 0(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

列式计算,小明和小红谁为胜者?5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。

(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?参考答案:一、1、+,-2、-33、1,64、3405、0.27,6、正数7、8、+5-8-2+3+7二、1、A2、D3、A4、B5、B6、C7、B8、A三、1、解:(1)(2)2、解:(1)原式=0+6+2+13-8=13(2)原式=(3)原式=3、解:(1)小明44,小刚+4,小京37,小宁41(2)小刚最重,小颖最轻(3)11千克,17千克4、解:小明:,小红:所以小红胜5、解:(+10)+(-3)+(+4)+(+2)+(+8)+(+5)+(-2)+(-8)+(+12)+(-5) +(-7)=16,所以到晚上6时,出租车在停车场以东16千米处。

初一数学《有理数加减法》测试题(月考)

初一数学《有理数加减法》测试题(月考)

有理数加减法(月考)一、选择题(每题3分)1.-6 的相反数与比 4 的相反数小 1 的数的和为( )A 、11B 、2C 、1D 、02.下列说法正确的是( )A .-5是相反数B 、正数与负数的互为相反数C .π的相反数是 —3。

14D 、互为相反数的两个数的和一定为03.若 =1,b =3,则 a +b 的值为( )A 、4 或 2B 、2C 、4D 、-2 4.下列比较大小的题目中,正确的有( )题(1)—5>-4 (2)3>0〉-4 (3)—41<21— (4)—41〉-21 A 、3 B 、4 C 、1 D 、25.绝对值小于5的自然数有( )A .4个B 、5个C 、6个D 、7个6.与(—a )-(—b)相等的式子是( )A 、(+a)+(-b)B 、(-a )+(+b)C 、 (—a )+(—b )D 、(+a)+(-b)7. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个正数,差一定大于被减数 C 。

减去一个负数,差一定大于被减数 D 。

0减去任何数,差都是负数8.比-2小3的数是( )A .—1B 、—5C 、1D 、 59.1x - + 3y + = 0, 则y -x -12的值是 ( ) A 112 B -112 C -212 D-412 10。

若m <0,n >0,m+n <0,则m,n,—m,-n 这四个数的大小关系是( )A.m >n >-n 〉-mB.-m >n >-n >mC.m >-m >n >-n D 。

-m >-n >n >m二、填空题:(每题3分)11.某股票昨天每股跌了0.21元,记做 —0。

21元,今天每股票涨了0。

12元,记作_________12.已知1=a ,2=b ,3=c ,且a >b >c ,则c b a +-= ;13. —2321的相反数是_______, —1.9的绝对值是_________ 14. 绝对值不大于5的所有正整数的和为 .15.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

部编数学七年级上册专题03有理数加减法(专题测试)(解析版)含答案

部编数学七年级上册专题03有理数加减法(专题测试)(解析版)含答案

专题03 有理数加减法(专题测试)满分:100分时间:90分钟一、选择题(每小题3分,共36分)1.(2022•河西区二模)计算(﹣12)+7的结果等于( )A.﹣8B.﹣7C.﹣5D.19【答案】C【解答】解:(﹣12)+7=﹣(12﹣7)=﹣5.故选:C.2.(2020秋•大冶市期末)武汉市元月份某一天早晨的气温是﹣3℃,中午上升了8℃,则中午的气温是( )A.﹣5℃B.5℃C.3℃D.﹣3℃【答案】B【解答】解:﹣3+8=5(℃)∴中午的气温是5℃.故选:B.3.(2022秋•宜兴市月考)将6+(+3)+(﹣7)﹣(﹣2)改写成省略括号的和的形式是( )A.﹣6﹣3+7﹣2B.6﹣3﹣7+2C.6﹣3+7﹣2D.6+3﹣7+2【答案】D【解答】解:原式=6+3﹣7+2,故选:D.4.(2022•呼和浩特)计算﹣3﹣2的结果是( )A.﹣1B.1C.﹣5D.5【答案】C【解答】解:﹣3﹣2=﹣5.故选:C.5.(2022春•巧家县期中)小明家的冰箱冷藏室温度是4℃,冷冻室的温度是﹣12℃,则他家的冰箱冷藏室比冷冻室温度高( )A.8℃B.16℃C.﹣8℃D.﹣16℃【答案】B【解答】解:4﹣(﹣12)=4+12=16(℃),故选:B.6.(2021秋•朝阳区校级月考)某校规定英语竞赛成绩85分以上为优秀,老师将85分记为0,并将一组5名同学的成绩简记为﹣3,+14,0,+5,﹣6,这5名同学的平均成绩是( )A.83分B.87分C.82分D.84分【答案】B【解答】解:(﹣3)+(+14)+0+(+5)+(﹣6)=10,这5名同学的平均成绩是85+10÷5=87,故选:B.7.(2021秋•桓台县期末)如果a﹣b>0,且a+b<0,那么一定正确的是( )A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|【答案】C。

