第四章习题与复习题详解(线性空间)----高等代数

合集下载

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

线性代数学习指导第四章线性空间

线性代数学习指导第四章线性空间

第五章 线性空间一、内容提要⒈ 线性空间定义1 设V 是一个非空集合,P 是一个数域. 若在V 中定义的加法和数乘运算对集合V 封闭,且加法与数乘运算满足线性运算的八条运算规则, 则称集合V 为数域P 上的线性空间.线性空间又称为向量空间, 线性空间的元素亦称为向量.设V 是数域P 上的线性空间, W 是V 的非空子集, 若W 对于V 的加法和数乘运算也构成数域P 上的线性空间, 则称W 为线性空间V 的一个线性子空间, 简称子空间. ⒉ 基、维数和坐标定义2 若线性空间V 中有n 个线性无关向量,而没有更多数目的线性无关的向量,则称V 是n 维线性空间,称V 中n 个线性无关的向量为V 的一组基,n 称为V 的维数,记作dim V = n .注 向量组12,,,n ααα是V 的一组基⇔12,,,n ααα是V 中的n 个线性无关向量且V中的任一向量α可由12,,,n ααα线性表示.向量组12,,,s ααα生成的空间L (12,,,s ααα)的一组基就是12,,,s ααα的一个极大无关组, 其维数就是向量组12,,,s ααα的秩.定义3 设12,,,n ααα是n 维线性空间V 的一组基, α 为V 中的任一向量, 若1122n n x x x αααα=+++则称数12,,,n x x x 为向量α 在基12,,,n ααα下的坐标, 记作 12(,,,)n x x x .向量的坐标可写成行的形式也可写成列的形式,但在利用坐标进行运算时,则要以运算式的具体情况来确定坐标的形式.定义4 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 且(12,,,n βββ)=(12,,,n ααα)C (1)称C 为由基12,,,n ααα到基12,,,n βββ的过渡矩阵,(1)式称为由基12,,,n ααα到基12,,,n βββ的基变换公式.定理1 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 由基12,,,nααα到基12,,,n βββ的过渡矩阵为C = n n ij c ⨯)( ,即(12,,,n βββ)=(12,,,n ααα)C若向量α 在这两组基下的坐标分别为 ()n x x x ,,,21 与 ()n y y y ,,,21 , 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y C x x x 2121 ⒊ 线性空间同构定义5 设V 与W 都是数域P 上的线性空间,如果由V 到W 有一个双射(一一对应)σ, 且σ具有如下性质:,,(1) ()()()(2) ()()V k Pk k αβσαβσασβσασα∀∈∈+=+= 则称线性空间V 与W 同构,并称σ为由V 到W 的同构映射.注 数域P 上任意两个有限维线性空间同构的充要条件是它们的维数相同.定理2 设线性空间V 与W 同构,σ是由线性空间V 到W 的同构映射, 则V 中向量12,,,s ααα线性相关的充要条件是它们的像12(),(),,()s σασασα线性相关.⒋ 向量的内积、长度、距离、夹角定义6 设V 是实数域R 上的线性空间, 如果在V 上定义了一个二元实函数, 称为内积, 记作(,)αβ, 且它具有以下性质: ,αβγ,是V 中任意向量,k 是任意实数(1) (,)(,)(2) (,)(,)(3) (,)(,)(,)k k αββααβαβαβγαγβγ==+=+ (4) (,)0,ααα≥=当且仅当θ时,(α,α)= 0这个定义了内积的线性空间V 称为欧几里得空间,简称欧氏空间.当n R 的向量为列向量时,上述内积可记为乘积形式 (,)T αβαβ=. 当n R 的向量为行向量时,上述内积可记为乘积形式 (,)T αβαβ=., , ,V αααα设是欧氏空间中任一向量称非负实数()为向量的长度或模,α记作 即,ααα=()向量αα是单位向量, 将非零向量α化为单位向量称为将向量α单位化.βα-称为向量α 与β的距离,记作(,)d αβ, 即(,)d αβ=αβ-.柯西-布捏柯夫斯基不等式: (,)αβαβ≤⋅ , 当且仅当α 与β 线性相关时, 等号成立.定义7 设α,β 为欧氏空间V 中的非零向量, 定义α ,β 的夹角ω为(),arccosαβωαβ=⋅ ( 0 ≤ ω ≤ π)若(,)αβ= 0, 则称α与β正交(或垂直), 记作βα⊥ .5.向量组的正交化一组两两正交的非零向量组称为正交向量组. 正交向量组一定线性无关. 定义8 设12,,,n ααα是n 维线性空间V 的一组基, 若12,,,n ααα两两正交且都为单位向量, 则称它为V 的一个标准正交基.向量组12,,,n ααα是n 维欧氏空间V 中的一组标准正交基的充要条件是()01ij i ji j αα≠⎧=⎨=⎩,,, ,1,2,,i j n =.任何一组线性无关的向量组12,,,m ααα都可用Schmidt(施密特)正交化方法化为正交向量组12,,,m βββ, 且12,,,m βββ与12,,,m ααα等价.取 11αβ=, ()()1222111βαβαβββ=-,,,()()()()()()121121112211,,,,,,i i i i i i i i i βαβαβαβαβββββββββ----=----(i = 3 , 4 , …, m )将向量组1β ,2β ,… ,m β 中的每个向量单位化, 令iii ββη=(i = 1 , 2 , … , m ) 则得到一个与原向量组12,,,m ααα等价的标准正交向量组1η,2η,… ,m η.6. 正交矩阵定义9 设Q 为n 阶实矩阵, 若TQ Q = E , 则称Q 为正交矩阵. 正交矩阵的性质:(1)若Q 为正交阵,则 Q = 1 或-1 ;(2)若Q 为正交阵,则Q 可逆,且 1-Q=T Q ;(3)若P ,Q 都是n 阶正交矩阵,则P Q 也是n 阶正交矩阵;(4)n 阶实矩阵Q 为正交矩阵的充要条件是Q 的列(行)向量组是n R 的标准正交基.二、重点难点1. 判定集合是否构成线性空间.2. 线性空间的基、维数, 向量在基下的坐标等概念以及过渡矩阵、基变换与坐标变换公式.3. 欧式空间以及内积的概念和运算性质, 用内积运算进行证明.4. 用施密特正交化方法将线性无关的向量组正交化.5. 正交矩阵的概念及其性质.三、 学习要求1. 了解线性空间、子空间的概念, 理解向量空间的基和维数, 会求向量关于基的坐标,熟悉坐标变换公式.2. 了解线性空间同构的概念.3. 了解向量的内积、长度、距离、夹角、正交等概念, 掌握内积运算的性质.4. 理解标准正交基的概念, 掌握线性无关向量组正交规范化的施密特(Schmidt)方法.5. 掌握正交矩阵的概念及其性质.四、典型题分析例1 全体n 维实向量集合V , 对于通常的向量加法和如下定义的数乘运算,,k V k R ααα=∈∈其中是否构成实数域上的线性空间.解 设,, k l R α∈是集合V 中的非零向量.因为()2k l k l ααααααα+=+=+=而,所以()k l k l ααα+≠+, 故此集合不构成实数域上的线性空间.注 检验集合是否构成线性空间的方法:如果所定义的加法和数乘运算是通常意义下的加法和数乘运算, 则它们满足线性运算的八条运算规则, 因此只需检验集合对运算的封闭性. 如果所定义的加法和数乘运算不是通常意义下的加法数乘运算, 则不仅要检验集合对运算的封闭性, 还要仔细检验加法和数乘运算是否满足八条线性运算规律. 例2 求向量空间(){1212,,,0,,1,2,,,n n i V x x x x x x x R i n =+++=∈=}2n ≥的基和维数.分析 先找出向量空间V 的一组基, 即找出一组线性无关的向量, 使得V 中任一向量可由这组向量线性表示.解 在向量空间V 中取1n -个向量1(1,1,0,0,,0)α=-, 2(1,0,1,0,,0)α=-,,1(1,0,0,,0,1)n α-=-, 显然121,,,n ααα-线性无关.对V 中任一向量12(,,,)n x x x α=, 以121,,,,n αααα-为行构造矩阵A ,则1123110010101001ni i nA x x x x x =--===-∑, 从而121,,,,n αααα-线性相关, 又因为121,,,n ααα-线性无关, 所以α可由121,,,n ααα-线性表示.故121,,,n ααα-是V 的基, V 的维数是1n -.注 这个向量空间V 就是齐次线性方程组120n x x x +++=的解空间, V 的一组基就是齐次线性方程组的一个基础解系. 例3 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,,),1,2,,n i i i i t t t i n α-==是n 维向量空间n R 中的一组基. 并求出向量()12,,,n b b b β=在这组基下的坐标.分析 12,,,n ααα是n 维向量空间n R 中的n 个向量, 只需证明12,,,n ααα线性无关即可.证 令21111121222221111n n n n nnn t t t t t t A t t t ααα---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为12,,,n t t t 是互不相同的实数,所以()121111121110n T ji i j nn n n nt t t A A tt ttt≤<≤---===-≠∏⇒12,,,n ααα线性无关.所以12,,,n ααα是n 个线性无关的n 维向量, 构成n 维向量空间n R 中的一组基. 设β在基12,,,n ααα下的坐标为()12,,,n x x x , 则有1122n n x x x βααα=+++⇒β=()()121212,,,,,,n n n x x x x x x A ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.因为A 可逆, 所以()112,,,n x x x A β-=. 故β在基12,,,n ααα下的坐标为1A β-.例4 设3R 中的向量α在基1231032,1,2111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标为123x x x ⎛⎫ ⎪⎪ ⎪⎝⎭,在基123,,βββ下的坐标为123y y y ⎛⎫⎪⎪ ⎪⎝⎭, 且11232123132y x x x y x x y x x =--⎧⎪=-+⎨⎪=+⎩ (1)123123,,,,;βββααα求由基到基的过渡矩阵(2)求基123,,βββ. 解 (1)由题有111232123233(,,)(,,)x y x y x y ααααβββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭112323111(,,)110102x x x βββ--⎛⎫⎛⎫ ⎪⎪=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⇒123123111(,,)(,,)110102αααβββ--⎛⎫⎪=- ⎪ ⎪⎝⎭(*),所以123123,,,,C βββααα由基到基的过渡矩阵=111110102--⎛⎫⎪- ⎪ ⎪⎝⎭.(2) 由(*)式得123(,,)βββ=123(,,)ααα1111110102---⎛⎫⎪- ⎪⎪⎝⎭123(,,)ααα=221231110⎛⎫ ⎪ ⎪ ⎪--⎝⎭111431342--⎛⎫⎪=--- ⎪ ⎪⎝⎭,故1231114,3,1342βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例 5 设,a b 是欧氏空间中的任意向量, 证明平行四边形法则(对角线的平方和等于四边的平方和).证 设,a b 是平行四边形的两条邻边, 则a b a b +-和为两条对角线. 因为22(,)(,)a b a b a b a b a b a b ++-=+++--(,)2(,)(,)(,)2(,)(,)a a a b b b a a a b b b =+++-+ 222()a b =+.所以平行四边形的对角线的平方和等于四边的平方和.例 6 1212,,,,(,)0i j ααββαβ=设线性无关线性无关且满足, 1,2,1,2.i j ==证明:1212,,,ααββ线性无关.证 设有数1212,,,,k k λλ使得112211220k k ααλβλβ+++= (*) 上式两边分别与12,αα做内积, 由(,)0i j αβ=,1,2,1,2.i j ==得111221112222(,)(,)0(,)(,)0k k k k αααααααα+=⎧⎨+=⎩ (**) 由柯西-布捏柯夫斯基不等式及12,αα线性无关得112121122211222(,)(,)(,)(,)(,)0(,)(,)αααααααααααααα=->.故方程组(**)只有零解120k k ==, 将其代入(*), 由已知12,ββ线性无关, 得120λλ==. 于是得1212,,,ααββ线性无关.例7 将R 3的一组基1231100,1,1101ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )利用施密持正交化方法将其正交化取1110,1βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ 1222111111/2(,)1101 (,)2011/2βαβαβββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,132333*********/22/3(,)(,)11/21012/323/2(,)(,)111/22/3βαβαβαββββββ-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭, 123,,βββ则是正交向量组.(2 ) 将123,,βββ单位化11122233322, 62, 3, 3T T Tβββββββββ====3121231236320, 26, 3 263βββηηηβββ⎡⎤⎡-⎡⎢⎥⎢⎢∴======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢-⎢⎥⎢⎥⎣⎣⎦⎣⎦,则123,,ηηη为R 3的一组标准正交基.例8 设m+n 阶矩阵P O A R Q ⎛⎫= ⎪⎝⎭, 其中P , Q 分别是m , n 阶矩阵, O 为零矩阵.证明: 若A 为正交矩阵, 则P 和Q 也是正交矩阵且R 为零矩阵. 分析 用正交矩阵的定义证 证 由题知TT TTT P R A OQ ⎛⎫= ⎪⎝⎭. 因A 为正交矩阵, 所以 TT T T T mT TT T T n E P O P R P P R R R Q A A E R Q OQ Q R Q Q ⎛⎫⎛⎫⎛⎫+⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 上式最后一个等号两边比较得 T n Q Q E Q =⇒为n 阶正交矩阵.T R Q O =且Q 可逆⇒R O =.T T m P P R R E +=且R O =T m P P E ⇒=⇒P 是m 阶正交矩阵.五、习题解析习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕;(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题1.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101*********(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 10110111100011101110101101000011 1100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1. 求向量()1,1,2,3α=- 的长度. 解 22221(1)2315α=+-++.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=2222(12)(10)(01)(13)7αβ-=-+--+-+-. 3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,(3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,22222222122318,31516,αβ+++=+++=,4618πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,11147α=+++, 911011β=+++=,77αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题1. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231,2,1111ααα ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪- ⎪⎝⎭ 132********1122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123362,,036236βββ⎛⎛ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝则*1β,*2β,*3β为R 3的一组基标准正交基. 3.求齐次线性方程组123451235300x x x x x x x x x +-+-=⎧⎨+-+=⎩ 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→ ⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123100,,010004001ηηη ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/33,,011/326213004001βββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪- ⎪ ⎪⎪⎪⎪⎪==⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换,所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 . 解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫ ⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 )11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3). 5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫⎪⎛⎫⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒= ⎪ ⎪ ⎪⎪⎝⎭⎪++⎪⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 6.设 α 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为α 是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TTTTTTT=-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()()0200T A B A B A A B A B ⇒-⋅+=⇒⋅+=⇒+=.。