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册《有理数的加减法》测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣1﹣(﹣3)等于()A.﹣4B.2C.4D.﹣22.若x的相反数是2,|y|=5,且x+y<0,则x﹣y的值是()A.3B.3或﹣7C.﹣3或﹣7D.﹣73.下列计算正确的是()A.8+(﹣14)=+6B.8+|﹣14|=﹣6C.8+(﹣14)=﹣22D.8+(﹣14)=﹣64.以下叙述中,正确的有()①减去一个数,等于加上这个数的相反数;②两个正数的和一定是正数;③两个负数的差一定是负数;④在数轴上,零右边的点所表示的数都是正数.A.4个B.3个C.2个D.1个.5.冬季一天早晨的气温是﹣2℃,中午上升了8℃,下午又下降了4℃,则下午的气温是()A.10℃B.2℃C.﹣2℃D.﹣5℃6.在数4,﹣3,﹣12,﹣9中,任取三个不同的数相加,其中和最大的是()A.﹣11B.﹣8C.﹣17D.﹣67.如果a﹣b>0,且a+b<0,那么一定正确的是()A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|8.11月10日,某股票的股价在连续上涨后开始高位震荡,当天开盘价为31.85元,相对开盘价,波动最高+0.13元,最低﹣0.84元,那么这天的最大价差(最高价减去最低价)为()A.31.98元B.31.01元C.0.71元D.0.97元二.填空题(共8小题,满分40分)9.比0小4的数是,比3小4的数是,比﹣5小﹣2的数是.10.我县某天的最低气温为﹣3℃,最高气温为5℃,这一天的最高气温比最低气温高℃.11.已知|x|=5与|y|=4,且x>y,则y﹣x=.12.x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z的值为.13.计算:﹣20+(﹣14)﹣(﹣18)+13=.14.计算(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)的结果是.15.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.16.计算:(+1)+(﹣2)+(+3)+(﹣4)+……+(+2021)+(﹣2022)=.三.解答题(共6小题,满分40分)17.计算:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5 (2)5.3﹣|﹣3|+2﹣2.18.计算下列各题(1)﹣20+(﹣17)﹣(﹣18)﹣11 (2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(3).19.计算:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)(2)(﹣)+3.25+2+(﹣5.875)+1.15 20.数学张老师在多媒体上列出了如下的材料:计算:.解:原式===.上述这种方法叫做拆项法.请仿照上面的方法计算:(1);(2).21.阅读绝对值拓展材料:|a|表示数a在数轴上的对应点与原点的距离,如:|5|表示5在数轴上的对应点到原点的距离而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离,类似的,|5+3|=|5﹣(﹣3)|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.根据上述材料,回答下列问题.(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)借助数轴解决问题:如果|x+2|=1,那么x=;(3)|x+2|+|x﹣1|可以理解为数轴上表示x的点到表示和这两个点的距离之和,则|x+2|+|x﹣1|的最小值是.22.2020年“双十一”期间某淘宝商家提前搞促销活动,计划平均每天销售某品牌学习机100台,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是双十一的一周销售倩况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+2﹣3+25+8﹣4+2﹣6(1)根据记录的数据,计算该店一周日销量最多比最少多多少台?(2)本周实际销售总量达到了计划数量吗,通过计算说明理由.(3)该店实行每日按销售台数计算工资,每销售一台学习机可得10元,若超额完成任务,则超过部分每台另奖20元;少销售一台扣30元,那么该店铺的销售人员这一周的工资总额是多少元?参考答案一.选择题(共8小题,满分40分)1.解:﹣1﹣(﹣3)=﹣1+3=2.故选:B.2.解:∵﹣2的相反数是2,∴x=﹣2.∵|y|=5,∴y=±5.∵x+y<0,∴x=﹣2,y=﹣5.∴x﹣y=﹣2﹣(﹣5)=﹣2+5=3.故选:A.3.解:8+(﹣14)=8﹣14=﹣6,故D选项正确,A选项、C选项错误;8+|﹣14|=8+14=22,故B选项错误.故选:D.4.解:①减去一个数,等于加上这个数的相反数,说法正确;②∵同号两数相加,取相同的符号,∴两个正数的和一定是正数,故②说法正确;③∵(﹣1)﹣(﹣5)=﹣1+5=4,∴两个负数的差一定是负数不正确,故③说法错误;④在数轴上,零右边的点所表示的数都是正数,说法正确;综上所述,正确的有3个.故选:B.5.解:由题意得,﹣2+8﹣4=2(°C),故选:B.6.解:根据题意得:4﹣3﹣9=﹣8,故选:B.7.解:∵a﹣b>0,∴a>b,①b≥0则a一定是正数,此时a+b>0,与已知矛盾,∵a+b<0,当b<0时,①若a、b同号,∵a>b,∴|a|<|b|,②若a、b异号,∴|a|<|b|,综上所述b<0时,a>0,|a|<|b|.故选:C.8.解:0.13﹣(﹣0.84)=0.13+0.84=0.97(元),故选:D.二.填空题(共8小题,满分40分)9.解:根据题意得:0﹣4=﹣4;3﹣4=﹣1;﹣5﹣(﹣2)=﹣5+2=﹣3,故答案为:﹣4;﹣1;﹣310.解:5﹣(﹣3)=5+3=8(℃).故答案为:811.解:∵|x|=5与|y|=4,∴x=±5,y=±4,∵x>y,∴x=5,y=±4,(1)当x=5,y=4时,y﹣x=4﹣5=﹣1(2)当x=5,y=﹣4时,y﹣x=﹣4﹣5=﹣9故答案为:﹣1或﹣9.12.解:∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x﹣y+z=﹣1﹣1+0=﹣2.故答案为:﹣2.13.解:﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣3.故答案为:﹣314.解:(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)=[(﹣0.5)﹣(﹣7)]+[﹣(﹣3)+2.75]=7+6=13故答案为:13.15.解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.16.解:原式=(1﹣2)+(3﹣4)+…+(20121﹣2022)=﹣1﹣1﹣1…﹣1=﹣1011,故答案为:﹣1011.三.解答题(共6小题)17.解:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5=﹣16﹣8+8﹣3+5=(﹣16﹣8﹣3)+(8+5)=﹣27+13=﹣14;(2)5.3﹣|﹣3|+2﹣2=5.3﹣3+2﹣2=(5.3+2)+(﹣3﹣2)=7.3﹣6=1.3.18.解:(1)原式=﹣20+(﹣17)+18+(﹣11)=﹣37+18+(﹣11)=﹣19+(﹣11)=﹣30;(2)原式=﹣49+(﹣91)+5+(﹣9)=﹣140+5+(﹣9)=﹣135+(﹣9)=﹣144;(3)原式=4+(﹣3.85)+3+(﹣3.15)=(4+3)+[(﹣3.85)+(﹣3.15)]=8+(﹣7)=1.19.解:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)=19+[(﹣6.9)+(﹣3.1)]﹣8.35=19﹣10﹣8.35=9﹣8.35=0.65;(2)(﹣)+3.25+2 +(﹣5.875)+1.15=[(﹣)+(﹣5.875)]+(3.25+1.15+2.6)=﹣6+7=1.20.解:(1)=(28+)+[(﹣25)+(﹣)]=(28﹣25)+(﹣)=3+=3;(2)=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+(﹣)=(﹣2021﹣2022+4044)+(﹣﹣﹣)=1+(﹣1)=0.21.解:(1)2和5的两点之间的距离是|5﹣2|=3,1和﹣3的两点之间的距离是|﹣1﹣(﹣3)|=4,故答案为:3,4;(2)∵|x+2|=1,∴x+2=1或x+2=﹣1,∴x=﹣1或x=﹣3,故答案为:﹣1或﹣3;(3)|x+2|+|x﹣1|表示x轴上点到点﹣2和1的距离之和,∴|x+2|+|x﹣1|的最小距离是3,故答案为:﹣2,1,3.22.解:(1)25﹣(﹣6)=25+6=31(台),答:该店一周日销量最多比最少多31台;(2)2﹣3+25+8﹣4+2﹣6=24>0,∴本周实际销量达到了计划数量;(3)(100×7+24)×10+(2+25+8+2)×20+(﹣3﹣4﹣6)×30=7590(元).答:该店铺的销售人员这一周的工资总额是7590元.。

人教版初一数学有理数加减法测试卷

人教版初一数学有理数加减法测试卷

《有理数》单元测试卷(二)(考试时间:100分钟总分:150分)一、单选题(共12小题,每题4分,共48分)1.下列各数:-5,1.1010010001…,3.14,227,20%,3π,有理数的个数有()A .3个B .4个C .5个D .6个2.如果+5米表示一个物体向东运动5米,那么-3米表示().A .向西走3米B .向北走3米C .向东走3米D .向南走3米3.超市里一袋食盐的净含量是(500±5)g ,表示这袋食盐的重量范围在495g ~505g 之间,如果某种药品的保存温度为(20±2)℃,那么下列温度符合保存要求的是()A .+2℃B .﹣2℃C .21℃D .17℃4.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④5.下列计算正确的是()A .(2)(3)5-+-=B .(2)35--=-C .D .33ππ-=-6.(本题4分)下列说法中正确的是()A .a -一定是负数;B .a 一定是负数C .a -一定不是负数D .2a -一定是负数7.已知3a =,4b =,且0<+b a ,则a-b 的值为()A .1或7B .-1或-7C .1和-7D .-1和78.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg9.有理数,a b 在数轴上的位置如图所示,则下列式子中正确的个数是()①;②;③;④.A .1B .2C .3D .410.下列每组数中,相等的是()。