线性代数 课后习题详解 第四章

线性代数 课后习题详解 第四章

第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。

习题与复习题详解线性空间高等代数

习题与复习题详解线性空间高等代数

习题与复习题详解线性空间高等代数集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-习题5. 11.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性.由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭.下面一一验证八条线性运算规律(1) a b ab ba b a ⊕===⊕;(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==;(5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间.答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题1.讨论22P ⨯中 的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ). 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩. 由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443 (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫⎪ ⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭. (3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭. (4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫⎪ ⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数. 5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*) 因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T ,所以f (x ) = 0习题证明线性方程组的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1.求向量()1,1,2,3α=- 的长度.解α.2.求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解(,)d αβ=αβ-. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,,(2) ()()12233151αβ==,,,,,,,(3)()()1,1,1,2311,0αβ==-,,,解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,,4παβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,α==β==,αβ∴=3.设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+.证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+- 所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题1.在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交,则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2.将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪- ⎪⎝⎭(2 ) 将123,,βββ单位化则*1β,*2β,*3β为R 3的一组基标准正交基. 3.求齐次线性方程组 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵 可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3.设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基. 证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则故n A A A ααα,,,21 也是n R 中的一组标准正交基.5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明 也是V 的一组标准正交基. 证明 由题知123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1. 3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换, 所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭. 5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 .解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量,故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1.故答案为12a =.二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111(B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n ∈=+++=,1,,,21213 (D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ).(A) 1 (B) 2 (C) 3 (D) 4解 向量组A =123⎛⎫⎪ ⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ).解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,,( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.解 ( 1 ) 由题有因0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为 解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 )112341234123411112(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++=即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基.设112233()()()()f x y f x y f x y f x =++则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A= 00010a bc ⎫⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E =⇒2221120 1a ac b c ⎧+=⎪⎪+=⇒⎪+=⎪⎩①a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量, T αα所以是非零实数.又22TTT TT T TA E E A αααααααα⎛⎫=-=-= ⎪⎝⎭, 所以22T T T TTA A AA E E αααααααα⎛⎫⎛⎫==--⎪⎪⎝⎭⎝⎭故A 为正交矩阵.7.设T E A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A T T T T T T T =-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=,所以A 为正交阵.证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且。