A 、-(-3)和-3;B 、+(-3)和-(-3);C 、-(-3)和|-3|;D 、-(-3)和-|-3|.11.(本题4分)按如图所示的运算程序,能使运算输出结果为5-的是()123-=--0a b +>0a b -<0a b ->a b ->-A .1x =,2y =-B .1x =,2y =C .1x =-,2y =D .1x =-,2y =-12.(本题4分)已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1=-112-,-1的差倒数是11=1(1)2--.如果12a =-,是的差倒数,是的差倒数,是的差倒数……依此类推,那么12100a a a +++ 的值是()A .-7.5B .7.5C .5.5D .-5.5二、填空题(共24分)13.把下列各数填在相应的大括号内:-13,31,0.8,-3,324,-3.101001,-2,11,0,...202002.3,π,∙7.1整数集合:{…}分数集合:{…}负分数集合{…}非负整数集合{…}14.如果向东走20米记作+20米,那么向西走30米记作_________.15.的相反数是________,绝对值是_________.16.比较大小:-(+3.5)____|-4.5|,23-____34-,-π______3.1.17.若0||||=-++a c b a 且b a >,则=+cb b a ||||_________18.下面是按一定规律排列的一列数:,,,,…那么第n 个数是.三、解答题(共78分)19.(本题10分)画出数轴,在数轴上表示下列各数,并用“>”将他们连接起来),25(--,321-|43|-+20.(本题10分)计算:(1)12(16)(4)5--+--(2)21.(本题10分)已知有理数a 、b 满足,求的值.|5|--[(4)]---|,1|--,0,5.3-2141(6132-----)5(|1|+++-b a 0|3||42|=-++b a 2a 1a 3a 2a 3a 4a22.(本题10分)出租车司机小王中秋节当天下午驾车接送游客旅游,下午的营运全是在东西走向的公路上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)+8,+4,﹣10,-3,+6,﹣5,﹣3,+6,-5,+10.请回答:(1)将第几名乘客送到目的地时,小王刚好回到下午出发点?(2)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午共需要多少油费?23.(本题10分)小张第一次用180元购买了8套儿童服装,以一定价格出售.如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):12,13,15,11,17,11,0,13.+-++---请通过计算说明.......:(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?24.(本题10分)对于有理数、定义一种新运算,规定☆.(1)求2☆()3-的值;(2)若3☆x 4=,求x 的值.b a b -=3b a a25.(本题10分)认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。

七年级数学第一学年单元测试(有理数的加减法)

七年级数学第一学年单元测试(有理数的加减法)

七年级数学(上)单元测试单元:(1.3有理数的加减法)姓名:_________班级:____________一、精心选一选,慧眼识金!(每小题3分,共30分) 1. 计算:(-3)+(-3)=( ) A.-9 B.9 C.-6 D.6 2. 下列运算正确的是( ) A.(-3)+(-4)=-3+-4=…… B.(-3)+(-4)=-3+4=…… C.(-3)-(-4)=-3+4=…… D.(-3)-(-4)=-3-43. 某天的最高气温是11℃,最低气温是-1℃,则这一天的最高气温与最低气温的差是( ) A.2℃ B.-2℃ C.12℃ D.-12℃4. 如果两个数的和是负数,那么这两个数( ) A.同是正数 B.同为负数 C.至少有一个正数 D.至少有一个为负数5. 计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律和结合律6.在“有理数的加法与减法运算”的学习过程中,我们做如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是( )A.4)1()3(-=+--B.2)1()3(-=++-C.2)1()3(+=-++D.4)1()3(+=+++ 7.如图,数轴的单位长度为1,如果B 、C 表示的数的和为2,那么A 、D 表示的数的和是( ) A.5 B.4 C.3 D.28.计算1+(-2)+3+(-4)+5+(-6)+...+19+(-20)得( ) A.10 B.-10 C.20D.-209.小明做这样一道题“计算:m +-)3(”,其中“m ”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“m ”表示的数是( ) A.3 B.-3 C..9 D.-3或910.已知整数...,,,4321a a a a 满足...32103423121+-=+-=+-==a a a a a a a ,,,依此类推,则2018a 的值为( )A.-1009B.-1008C..-2017D.-2016 二、耐心填一填,一锤定音(每小题3分,共24分) 11. 3-=_________.12. 比-1小2017的数是________.13. 河里水位第一天上升8cm ,第二天下降7cm ,第三天又下降9cm ,第四天又上升了3cm ,经测量此时的水位为62.6cm ,则河里初始水位值________.14.将一把刻度尺如图所示放在数轴上(数轴的单位长度是),刻度尺上的“”和“”分别对应数轴上的和,则的值为__________. 是否15.如图,丁丁做了一个程序图,当丁丁输入的数为6时,输出的结果=_________ 16.若,则的值为__________17.若5=a ,7=b ,且b a >,则b a +的值可能是____________。

七年级数学上有理数加减法

七年级数学上有理数加减法

有理数减法一、单选题(共24题;共48分)1.月球表面的白天平均温度是零上126º,夜间平均温度是零下150º,则月球表面的昼夜温差是()A. 24ºB. -276ºC. -24ºD. 276º2.将6−(+3)−(−7)+(−2)写成省略括号的和的形式为()A. −6−3+7−2B. 6−3−7−2C. 6−3+7−2D. 6+3−7−23.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃4.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是()A. 3℃B. 8℃C. 11℃D. 17℃5.某地某天的最高气温是8℃,该地这一天的温差是10℃,则最低气温是()A. ﹣18℃B. ﹣2℃C. 2℃D. 18℃6.去年11月份我市某天最高气温是10℃,最低气温是﹣1℃,这天的温差是()A. ﹣9℃B. ﹣11℃C. 9℃D. 11℃7.若□﹣(﹣3)=4,则□表示的数()A. -1B. 1C. 7D. -78.某地11月份某天的最高气温为5℃,最低气温为﹣1℃,则这天的温差为()A. 4℃B. ﹣6℃C. ﹣4℃D. 6℃9.数a,b在数轴上的位置如图所示,则a﹣b是()A. 正数B. 零C. 负数D. 都有可能10.下列结论中正确是()A. 两个有理数的和一定大于其中任何一个加数B. 零减去一个数仍得这个数C. 两个有理数的差一定小于被减数D. 零加上一个数仍得这个数11.我县某天的最高气温为5℃,最低气温为零下2℃,则计算温差列式正确是()A. (+5)﹣(+2)B. (+5)+(﹣2)C. (+5)+(+2)D. (+5)﹣(﹣2)12.小明家冰箱冷藏室的温度是2℃,冷冻室的温度是﹣5℃,那么冷藏室比冷冻室的温度高()A. 3℃B. 7℃C. ﹣3℃D. ﹣7℃13.下列说法正确的有()(1)所有的有理数都能用数轴上的点表示(2)符号不同的两个数互为相反数(3)有理数分为正数和负数(4)两数相减,差一定小于被减数.A. (1)、(2)B. (1)、(3)C. (1)、(2)、(3)D. (1)14.算式﹣3﹣5不能读作()A. ﹣3与﹣5的差B. ﹣3与5的差C. 3的相反数与5的差D. ﹣3减去515.下列计算正确的是()A. (﹣14)﹣(+5)=﹣19B. 0﹣(﹣3)=0C. (﹣3)﹣(﹣3)=﹣6D. |5﹣3|=﹣(5﹣3)16.下列说法中正确的是()A. 两个数的差一定小于被减数B. 若两数的差为0,则这两数必相等C. 两个相反数相减必为0D. 若两数的差为正数,则此两数都是正数17.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -318.下列各式中正确的是()A. ﹣4﹣3=﹣1B. 5﹣(﹣5)=0C. 10+(﹣7)=﹣3D. ﹣5+4=﹣119.一架战斗机所在的高度为+200m,一艘潜艇的高度为﹣50m,则战斗机与潜艇的高度差为()A. 250mB. 350mC. ﹣250mD. ﹣350m20.下列各式中正确的是()A. ﹣4﹣3=﹣1B. 5﹣(﹣5)=0C. 10+(﹣7)=﹣3D. ﹣5﹣4﹣(﹣4)=﹣521.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是()℃.A. 44B. 34C. -44D. -3422.以﹣273℃为基准,并记作0°K,则有﹣272℃记作1°K,那么100℃应记作()A. ﹣173°KB. 173°KC. ﹣373°KD. 373°K23.下列运算中正确的个数有( )①(﹣5)+5=0;②﹣10+(+7)=﹣3;③0+(﹣4)=﹣4;④(−27)−(+57)=−37;⑤﹣3﹣2=﹣1 A. 1个 B. 2个 C. 3个 D. 4个24.下列算式正确的是( )A. (﹣14)﹣5=﹣9B. |6﹣3|=﹣(6﹣3)C. (﹣3)﹣(﹣3)=﹣6D. 0﹣(﹣4)=4 二、填空题(共16题;共17分)25.西安市某一天的最高气温是 27℃ ,最低气温是 17℃ ,那么当天的温差是________ ℃ . 26.一天早晨的气温是﹣5℃,中午又上升了8℃,半夜又下降了10℃,则这天半夜的气温是________. 27.比-1小1的数是________.28.27℃比-5℃高________℃,比5℃低9℃的温度是________℃。