高等代数第四章及其习题答案

高等代数第四章及其习题答案

α b11
A1 0
= B1 0
β a11b11 a11β + α B1
A1 B1

为上三角形矩阵, 由归纳法假设知 A1 B1 为上三角形矩阵,故 AB 为上三 角形矩阵。 角形矩阵。
2)设 A = ( aij ) 为一可逆的上三角形矩阵,则 ) 为一可逆的上三角形矩阵, nn
= ε iT A j L 0 L L L 0 L a jn i 行 . L 0 L L L 0
0 M 0 a1i AEij = ( B1 , L , Bn ) ε j = Bi ε j = M ( 0, L , 0,1, 0, L , 0 ) a 0 ni M 0 0 0 = L 0 L L L 0 0 0 a1i a2 i L ani 0 L L 0 . L L L 0 L 0 0 L
T
y1 n T T 2 ( Ax) Ax = y y = ( y1 ,L, yn ) M = ∑ yi = 0, y i =1 n
从而 yi = 0, i = 1, L, n , 即 y = Ax = 0 ,由
x 的任意性知 Aε j = 0, j = 1,L , n ,其中
为数量矩阵. 为数量矩阵 级矩阵可交换, 注:因 A 与所有 n 级矩阵可交换,故 A 一定与 可交换, E i j ( i , j = 1, L , n ) 可交换,于是 AEij = Eij A.
10、已知 A为实对称矩阵 且 A2 = 0 , 不妨设 A = aij 、 为实对称矩阵, 阶矩阵, 为 n 阶矩阵, = x
T
( )
nn

高等代数(北大版)第4章习题参考答案

高等代数(北大版)第4章习题参考答案

第四章 矩阵1.设1)311212123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111210101B -⎛⎫ ⎪=- ⎪ ⎪⎝⎭2)111a b c A c b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111a c B b b c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭计算AB ,AB BA -。

解 1)622610812AB -⎛⎫ ⎪= ⎪⎪-⎝⎭ ,400410434BA ⎛⎫ ⎪= ⎪ ⎪⎝⎭222200442AB BA -⎛⎫ ⎪-= ⎪ ⎪--⎝⎭ 2)22222222223a b c a b c ac b AB a b cac b a b c a b c a b c ⎛⎫+++++⎪=+++++ ⎪ ⎪++++⎝⎭222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ⎛⎫+++++ ⎪=+++++ ⎪ ⎪+++++⎝⎭33()ij AB BA a ⨯-=, 其中11a b ac =-, 22212a a b c b ab c =++---, 221322a b ac a c =+-- 21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++--- 23132a c a =--, 32a c bc =-, 33a b ab =-2.计算22111)310012⎛⎫ ⎪⎪ ⎪⎝⎭5322)42⎛⎫ ⎪--⎝⎭113)01n⎛⎫ ⎪⎝⎭ cos sin 4)sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭()15)2,3,111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭,()112,3,11⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ ()1112132122313132336),,11a a a x x y a a a y a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2111111117)11111111---⎛⎫ ⎪---⎪ ⎪--- ⎪ ⎪---⎝⎭,1111111111111111n---⎛⎫⎪--- ⎪ ⎪--- ⎪ ⎪---⎝⎭108)0100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解 22117441)310943012334⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

线性代数居余马版第四章详细课后题答案

线性代数居余马版第四章详细课后题答案

1、由过渡矩阵的定义,设从基1234,,,εεεε到基1234,,,γγγγ的过渡矩阵为A ,则()()12341234,,,,,,A A γγγγεεεε==,初等行变换求得1111111111111141111A -⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭,所以11111151111211111111144111111A γβ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-- ⎪⎪ ⎪=== ⎪⎪ ⎪--- ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭2(1)、记γ在基123,,ααα下为*γ. 设从基123,,εεε到基123,,ααα的过渡矩阵为A ,则()()123123,,,,A A αααεεε==,初等行变换求得11875521311A --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,所以 1187532*5216131121A γγ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭2(2)、设从基123,,ααα到基123,,βββ的过渡矩阵为C ,记()123,,B βββ=,则()()123123,,,,C βββααα=,即AC B =,所以1187535127714152112192093114164128C A B -----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭2(3)、记γ在基123,,βββ下为**γ,所以11***C B A γγγ--==,经初等变换得11811319452761811261913365212644284099997104B A -⎛⎫ ⎪⎛⎫ ⎪- ⎪⎪=--=--- ⎪ ⎪⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,所以 115276181225311***3652126110644284099183C B A γγγ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪===---=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭3(1)、记()1234,,,A αααα=,()1234,,,B ββββ=,记γ在基1234,,,ββββ下为*γ.设从基1234,,,αααα到基1234,,,ββββ的过渡矩阵为P ,所以由过渡矩阵的定义有B AP =,则1P A B -=,经初等变换可得11001110101110010P A B -⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭,10111110000011111P --⎛⎫⎪-⎪= ⎪ ⎪--⎝⎭所以,()1*0101P γγ-==-.3(2)、设ξ在基1234,,,αααα下的记为*ξ,从基1234,,,ββββ到基1234,,,αααα的过渡矩阵为Q ,所以由过渡矩阵的定义有A BQ =,则1111()Q B A A B P ----===,所以()1*1311TQ P ξξξ-===-3(3)、记α在基1234,,,ββββ下为*α,所以()1*3102P αα-==.4、记()1234,,,E εεεε=,()1234,,,B ββββ=. 设从基1234,,,εεεε到基1234,,,ββββ的过渡矩阵为P ,由过渡矩阵的定义知()()12341234,,,,,,P ββββεεεε=,即P B =. 设()Ta b c d γ=,又γ在基1234,,,ββββ下的坐标不变,所以P P γγγγ=⇒=,即20561********013a a b b c c d d ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭25633623a c d a a b c d b a b c d c a c d d ++=⎧⎪+++=⎪⇒⎨-+++=⎪⎪++=⎩5602360020a c d abcd a b c d a c d ++=⎧⎪+++=⎪⇒⎨-+++=⎪⎪++=⎩,其系数矩阵10561001123601011111001110120000A ⎛⎫⎛⎫ ⎪⎪⎪⎪= ⎪⎪- ⎪⎪⎝⎭⎝⎭初等变换,所以0a db d P Acd d dγγγ=-⎧⎪=-⎪=⇒=⇒⎨=-⎪⎪=-⎩,所以γ的通解为()1111,Tk k R γ=-∈.5(1)、略5(2)、设与向量,,αβγ都正交的向量为()1234,,,Tx x x x ξ=,则()()(),0,0,0αξβξγξ=⎧⎪=⎨⎪=⎩⇒12341234123420230220x x x x x x x x x x x x +-+=⎧⎪++-=⎨⎪---+=⎩,其系数矩阵121110552311013311220000--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等变换 得基础解系为()5310T -,()5301T-所以与向量,,αβγ都正交的向量为()()1253105301TTk k ξ=-+-6、设向量()1234,,,Tx x x x ξ=与所给向量均正交,所以12341234123400230x x x x x x x x x x x x +-+=⎧⎪--+=⎨⎪+++=⎩,其系数矩阵41001111311110100211310013⎛⎫ ⎪-⎛⎫ ⎪ ⎪-- ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭初等变换, 基础解系为410133T⎛⎫-- ⎪⎝⎭,所以可取()4013T ξ=--,)4013T--.7、证:已知()()()12,,,0m βαβαβα====,记i i k αγ=∑,其中i k 为任意常数,则γ为12,,,m ααα的任一线性组合。

《高等代数》各章习题+参考答案 期末复习用

《高等代数》各章习题+参考答案 期末复习用

1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。

2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。

3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。

4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。

5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。

高等代数第四章矩阵练习试题参考包括答案.docx

高等代数第四章矩阵练习试题参考包括答案.docx

第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。

高等代数 第四章 线性变换

高等代数 第四章 线性变换
故A在基 ,a , a 下的矩阵为
B= =
4)由2)知A = ,A =
易知A , A , 是V的一组基,且
(A , A , )=( , )
故A在基A , A , 下的矩阵为
C=
=
15.给定P 的两组基
定义线性变换A:
A = ( =1,2,3)
1)写出由基 到基 的过度矩阵;
2)写出在基 下的矩阵;
3)写出在基 下的矩阵.
A =
故A在基 下的矩阵为
2)因
A = +
A(k )= + +
A = + ( )+
故A在 下的矩阵为
3)因
A( )=( )( )+( ) +( )
A = ( )+( ) +
A = ( )+( ) +
故A基 下的矩阵为
10.设A是线性空间V上的线性变换,如果A 0,但A =0,求证
,A , A ( >0)线性无关.
A
A(A )= + A + A + A
…………………………………………………
A(A )= + A + A + A
故A在这组基下的矩阵为
12.设V是数域P上的维线性空间,证明:V的全体线性变换可以交换的线性变换是数乘变换.
证因为在某组确定的基下,线性变换与n级方阵的对应是双射,而与一切n级方阵可交换的方阵必为数量矩阵kE,从而与一切线性变换可交换的线性变换必为数乘变换K.
Ca=(-y,x,z),C a=(-x,-y,z)
C a=(y,-x,z),C a=(x,y,z)
所以
A =B =C =E

【复旦版线代】线性代数第四章课后习题及详细解答

【复旦版线代】线性代数第四章课后习题及详细解答

习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b M 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 23③-① 得2x 3=4 得同解方程组由⑥得 x 3由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为31272,.20110⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(3)213132232112271122723450010114356800202211122701011400007r r r r r r ---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦A得同解方程组12345245552270,140,700.x x x x x x x x x x ++++=⎧⎪+-=⎨⎪=⇒=⎩取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得基础解系为 (-2,0,1,0,0)T ,(-1,-1,0,1,0).(4) 方程的系数矩阵为2131322312221122211213200111247110033312221()2,0011100000r r r r r r R --+----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦--⎡⎤⎢⎥−−−→=-⎢⎥⎢⎥⎣⎦A A∴ 基础解系所含解向量为n -R (A )=5-2=3个取245x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为自由未知量 245010,,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得基础解系 324010,,.101001100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 解下列非齐次线性方程组.(1) 123123121232122423442;x x x ,x x x ,x x ,x x x ++=⎧⎪-+=⎪⎨-=⎪⎪++=⎩ (2) 12341234123421422221;x x x x ,x x x x ,x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩(3) 123412341234212125;x x x x ,x x x x ,x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩ (4) 12345123452345123457323222623543312x x x x x ,x x x x x ,x x x x ,x x x x x .++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩【解】(1) 方程组的增广矩阵为32213142414324121121112121240322()120303224142034211211121032203220000001200240000r r r r r r r r r r r r ------↔⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A b M得同解方程组3123323231232,21223222,3212 1.x x x x x x x x x x x x =⎧++=⎧⎪+⎪⎪--=⇒==-⎨⎨-⎪⎪=⎩⎪=--=-⎩ (2) 方程组的增广矩阵为312122*********()42212000102111100020r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦A b M得同解方程组123444421,00,20,x x x x x x x +-+=⎧⎪⇒=-=⎨⎪-=⎩即123421,0.x x x x +-=⎧⎨=⎩令130x x ==得非齐次线性方程组的特解x T =(0,1,0,0)T .又分别取2310,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得其导出组的基础解系为TT1211;,,1,0,0,0,1,022⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ξξ∴ 方程组的解为121211022110.,001000x k k k k ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦R(3) 2131121111211112111000221211500004r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥---−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()()R R ≠A A ∴ 方程组无解.(4) 方程组的增广矩阵为31413242351111171111173211320122623()01226230122623543311201226231111170122623,000000000000r r r r r r r r --+-⎡⎤⎡⎤⎢⎥⎢⎥-------⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎡⎤⎢⎥-----⎢⎥−−−→⎢⎥⎢⎥⎣⎦A b M分别令345010,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得其导出组12345234502260x x x x x x x x x ++++=⎧⎨----=⎩的解为123123511622,,.010001100k k k k k k R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令3450x x x ===,得非齐次线性方程组的特解为:x T =(-16,23,0,0,0)T , ∴ 方程组的解为1231651123622001000010100x k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦其中123,,k k k 为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有112321233130.10.20.4522,0.20.20.30,0.50.1255.6,x x x x x x x x x x x ---=⎧⎪---=⎨⎪--=⎩即 123123130.90.20.4522,0.20.80.30,0.50.8855.6,x x x x x x x x --=⎧⎪-+=⎨⎪-=-⎩解之 123100,70,120;x x x =⎧⎪=⎨⎪=⎩5.λ取何值时,方程组12312321231,,,x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为211111;,11111111λλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A B|A |=2(1)(2)λλ-+.(1) 当λ≠1且λ≠-2时,|A |≠0,R (A )=R (B )=3.∴ 方程组有惟一解212311(1),,.22(2)x x x λλλλλ--+===+++(2) 当λ=-2时,312121221111212121221111124112412121212,0333033303360003r r r r r r -↔+---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥→----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦BR (A )≠R (B ),∴ 方程组无解.(3) 当λ=1时2131111111111111000011110000r r r r B --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦R (A )=R (B )<3,方程组有无穷解.得同解方程组123223 3.1,,x x x x x x x =--+⎧⎪=⎨⎪=⎩∴ 得通解为1212123111, ,.100010x x k k k k R x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6. 齐次方程组0020x y z ,x y z ,x y z λλ++=⎧⎪+-=⎨⎪-+=⎩当λ取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为1111211λλ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A|A |=(4)(1)λλ-+当|A |=0即λ=4或λ=-1时,方程组有非零解.(i) 当λ=4时,21213123234215134111411411414110155211211093141141031031031000r r r r r r r r r r ↔--⋅-⋅--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A得同解方程组112322331340.13031x x x x x k k R x x x ⎡⎤-⎢⎥⎡⎤+-=⎢⎥⎡⎤⎢⎥⇒=∈⎢⎥⎢⎥⎢⎥-+=⎣⎦⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(ii) 当λ=-1时,2121312111111111111111000211211013r r r r r r ↔+------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A得131232323332,03,30x x x x x x x x x x x=-⎧--=⎧⎪⇒=-⎨⎨+=⎩⎪=⎩∴ (123,,x x x )T =k ·(-2,-3,1)T .k ∈R7. 当a ,b 取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) 123412341234123423123132236x x x x x x x x x x x x a x x x bx ++-=⎧⎪+++=⎪⎨---=⎪⎪+-+=-⎩ (2) 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨----=⎪⎪+++=-⎩【解】方程组的增广矩阵为(1)213132414237212311123111123101140()31120710132316017281231112311011400114000327300327300628000r r r r r r r r r r a a b b a a b b -------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥------⎢⎥⎢⎥----+-⎣⎦⎣⎦--⎡⎤⎢⎥----⎢⎥−−→⎢⎥------⎢⎥---+⎣⎦A b M .5222a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦(i) 当b ≠-52时,方程组有惟一解12344(1)326(1),,352352318(1)2(1),.35252a a a a x x b b a a a x x b b +-+=-=-++-++=-+=-++(ii) 当b =-52,a ≠-1时,方程组无解.(iii) 当b =-52,a =-1时,方程组有无穷解. 得同解方程组123423434231403274x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=-⎩(*) 其导出组123423434230403270x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=⎩的解为1412423434442,21313.9,91.x x x x x x k k x x x x x x =⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=⎪⎢⎥⎢⎥=∈⎨⎢⎥⎢⎥=--⎪⎢⎥⎢⎥⎪=⎣⎦⎣⎦⎩R 非齐次线性方程组(*)的特解为取x 4=1, 12345335.32331x x x x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦∴ 原方程组的解为5323513.3923131x k k ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+∈⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦R(2)32414231111001221()01(3)23211111100122100101012311111001221.0010100010r r r r r r a b a a b a a b a +-+⎡⎤⎢⎥⎢⎥=−−−→⎢⎥---⎢⎥-⎣⎦⎡⎤⎢⎥⎢⎥−−−→⎢⎥-+⎢⎥----⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥-⎣⎦A b M (i) 当a -1≠0时,R (A )=R (A )=4,方程组有惟一解.12342123.1110b a a x a b x a x b x a -+⎡⎤⎢⎥-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(ii) 当a -1=0时,b ≠-1时,方程组R (A )=2<R (A )=3, ∴ 此时方程组无解.(iii) 当a =1,b = -1时,方程组有无穷解. 得同解方程组12342340,22 1.x x x x x x x +++=⎧⎨++=⎩ 取13423433441,221,,,x x x x x x x x x x =+-⎧⎪=--+⎪⎨=⎪⎪=⎩∴ 得方程组的解为12121234111221.,100010x x k k k k x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦R8. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0. 【解】设B =(b 1 b 2 b 3),其中b i (i =1,2,3)为列向量,由123123()(1,2,3)i i =⇒=⇒==⇒AB A b b b Ab b b b 00为Ax =0的解.求123112224336x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=0的解.由 213123112112224000336000r r r r --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A得同解方程组12322332,,,x x x x x x x =--⎧⎪=⎨⎪=⎩∴ 其解为121212312.,1001x x k k k k R x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取123120;;,100010--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦b b b则120100010--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B9.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.【解】Ax =b 为三元非齐次线性方程组R (A )=1⇒Ax =0的基础解系中含有3-R (A )=3-1=2个解向量.131223121323110()(),01100110()(),110101-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ηηηηηηηηηηηη由123,,ηηη为Ax=b 的解1312,⇒--ηηηη为Ax=0的解,且1312(),()--ηηηη线性无关1312,⇒--ηηηη为Ax =0的基础解系. 又[]11223131()()()211112111,011022200112ηηηηηηη=+-+++⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦∴ 方程组Ax=b 的解为11132121212()()1002.,0101012k k k k k k =+-+-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++∈-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦x ηηηηηR10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1) 1223==;1001,-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ (2) 123121232==,=021352132,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ξξξ【解】(1) 1223==1001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ设齐次线性方程组为Ax =0由12,ξξ为Ax =0的基础解系,可知11121222133223231001x x k k k k x x k x x k -+-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦x令 k 1=x 2 , k 2=x 3⇒Ax =0即为x 1+2x 2-3x 3=0.(2) A (123ξξξ)=0⇒A 的行向量为方程组为12345121232()0021352132x x x x x ⎡⎤⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎣⎦的解.即124512345123452302325302220x x x x x x x x x x x x x x -+-=⎧⎪-++-=⎨⎪-++-=⎩的解为 31212120311203123253012111212200111r r r r ------⎡⎤⎡⎤⎢⎥⎢⎥−−−→----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦得基础解系为1η=(-5 -1 1 1 0)T 2η=(-1 -1 1 0 1)TA =5111011101--⎡⎤⎢⎥--⎣⎦方程为1234123550,0.x x x x x x x x --++=⎧⎨--++=⎩ 11. 设向量组1α=(1,0,2,3),2α=(1,1,3,5),3α=(1,-1,a +2,1),4α=(1,2,4,a +8),β=(1,1,b +3,5)问:(1) a ,b 为何值时,β不能由1α,2α,3α,4α线性表出?(2) a ,b 为何值时,β可由1α,2α,3α, 4α惟一地线性表出?并写出该表出式. (3) a ,b 为何值时,β可由1α,2α,3α,4α线性表出,且该表出不惟一?并写出该表出式. 【解】11223344x x x x =+++βαααα (*)314132422321111101121()232433518511111111110112101121012100100225200010r r r r r r r r a b a a b a b a a ----⎡⎤⎢⎥-⎢⎥==−−−→⎢⎥++⎢⎥+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥++⎢⎥⎢⎥-++⎣⎦⎣⎦A A b M(1) β不能由1α,2α,3α,4α线性表出⇔方程组(*)无解,即a +1=0,且b ≠0.即a =-1,且b ≠0.(2) β可由1α,2α,3α,4α惟一地线性表出⇔方程组(*)有惟一解,即a +1≠0,即a ≠-1.(*) 等价于方程组12342343443231123121(1)(1)01011111210111121111x x x x x x x a x b a x bb a b x x x x a a a b b bx a a a ba b b a a a βααα+++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩++⇒===+=+=+++⎛⎫=---=-+ ⎪+++⎝⎭++∴=-+++++ (3) β可由1α,2α,3α,4α线性表出,且表出不惟一⇔方程组(*)有无数解,即有 a +1=0,b =0⇒a =-1,b =0.方程组(*)12112342122343142212121x k k x x x x x k k x x x x k x k =-⎧⎪+++==-+⎧⎪⇔⇒⎨⎨-+==⎩⎪⎪=⎩1234,,,k k k k 为常数.∴2111221324(2)(21)k k k k k k =-+-+++βαααα12. 证明:线性方程组121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩有解的充要条件是510i i a ==∑.【解】2152123451234151234125110000110000110000111000111000011000011000011010011100001100001100001100101r r r r a a a a a a a a a a a a a a a a a a ++-⎡⎤⎢⎥-⎢⎥⎢⎥=-−−−→⎢⎥-⎢⎥⎢⎥-⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−−→⎢⎥-⎢⎥⎢⎥-+⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−→⎢⎥-⎢⎥⎢⎥-++⎣⎦A 1234511100001100001100001100001i i a a a a a =-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦∑方程组有解的充要条件,即R (A )=4=R (A )510i i a =⇔=∑得证.13. 设*η是非齐次线性方程组Ax=b 的一个解,12n r ,,,-ξξξL 是对应的齐次线性方程组的一个基础解系.证明(1)1*n r ,,-,ξξL η线性无关; (2)1++***n r ,,-,ξξL ηηη线性无关.【 证明】(1) 1*n r ,,-,ξξL η线性无关⇔110*n r n r k k k --+++=ξξL η成立,当且仅当k i =0(i =1,2,…,n -r ),k =01111()00*n r n r *n r n r k k k k k k ηη----+++=⇒+++=A ξξA A ξA ξL L∵12n r ,,,-ξξξL 为Ax =0的基础解系0(1,2,,)i i n r ξ⇒==-A L *0k ⇒=A η由于*0b =≠A η00.k b k ⇒⋅=⇒=.由于12n r ,,,-ξξξL 为线性无关112200(1,2,,)n r n r i k k k k i n r --+⋅++⋅=⇔==-ξξξL L∴121*n ,,,-,ξξξL η线性无关. (2) 证1++***n r ,,-,ξξL ηηη线性无关.***11()()0n r n r k k k --⇔+++++=ξξL ηηη成立当且仅当k i =0(i =1,2,…,n -r ),且k =0***11()()0n r n r k k k --+++++=ξξL ηηη即*111()0n r n r n r k k k k k ---++++++=ξξL L η由(1)可知,11*n ,,-,ξξL η线性无关.即有k i =0(i =1,2,…,n -r ),且100n r k k k k -++=⇒=∴1++***n r ,,-,ξξL ηηη线性无关.14. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换11026110261102641111051725001253110304162101014100120101400125 ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦:::由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组1424340020x x x x x x -=⎧⎪-=⎨⎪-=⎩ (*) 得方程组(*)的基础解系11121⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ξ令40x =,得方程组(Ⅰ)的特解 2450-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦η于是方程组(Ⅰ)的通解为k =+ηξx ,k 为任意常数。