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。

9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。

10.绝对值小于3的所有整数的和是___。

11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。

12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。

13、有理数的减法法则,用字母表示为:a-b=____。

14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。

七年级数学上册有理数加减法的计算题

七年级数学上册有理数加减法的计算题

有理数加减法计算题_七年级数学上册有理数加减法的计算题一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃4.比1小2的数是()A.3B.1C.﹣1D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃6.计算,正确的结果为()A.B.C.D.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.39.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时13.与﹣3的差为0的数是()A.3B.﹣3C.D.二、填空题(共5小题)14.计算:0﹣7=.15.)计算:3﹣(﹣1)=.16.计算:3﹣4=.17.计算:2000﹣2015=.18.|﹣7﹣3|=.一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是()A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为()A.B.C.D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7=﹣7.【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18.|﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.看了“七年级数学上册有理数的加减法计算题”的人还看了:1.人教新版初一上册数学有理数的加减法试题及答案2.初一上册数学有理数的加减法试题及答案3.七年级数学上册2.5有理数的减法练习题4.2017七年级数学上册有理数的加减法试卷5.初一上学期有理数加减混合运算练习卷。

初一上册数学有理数的加减法试题及答案

初一上册数学有理数的加减法试题及答案

初一上册数学有理数的加减法试题及答案一、选择题(共26小题)1.计算(﹣3)+(﹣9)的结果等于( )A.12B.﹣12C.6D.﹣6【考点】有理数的加法.【分析】根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.【解答】解:(﹣3)+(﹣9)=﹣12;故选B.【点评】本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.计算:﹣2+1的结果是( )A.1B.﹣1C.3D.﹣3【考点】有理数的加法.【分析】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以﹣2+1=﹣1.【解答】解:﹣2+1=﹣1.故选B.【点评】此题主要考查了有理数的加法法则:符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.﹣2+3的值是( )A.﹣5B.5C.﹣1D.1【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进行计算即可.故选:D.【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则.4.计算(+2)+(﹣3)所得的结果是( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【分析】运用有理数的加法法则直接计算.【解答】解:原式=﹣(3﹣2)=﹣1.故选B.【点评】解此题关键是记住加法法则进行计算.5.气温由﹣1℃上升2℃后是( )A.﹣1℃B.1℃C.2℃D.3℃【考点】有理数的加法.【分析】根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.【解答】解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.6.计算﹣2+3的结果是( )A.﹣5B.1C.﹣1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.故选B.【点评】此题考查了有理数的加法法则,熟练掌握运算法则是解本题的关键.7.计算:5+(﹣2)=( )A.3B.﹣3C.7D.﹣7【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:5+(﹣2)=+(5﹣2)=3.故选A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.8.计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣4【考点】有理数的加法;绝对值.【分析】首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.【解答】解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.【点评】此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.9.下面的数中,与﹣2的和为0的是( )A.2B.﹣2C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.10.比﹣1大1的数是( )A.2B.1C.0D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.11.计算(﹣2)+(﹣3)的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.﹣3+(﹣5)的结果是( )A.﹣2B.﹣8C.8D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.13.计算:﹣2+3=( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.14.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7【考点】有理数的加法.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.15.计算﹣2+3的结果是( )A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加的法则进行计算即可.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.【点评】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.16.若( )﹣(﹣2)=3,则括号内的数是( )A.﹣1B.1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3,故选:B.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.17.计算:|﹣5+3|的结果是( )A.﹣2B.2C.﹣8D.8【考点】有理数的加法;绝对值.【分析】先计算﹣5+3,再求绝对值即可.【解答】解:原式=|﹣2|=2.故选B.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.18.计算﹣3+(﹣1)的结果是( )A.2B.﹣2C.4D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.19.计算(﹣3)+(﹣9)的结果是( )A.﹣12B.﹣6C.+6D.12【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.20.计算3+(﹣3)的结果是( )A.6B.﹣6C.1D.0【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:∵3与﹣3互为相反数,且互为相反数的两数和为0.∴3+(﹣3)=0.故选D.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.21.计算2﹣3的结果为( )A.﹣1B.﹣2C.1D.2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:2﹣3=2+(﹣3)=﹣1,故选:A.【点评】本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.22.若等式0□1=﹣1成立,则□内的运算符号为( )A.+B.﹣C.×D.÷【考点】有理数的减法;有理数的加法;有理数的乘法;有理数的除法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:∵0﹣1=﹣1,∴□内的运算符号为﹣.故选B.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.23.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.24.已知a>b且a+b=0,则( )A.a<0B.b>0C.b≤0D.a>0【考点】有理数的加法.【专题】计算题.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【点评】此题考查了有理数的加法,熟练掌握互为相反数两数的性质是解本题的关键.25.计算:﹣3+4的结果等于( )A.7B.﹣7C.1D.﹣1【考点】有理数的加法.【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.【解答】解:﹣3+4=1.故选:C.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.26.计算﹣2+1的结果是( )A.﹣3B.﹣1C.3D.1【考点】有理数的加法.【分析】异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣2+1=﹣1,故选B【点评】此题考查有理数的加法,关键是根据异号两数相加的法则计算.二、填空题(共4小题)27.计算:|﹣2|+2= 4 .【考点】有理数的加法;绝对值.【分析】先计算|﹣2|,再加上2即可.【解答】解:原式=2+2=4.故答案为4.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.28.计算:﹣10+(+6)= ﹣4 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.29.计算:﹣2+(﹣3)= ﹣5 .【考点】有理数的加法.【专题】计算题.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.30.计算:﹣9+3= ﹣6 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:﹣9+3=﹣(9﹣3)=﹣6.故答案为:﹣6.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.初一数学学习方法一、注重学习内容的衔接1.初一数学是在小学数学的基础上进行拓展和提高的。