线性代数第四章答案

线性代数第四章答案

线性代数第四章答案第四章向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(BA)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n 能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案篇一:线代第四章习题解答第四章空间与向量运算4-1-1、已经明白空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的间隔.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB?4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出以下各点的特别位置:A?3,4,0?; B?0,4,3? ;C?3,0,0? ;D?0,?1,0? 解:A (3,4,0) 在xoy面上B(0,4,3)点在yoz 面上C(3,0,0)在x轴上D(0,-1,0)在y轴上4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:假设平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已经明白AO=OC,DO=OB 由于AB=AO+OB =OC+DO=DC,AD=AO+OD=OC+BO=BC 因此ABCD为平行四边形。

4-1-8. 已经明白向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.解:.prjuu)4*cos60=4?r?rcos(r。

3=23 24-1-9. 已经明白一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x2y?3z0?04-1-12. 求以下向量的模与方向余弦,并求与这些向量同方向的单位向量:(1)a??2,?1,1? ;(2)b??4,?2,2? ;(3)c??6,?3,3? ;(4)d2,1,?1? .解:(1)a=(2,-1,1)a?22(1)122cos??22 ??a36cos??126cos a6a6(2)b=(4,-2,2) b?42(2)2 cos2226b3cos??26?2?b666cos b0,, b6b6b366(3)c=(6,-3,3) c?b2(4)3 cos222363cos??336cos??233626 62(4)d=(-2,1,-1)d?(?2)?1?(?1)?6cos??263cos??16d6cosd0??{?,,?66d366与前三向量单位同的d??{?6,,?。

高等代数第四章矩阵知识点复习与相关练习

高等代数第四章矩阵知识点复习与相关练习
4. 设 A ∈ P n×n, 且 A2 = 2A, 证明 E − A, E + A 都可逆,并求 (E − A)−1, (E + A)−1. 5. 设 A2 = A, 但 A ̸= E, 证明 A 不可逆.
6. 证明关于秩的不等式: 1) r(A) + r(B) − n ≤ r(AB) ≤ min{r(A), r(B)}, r(A + B) ≤ r(A) + r(B); 2) 设 A, B ∈ P n×n, 且 AB = 0, 证明:r(A) + r(B) ≤ n;
()
(
)
对方程 Y C = B, C −初−等−−列−变−换→
E
.
B
Y = BC−1
4.2 相关练习
一. 填空题
1.设 A ∈ P n×m, B ∈ P m×s,则 r(AB) ≤

2
2.对一个 s × n 矩阵 A 作一次初等列变换就相当于在 A 的
边乘上一个相应的
初等矩阵。
3.设 A ∈ P n×n,写出 A 可逆的充要条件:
14. 设 A, B 是 n 级可逆方阵, A 0
=
0A
,
=
.
0 B
B0
k111
15.
设矩阵 A =
1 1
k 1
1 k
1 1
,

r(A) = 3,则 k =
.
111k
16. 设 A 为 3 级方阵,若 |A| = 2, 则 |2A| =
.
17. 设 A 是实对称矩阵,若 A2 = 0, 则 A =
7. 证明:若 A, B 分别为 n × m, m × n 矩阵,则 |λEn − AB| = λn−m|λEm − BA|.

高等代数第三版习题答案

高等代数第三版习题答案

高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。

第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。

以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。

第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。

- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。

例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。

习题2:证明线性空间的基具有唯一性。

- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。

根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。

由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。

这意味着两个基是等价的,从而证明了基的唯一性。

第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。

- 解:核N(T)是所有满足T(v) = 0的向量的集合。

设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。

解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。

因此,核是一维的,由向量(0, 0, 1)生成。

习题2:证明线性变换的复合是线性的。

- 解:设T: V → W和S: W → X是两个线性变换。

对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。

习题与复习题详解(线性空间)----高等代数

习题与复习题详解(线性空间)----高等代数

习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性.由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭.下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a aa a a a a a λμμμλλλμλμ++===⊕=⊕;所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间.答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭. 习题5.21.讨论22P ⨯中 的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ). 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ. 解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101*********(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 1110001101121113C ⎛⎫ ⎪- ⎪∴=⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题5.3证明线性方程组的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题5.41. 求向量()1,1,2,3α=- 的长度.解 215α. 2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=2()7αβ-. 3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,, (3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,,4παβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,α==, β=,β∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+.证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题5.51. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交,则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪- ⎪⎝⎭(2 ) 将123,,βββ单位化则*1β,*2β,*3β为R 3的一组基标准正交基.3.求齐次线性方程组 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵 可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明:1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i10),(αααα (,1,2,i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明 也是V 的一组标准正交基. 证明 由题知123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换, 所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭. 5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111(B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C )(){}R x x x x x x x V i n n ∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ). (A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数)解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ). 7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.解 ( 1 ) 由题有因 0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫ ⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. (2 )11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++=即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基.设112233()()()()f x y f x y f x y f x =++则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A= 00010a bc ⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E =⇒2221120 1a ac b c ⎧+=⎪⎪+=⇒⎪+=⎪⎩①a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 6.设 ???是n 维非零列向量, E 为n 阶单位阵, 证明:T TE A αααα)(/2-=为正交矩阵.证明 因为???是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T TT T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A T T T T TTT=-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=,所以A 为正交阵.证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且。