初一数学有理数加减混合运算试题

初一数学有理数加减混合运算试题

初一数学有理数加减混合运算试题1.(2011•台湾)计算﹣+(﹣2)之值为何?()A.﹣B.﹣2C.﹣D.﹣14【答案】B【解析】根据有理数的运算法则,可以首先计算﹣和﹣2的和,再进一步根据绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并让较大的绝对值减去较小的绝对值.解:﹣+(﹣2),=﹣(+2),=﹣3,=﹣2.故选B.点评:此题考查了有理数的加减运算法则,注意其中的简便计算方法:分别让其中的正数和负数结合计算.2.(2008•佛山)实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A﹣C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是()米.A﹣C C﹣D E﹣D F﹣E G﹣F B﹣GA.210B.130C.390D.﹣210【答案】A【解析】认真审题可以发现:A比C高90米,C比D高80米,D比E高60米,F比E高50米,F比G高70米,B比G高40米.然后转化为算式,通过变形得出A﹣B的关系即可.解:由表中数据可知:A﹣C=90①,C﹣D=80②,D﹣E=60③,E﹣F=﹣50④,F﹣G=70⑤,G ﹣B=﹣40⑥,①+②+③+…+⑥,得:(A﹣C)+(C﹣D)+(D﹣E)+(E﹣F)+(F﹣G)+(G﹣B)=A﹣B=90+80+60﹣50+70﹣40=210.∴观测点A相对观测点B的高度是210米.故选:A.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.3.(2005•襄阳)某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.﹣9℃【答案】B【解析】在列式时要注意上升是加法,下降是减法.解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.计算3﹣6+9﹣12…﹣2004+2007的值等于()A.1005B.1004C.1003D.﹣2007【答案】A【解析】先求出2004÷6=334,即有334个﹣3相加,再加2007,求出即可.解:2004÷6=334,原式=﹣3﹣3﹣3+…+2007=﹣3×334+2007=1005,故选A.点评:本题考查了有理数的加减的应用,解此题的关键是能找出式子的规律.5.计算1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012=()A.0B.﹣1C.2012D.﹣2012【答案】D【解析】原式除去第一项,以及后三项,两两结合,利用化为相反数两数之和为0计算,即可得到结果.解:原式=1+[(2﹣3)+(﹣4+5)+(6﹣7)+(﹣8+9)+…+(2006﹣2007)+(﹣2008+2009)]+(2010﹣2011)﹣2012=1﹣1﹣2012=﹣2012.故选D点评:此题考查了有理数的加减混合运算,弄清题中的规律是解本题的关键.6.北京时间2012年3月3日15时,全国政协十一届五次会议在人民大会堂举行开幕会.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么开幕时间应是()A.伦敦时间2012年3月3日23时B.巴黎时间2012年3月3日08时C.纽约时间2012年3月4日04时D.汉城时间2012年3月3日14时【答案】B【解析】根据数轴可知;纽约时间比北京晚13时,伦敦时间比北京晚8时,巴黎时间比北京晚7时,汉城时间比北京早1时,再根据北京时间依次算出个城市的时间即可选出答案.解:A、伦敦时间:15时﹣8时=7时,伦敦时间2012年3月3日7时,故此选项错误;B、巴黎时间:15时﹣7时=8时,巴黎时间2012年3月3日08时,故此选项正确;C、纽约时间:15时﹣13时=2时,纽约时间2012年3月4日02时,故此选项错误;D、汉城时间:8时+1时=9时,汉城时间2012年3月3日09时,故此选项错误;故选:B.点评:此题主要考查了数轴,以及有理数的加减法,关键是看懂数轴所表示的意义.7.某天早晨的气温是7℃,中午上升了11℃,午夜下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.9℃【答案】D【解析】上升记为正数,下降记为负数,列出算式计算即可.解:根据题意得,7+11﹣9=9(℃),故选D.点评:本题考查了有理数的加减混合运算,列出算式是解此题的关键.8.计算:(﹣2+3)﹣(﹣1)的值为()A.2B.﹣2C.1D.﹣1【答案】A【解析】原式先利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,计算即可得到结果.解:原式=﹣2+3+1=2.故选A.点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.9.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1B.0C.1D.2【答案】C【解析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.解:由题意得:a=0,b=﹣1,c=0,∴a﹣b+c=1.故选C.点评:本题考查有理数的知识,难度不大,根据题意确定a、b、c的值是关键.10.在NBA的篮球队员中,有两位出色的中国球员,他们是姚明和易建联.经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有()人.A.9B.11C.13D.8【答案】A【解析】七(3)班的学生总数减去既不喜欢姚明也不喜欢易建联的学生数,得出喜欢姚明,或喜欢易建联,或两个都喜欢的学生数,该数值再被喜欢姚明的与喜欢易建联的学生数减,则得两个都喜欢的学生数.解:由题意得:(25+20)﹣(44﹣8)=9.故选A.点评:解答本题的关键是弄清楚题目中喜欢姚明,或喜欢易建联,或两个都喜欢的学生数和七(3)班总人数与两个都不喜欢的学生数差的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数加减法(月考)
一、选择题(每题3分)
1.-6 的相反数与比 4 的相反数小 1 的数的和为( )
A 、11
B 、2
C 、1
D 、0
2.下列说法正确的是( )
A .—5是相反数
B 、正数与负数的互为相反数
C .π的相反数是 —3.14
D 、互为相反数的两个数的和一定为0
3.若 =1,b =3,则 a +b 的值为( )
A 、4 或 2
B 、2
C 、4
D 、-2
4.下列比较大小的题目中,正确的有( )题
(1)—5>—4 (2)3>0>—4 (3)—41<21— (4)—41>—2
1 A 、3 B 、4 C 、1 D 、2
5.绝对值小于5的自然数有( )
A .4个
B 、5个
C 、6个
D 、7个
6.与(—a )—(—b)相等的式子是( )
A 、(+a )+(—b)
B 、(—a )+(+b)
C 、 (—a)+(—b )
D 、(+a)+(—b)
7. 下列说法正确的是( )
A. 两个数之差一定小于被减数
B. 减去一个正数,差一定大
于被减数
C. 减去一个负数,差一定大于被减数
D. 0减去任何数,差都是负数
8.比—2小3的数是( )
A .—1
B 、—5
C 、1
D 、 5
9.1x - + 3y + = 0, 则y -x -12
的值是 ( ) A 112 B -112 C -212 D-412
10. 若m <0,n >0,m+n <0,则m,n,-m,-n 这四个数的大小关系是( )
A.m >n >-n>-m
B.-m >n >-n >m
C.m >-m >n >-n
D.-m >-n >n >m
二、填空题:(每题3分)
11.某股票昨天每股跌了0.21元,记做 —0.21元,今天每股票涨了0.12元,记作_________
12.已知1=a ,2=b ,3=c ,且a >b >c ,则c b a +-= ;
13. —
23
21的相反数是_______, —1.9的绝对值是_________ 14. 绝对值不大于5的所有正整数的和为 .
15.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义
为 ,数+9的实际意义
为 。

16.数轴上A 点表示的数是-2,那么同一数轴上与A 点相距3个单位的点表示的数是________
17.用“>”或“<”号填空:有理数a ,b ,c 在数轴上对应的点如图:
则a +b +c 0; |a | |b |; a +c b ;
c -b a ;
18.―1 +3―5+7―9+11―…―97+99= 。

三.计算:(每小题4分)
19、(1) . —8+5 (2). 9—(—3)
(3). —|—4|+(—13) (4)、(—341)+(+82
1)—(—54
3) (5).(—5.2)+(—3.2)—(—2.2)—(+4.8) (6). )13
7()312()7()311()17()137(-+--+--++++. 四.解答题:(20——23每题8分,23题10分)
20、如图是某地方春季一天的气温随时间的变化图象:
请根据上图回答:
(1)、这一天什么时候气温最低?最低气温是多少?
(2)、当天的最高气温是多少?这一天最大温差是多少?
21、已知a 与b 互为相反数, m 的绝对值为3,求 |a+b|-m 的值?
22、现在有12箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:
+0.7,+0.2 ,—0.25,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.25,—0.5。

(1)、求12箱苹果的总重量?
(2)、若每箱苹果的重量标准为10±0.5(千克),则这12箱有几箱不合乎标准的?
23.天门出租车司机小王,一天下午以侨乡客站为出发点,在南北走向的接官路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:
+13,-2,+5,-11, +10,-7,-8,+14,+4,-5,+6
(1)将最后一名乘客送到目的地时,小王距下午出车时的出发侨乡客站多远? 在侨乡客站的什么方向?
(2)若出租车每千米的价格为2.2元,这天下午小王的营业额是多少?
24,吉姆上星期五买进某公司股票1000股,每股25元,下表为本周内每日该股
(2)本周内最高价是每股多少元?最低价是每股多少元?
(3)已知股民买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费
和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,收益情况如何?。

相关文档
最新文档