高等代数第四章线性变换

高等代数第四章线性变换

第四章 线性变换习题精解1. 判别下面所定义的变换那些是线性的,那些不是:1 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3 在P 3中,A ),,(),,(233221321x x x x x x x +=; 4 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5 在P x 中,A )1()(+=x f x f6 在P x 中,A ),()(0x f x f =其中0x ∈P 是一固定的数;7 把复数域上看作复数域上的线性空间, A ξξ=8 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1当0=α时,是;当0≠α时,不是. 2当0=α时,是;当0≠α时,不是.3不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A )α.4是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α故A 是P 3上的线性变换.5 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换.6是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g )A 0())((x kf x kf =k =)A ))((x f 7不是.例如取a=1,k=I,则 A ka=-i , k A a=i, A ka ≠k A a8是.因任取二矩阵Y X ,n n P ⨯∈,则A =+=+=+BYC BXC C Y XB Y X )()A X +A YA k X =k BXC k kXB ==)()(A X 故A 是n n P ⨯上的线性变换.2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换.证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2 并检验AB 2=A 2B 2是否成立. 解 任取一向量a=x,y,z,则有 1) 因为A a=x,-z,y, A 2a=x,-y,-z A 3a=x,z,-y, A 4a=x,y,zB a=z,y,-x, B 2a=-x,y,-z B 3a=-z,y,x, B 4a=x,y,zC a=-y,x,z, C 2a=-x,-y,z C 3a=y,-x,z, C 4a=x,y,z 所以A 4=B 4=C 4=E 2) 因为AB a=A z,y,-x=z,x,y BA a=B x,-z,y=y,-z,-x 所以 AB ≠BA 3因为A 2B 2a=A 2-x,y,-z=-x,-y,z B 2A 2a=B 2x,-y,-z=-x,-y,z 所以A 2B 2=B 2A 23) 因为AB 2a=ABAB a_=AB z,x,y=y,z,x A 2B 2a=-x,-y,z 所以AB 2≠A 2B 23.在Px 中,A ')(f x f =),(x B )()(x xf x f = 证明:AB-BA=E 证 任取∈)(x f Px,则有AB-BA )(x f =AB )(x f -BA )(x f =A ))(x xf -B 'f ))(x =;)(xf x f +)(x -'xf )(x =)(x f所以 AB-BA=E4.设A,B 是线性变换,如果AB-BA=E,证明: A k B-BA k =k A 1-k k>1 证 采用数学归纳法. 当k=2时A 2B-BA 2=A 2B-ABA+ABA-BA 2=AAB-BA+AB-BAA=AE+EA=2A 结论成立.归纳假设m k =时结论成立,即A m B-BA m =m A 1-m .则当1+=m k 时,有A 1+m B-BA 1+m =A 1+m B-A m BA+A m BA-BA 1+m =A m AB-BA+A m B-BA m A=A m E+m A 1-m A=)1(+m A m即1+=m k 时结论成立.故对一切1>k 结论成立. 5.证明:可逆变换是双射.证 设A 是可逆变换,它的逆变换为A 1-.若a ≠b ,则必有A a ≠A b,不然设Aa=A b,两边左乘A1-,有a=b,这与条件矛盾.其次,对任一向量b,必有a 使A a=b,事实上,令A 1-b=a 即可. 因此,A 是一个双射.6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换;证明:A 是可逆变换当且仅当A 1ε,A 2ε, ,A n ε线性无关. 证 因A 1ε,2ε, ,n ε=A 1ε,A 2ε, ,A n ε=1ε,2ε, ,n ε A故A 可逆的充要条件是矩阵A 可逆,而矩阵A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关.故A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关. 7.求下列线性变换在所指定基下的矩阵:1) 第1题4中变换A 在基1ε=1,0,0,2ε=0,1,0,3ε=0,0,1下的矩阵;2) o; 1ε,2ε是平面上一直角坐标系,A 是平面上的向量对第一和第三象限角的平分线的垂直投影,B 是平面上的向量对2ε的垂直投影,求A,B,AB 在基1ε,2ε下的矩阵;3) 在空间P x n 中,设变换A 为)()1()(x f x f x f -+→ 试求A 在基i ε=!1)1()1(i i x x x +-- I=1,2, ,n-1 下的矩阵A;4) 六个函数 1ε=e ax cos bx ,2ε=e ax sin bx3ε=x e ax cos bx ,4ε=x e ax sin bx 1ε=221x e ax cos bx ,1ε=21e ax 2x sin bx的所有实数线性组合构成实数域上一个六维线性空间,求微分变换D 在基i εi=1,2, ,6下的矩阵;5) 已知P 3中线性变换A 在基1η=-1,1,1,2η=1,0,-1,3η=0,1,1下的矩阵是⎪⎪⎪⎭⎫⎝⎛-121011101求A在基1ε=1,0,0,2ε=0,1,0,3ε=0,0,1下的矩阵; 6) 在P 3中,A 定义如下:⎪⎩⎪⎨⎧--=-=-=)9,1,5()6,1,0()3,0,5(321ηηηA A A 其中⎪⎩⎪⎨⎧-==-=)0,1,3()1,1,0()2,0,1(321ηηη 求在基1ε=1,0,0,2ε=0,1,0,3ε=0,0,1下的矩阵; 7) 同上,求A 在1η,2η,3η下的矩阵. 解 1A 1ε=2,0,1=21ε+3εA 2ε=-1,1,0=-1ε+2ε A 3ε=0,1,0= 2ε故在基1ε,2ε,3ε下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-0011100122取1ε=1,0,2ε=0,1则A 1ε=211ε+212ε,A 2ε=211ε+212ε故A 在基1ε,2ε下的矩阵为A=⎪⎪⎪⎪⎭⎫⎝⎛21212121又因为B 1ε=0,B 2ε=2ε所以B 在基1ε,2ε下的矩阵为B =⎪⎪⎭⎫⎝⎛1000,另外,AB 2ε=AB 2ε=A 2ε=211ε+212ε所以AB 在基1ε,2ε下的矩阵为AB =⎪⎪⎪⎪⎭⎫⎝⎛210210, 3因为 )!1()]2([)1(,,!2)1(,,11210----=-===-n n x x x x x x n εεεε ,所以A 0110=-=ε A 01)1(εε=-+=x x A )!1()]2([)1()!1()]3([)1(1---------=-n n x x x n n x x x n ε=)!1()]3([)1(----n n x x x {)]2([)1(---+n x x }=2-n ε,所以A 在基0ε,1ε, ,1-n ε下的矩阵为A =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛011010 ,4因为 D 1ε=a 1ε-b 2ε, D 2ε=b 1ε-a 2ε,6ε D 3ε=1ε+a 3ε-b 4ε, D 4ε=2ε+b 3ε+a 4ε, D 5ε=3ε+a 5ε-b 6ε, D 6ε=4ε+b 5ε+a 6ε,所以D 在给定基下的矩阵为D =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000100001000010001a b b a a b b a ab b a, 5因为1η,2η,3η=1ε,2ε,3ε⎪⎪⎪⎭⎫⎝⎛--111101011,所以 1ε,2ε,3ε=1η,2η,3η⎪⎪⎪⎭⎫ ⎝⎛---101110111=1η,2η,3ηX,故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211. 6因为1η,2η,3η=1ε,2ε,3ε⎪⎪⎪⎭⎫⎝⎛--012110301,所以A 1η,2η,3η=A 1ε,2ε,3ε⎪⎪⎪⎭⎫ ⎝⎛--012110301,但已知A 1η,2η,3η=1ε,2ε,3ε⎪⎪⎪⎭⎫ ⎝⎛----963110505故A 1ε,2ε,3ε=1ε,2ε,3ε⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎭⎫ ⎝⎛--0121103011-=1ε,2ε,3ε⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---717172717672737371=1ε,2ε,3ε⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----72471872772757472072075 7因为1ε,2ε,3ε=1η,2η,3η⎪⎪⎪⎭⎫ ⎝⎛--0121103011-所以A 1η,2η,3η=1η,2η,3η⎪⎪⎪⎭⎫ ⎝⎛--0121103011-⎪⎪⎪⎭⎫⎝⎛----963110505 =1η,2η,3η⎪⎪⎪⎭⎫⎝⎛---011101532; 8.在P22⨯中定义线性变换A 1X =⎪⎪⎭⎫⎝⎛d c b a X, A 2X =X ⎪⎪⎭⎫ ⎝⎛d c b a , A 2X = ⎪⎪⎭⎫ ⎝⎛d c b a X ⎪⎪⎭⎫⎝⎛d c b a , 求A 1, A 2, A 3在基E 11, E 12, E 21, E 22下的矩阵; 解 因A 1E 11=a E 11+c E 12, A 1E 12=a E 12+c E 22,A 1E 21=b E 11+d E 21, A 1E 22= b E 21+d E 22, 故A 1在基E 11, E 12, E 21, E 22下的矩阵为A 1=⎪⎪⎪⎪⎪⎭⎫⎝⎛d cdc b a b a 00000000 又因A 2E 11=a E 11+b E 12, A 2E 12= c E 11+d E 12, A 2E 21= a E 21+b E 22, A 2E 22= c E 21+d E 22, 故A 2在基E 11, E 12, E 21, E 22下的矩阵为A 2=⎪⎪⎪⎪⎪⎭⎫⎝⎛d b c a d b ca 00000000又因A 3E 11= a 2E 11+ab E 12+ac E 21+bc E 22 A 3E 12= ac E 11+ad E 12+c 2E 21+cd E 22 A 3E 21= ab E 11+b 2E 12+ad E 21+bd E 22 A 3E 22 = bc E 11+bd E 12+cd E 21+d 2E 22 故A 3在基E 11, E 12, E 21, E 22下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=22223d bdcd bc cd ad c ac bd b ad ab bc ab ac a A 9.设三维线性空间V 上的线性变换A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a1) 求A 在基123,,εεε下的矩阵; 2) 求A 在基321,,εεεk 下的矩阵,其中且; 3) 求A 在基3221,,εεεε+下的矩阵. 解 1因A 3ε=333εa +a +223ε13a 1ε A 2ε=+332εa +222εa 112εa A 1ε=+331εa +221εa 111εa 故A 在基123,,εεε下的矩阵为⎪⎪⎪⎭⎫⎝⎛=1112132122233132333a a a a a a a a a B 2因A 1ε=111εa ++)(221εk ka 331εa A k 2ε=k 112εa +)(222εk a +332εka A 3ε=13a 1ε+ka 232εk +333εa 故A 在321,,εεεk 下的矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛=3332312322211312112a ka a k a a k aa ka a B 3因A 21εε+=1211a a +31εε++12112221a a a a --+2ε+3231a a +3ε A 2ε=12a 21εε++1222a a -2ε+332εa A 3ε=13a 21εε++1323a a -2ε+333εa故A 基3221,,εεεε+下的矩阵为⎪⎪⎪⎭⎫⎝⎛+----+-=333232311323122212112221131212113a a a a a a a a a a a a a a a a B 10. 设A 是线性空间V 上的线性变换,如果Aε1-k ≠0,但A εk =0,求证ε,A ε,, A ε1-k k >0线性无关.证 设有线性关系0121=+++-εεεk k A l A l l用A 1-k 作用于上式,得 1l Aε1-k =0因A 0=εn 对一切n k ≥均成立 又因为Aε1-k ≠0,所以01=l ,于是有01232=+++-εεεk k A l A l A l再用A2-k 作用之,得2l Aε1-k =0.再由,可得2l =0.同理,继续作用下去,便可得021====k l l l 即证ε,A ε,, Aε1-k k >0线性无关.11.在n 维线性空间中,设有线性变换A 与向量ε使得A ε1-n 0≠但,求证A 在某组下的矩阵是⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010证 由上题知, ε,A ε,A ε2,, A ε1-n 线性无关,故ε,A ε,A ε2,, A ε1-n 为线性空间V 的一组基.又因为A ⋅+⋅+⋅=010εεεA A ε2+⋅+0 Aε1-nAA ε=ε⋅0+⋅0 A ε+⋅1 A ε2+⋅+0 A ε1-n………………………………………………… AAε1-n =ε⋅0+⋅0 A ε+⋅0 A ε2+⋅+0 A ε1-n故A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛010101012. 设V 是数域P 上的维线性空间,证明:V 的全体线性变换可以交换的线性变换是数乘变换.证 因为在某组确定的基下,线性变换与n 级方阵的对应是双射,而与一切n 级方阵可交换的方阵必为数量矩阵kE,从而与一切线性变换可交换的线性变换必为数乘变换K.13. A 是数域P 上n 维线性空间V 的一个线性变换,证明:如果A 在任意一组基下的矩阵都相同,那么是数乘变换.证 设A 在基下n εεε,,,21 的矩阵为A=ij a ,只要证明A 为数量矩阵即可.设X 为任一非退化方阵,且n ηηη,,21=n εεε,,,21 X则n ηηη,,21也是V 的一组基,且A 在这组基下的矩阵是AX X 1-,从而即有AX=XA,这说明A与一切非退化矩阵可交换. 若取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n X 211则由A 1X =1X A 知ij a =0i ≠j,即得A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn a a a2211再取2X =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0001100001000010由A 2X =2X A,可得 nn a a a === 2211故A 为数量矩阵,从而A 为数乘变换.14.设321,,εεε,4ε是四维线性空间V 的一组基,已知线性变换A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---21225521312112011) 求A 在基42112εεη+-=,4443343222,,3εηεεηεεεη=+=--=下 的矩阵; 2) 求A 的核与值域;3) 在A 的核中选一组基,把它扩充为V 的一组基,并求A 在这组基下的矩阵; 4) 在A 的值域中选一组基, 把它扩充为V 的一组基, 并求A 在这组基下的矩阵. 解 1由题设,知4321,,,ηηηη=321,,εεε,4ε⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001 故A 在基4321,,,ηηηη下的矩阵为B=AXX 1-=12111011000320001-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----871034034031638310310343223322 先求A1-0.设∈ξ A1-0,它在321,,εεε,4ε下的坐标为1χ,432,,χχχ,且在A ε在321,,εεε,4ε下的坐标为0,0,0,0,,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000因rankA=2,故由 ⎩⎨⎧=+++-=++032024321431x x x x x x x可求得基础解系为 X 1=)0,1,23,2('--,X 2=)1,0,2,1('--若令a 1=321,,εεε,4εX 1,a 2=321,,εεε,4εX 2 则a 1, a 2即为A 1-0的一组基,所以 A 1-0=La 1, a 2 再求A 的值域A V.因为 A 1ε=43212εεεε++- A 2ε=432222εεε-+ A 3ε=432152εεεε+++ A 4ε3ε=4321253εεεε-++因rankA=2,故A 1ε ,A 2ε, A 3ε, A 4ε发秩也为2,且A 1ε ,A 2ε线性无关,故A 1ε ,A 2ε可组成A V 的基,从而A V=L A 1ε ,A 2ε 4) 由2知a 1, a 2是A1-0的一组基,且知,1ε2ε, a 1, a 2是V 的一组基,又,1ε2ε, a 1, a 2=321,,εεε,4ε⎪⎪⎪⎪⎪⎭⎫⎝⎛---10000100223101201 故A 在基,1ε2ε, a 1, a 2下的矩阵为B=11000100223101201-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---10000100223101201=⎪⎪⎪⎪⎪⎭⎫⎝⎛-002200210012900254 由2知A 1ε=43212εεεε++-, A 2ε=432222εεε-+ 易知A 1ε, A 2ε,43,εε是V 的一组基,且A 1ε, A 2ε,43,εε=321,,εεε,4ε⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001 故A 在基A 1ε, A 2ε,43,εε下的矩阵为C=11021012100210001-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000223129122515. 给定P 3的两组基⎪⎩⎪⎨⎧===)1,1,1()0,1,2()1,0,1(321εεε ⎪⎩⎪⎨⎧--=-=-=)1,1,2()1,2,2()1,2,1(321ηηη 定义线性变换A : A i ε=i ηi =1,2,31) 写出由基321,,εεε到基321,,ηηη的过度矩阵; 2) 写出在基321,,εεε下的矩阵; 3) 写出在基321,,ηηη下的矩阵. 解 1由321,,ηηη=321,,εεεX引入P 3的一组基1e =1,0,0, 2e =0,1,0, 3e =0,0,1,则321,,εεε=1e ,2e ,3e ⎪⎪⎪⎭⎫ ⎝⎛101110121=1e ,2e ,3e A所以321,,ηηη=1e ,2e ,3e ⎪⎪⎪⎭⎫ ⎝⎛----111122221=1e ,2e ,3e B=1e ,2e ,3e A 1-B 故由基321,,εεε到基321,,ηηη的过度矩阵为X= A 1-B=1101110121-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----111122221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232 2因A 321,,εεε=321,,ηηη=321,,εεε⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232 故A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232 4) 因A 321,,ηηη=A 321,,εεεX=321,,ηηηX 故A 在基321,,ηηη下的矩阵仍为X.16.证明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似,其中n i i i ,,,21 是1,2,n , 的一个排列.证 设有线性变换A ,使A )21,,,(n εεε =)21,,,(n εεε ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21=)21,,,(n εεε D 1 则A ,,21i i εε,n i ε= ,,21i i εε,n i ε⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21= ,,21i i εε,n i εD 2 于是D 1与D 2为同一线性变换A 在两组不同基下的矩阵,故⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似. 17.如果A 可逆,证明AB 与BA 相似.证 因A 可逆,故A 1-存在,从而A 1-ABA= A 1-ABA=BA 所以AB 与BA 相似.18.如果A 与B 相似,C 与D 相似,证明:.0000相似与⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛D B B A证 由已知,可设B=X 1-AX, D=Y 1-CY , 则⎪⎪⎭⎫ ⎝⎛--1100Y X ⎪⎪⎭⎫⎝⎛C A 00⎪⎪⎭⎫ ⎝⎛Y X0=⎪⎪⎭⎫⎝⎛D B 00 这里⎪⎪⎭⎫ ⎝⎛--1100Y X =⎪⎪⎭⎫⎝⎛Y X01- 故⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00相似. 19设A,B 是线性变换, A 2= A, B 2=B 证明:1) 如果A+B 2=A+B 那么AB=0; 2) 如果, AB=BA 那么A+B-AB 2=A+B-AB.证 1因为A 2= A, B 2=B, A+B 2=A+B由A+B 2 =A+B A+B= A 2 +AB+BA+ B 2, 故A+B= A +AB+BA+ B, 即AB+BA=0.又2AB=AB+AB=AB-BA= A 2B-B 2A= A 2B+ABA= A AB+BA= A0=0 所以AB=0.2 因为A 2= A, B 2=B, AB=BA 所以A+B-AB 2= A+B-AB A+B-AB= A 2+BA- AB A+ AB+ B 2- AB 2-A 2B-BAB +ABAB = A+AB - AA B + AB+ B- AB-AB-ABB +AABB = A+AB - A B + AB+ B- AB-AB-AB +AB = A+B- AB20. 设V 是数域P 上维线性空间,证明:由V 的全体变换组成的线性空间是2n 维的.证 .21221111维的是的一组基,是,,,,,,,因n P P E E E E E E n n nn nn n n n ⨯⨯所以V 的全体线性变换与n n P ⨯同构,故V 的全体线性变换组成的线性空间是2n 维的. 21. 设A 是数域P 上n 维线性空间V 的一个线性变换,证明:3) 在][x P 中有一次数2n ≤的多项式)(x f ,使0)(=A f ; 4) 如果)(,0)(==A g A f ,那么)(=A d ,这里.)()()(的最大公因式与是x g x f x d5) A 可逆的充分必要条件是:有一常数项不为零的多项式.0)()(=A f x f 使证 1因为P 上的n 维线性空间V 的线性变换组成的线性空间是2n 维的,所以2n +1个线性变换A2n ,A12-n ,、、、,A,E一定线性相关,即存在一组不全为零的数011,,,22a a a a n n -使2n a A 2n +12-n a A 12-n+1a A+0a E=0令1112222)(a x a x a x a x f nn n n +++=--,且.),,2,1,0(22n x f n i a i ≤∂=))((不全为零,这就是说,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即证.2由题设知)()()()()(x g x v x f x u x d +=因为0)(,0)(==A g A f 所以)()()()()(A g A v A f A u A d +==03必要性.由1知,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即2n a A 2n +12-n a A 12-n+1a A+0a E=0若则,00≠a 01112222)(a x a x a x a x f n n n n +++=--即为所求.若,00=a 最小的那一个,则是不为零的系数中下标不全为零,令因j i a n i a ),,2,1,0(2 =2n a A 2n +12-n a A12-n +1a A+0a E=0因 A 可逆,故存在右乘等式两边也存在,用1111)()()(,----=j j j A A A A ,得2n a Ajn -2+12-n a A12--j n +…+j a E=0令=)(x f 2n a jn x -2+12-n a 12--j n x+…+)0(≠j j a a ,即)(x f 为所求.充分性.设有一常数项不为零的多项式01112222)(a x a x a x a x f nn n n +++=--)0(0≠a 使0)(=A f即00111=++++--E a A a Aa A a m m m m 所以E a A a Aa A a m m m m 0111-=+++-- 于是E A E a A a a m m =⋅++--)(1110又⋅A E E a A a a m m =++--)(1110故A 可逆.22. 如果s A A A ,,,21 是线性空间V 的个两两不同的线性变换,那么在V 中必存在向量a ,使a A a A a A s ,,,21 也两两不同. 证 令V }{a A A V jiij =∈=ααα, s j i ,2,1,=因为ij j i V A A ∈==0,000故`ij V 非空.又因为s A A A ,,,21 两两不同,所以对于每两个j i A A ,而言,总存在一个向量β,使ββj i A A ≠故ij V 是V 的非空真子集 设则,,ij V ∈βαββααj i i A A A A ==,于是)()(βαβα+=+j i A A即ij V ∈+βα又 )()(ααααk A kA kA k A j j i i === 于是ij V k ∈α 故ij V 是V 的真子空间.1如果ij V 都是V 的非平凡子空间,在V 中至少有一个向量不属于所有的ij V ,设),,,2,1,(s j i V ij =∉α则ααj i A A ≠s j i ,,2,1, =即证: 存在向量α,使αααs A A A ,,,21 两两不同. 2如果{ij V }中有V 的平凡子空间00j i V ,则00j i V 只能是零空间.对于这种00j i V ,只要取,0≠α就有ααj i A A ≠,故这样的00j i V 可以去掉.因而问题可归于1,即知也存在向量α使αααs A A A ,,,21 两两不同.23:,.,证明的子空间中向量的像组成表示由的子空间是的线性变换是有限维线性空间设W AW V W V A)dim ())0(dim ()dim (1W W A AW =⋂+-证 因为故上的线形变换也是,W A W A ⋂-)0(1是.的子空间W 设W A ⋂-)0(1的维数 为r,W 的维数为s.今在W A ⋂-)0(1中取一组基,,,21r εεε 把它扩充成W 的一组基,,,21r εεε s r εε ,1+, 则),,,,(121s r r A A A A A L AW εεεεε +==),(1s r A A L εε +且s r A A εε,1 +线性无关.所以)dim ())0(dim ()dim (1W W A AW =⋂+- 24.设:,,证明的两个线性变换维线性空间是V n B Arank AB rank ≥A +n B rank -)(证 在分别为在这组基下对应的矩阵设线性变换中取一组基B A V ,, A,B,则线性变换对应的矩阵为AB AB.因为B A ,线性变换,的秩分别等于矩阵AB A,B,AB 的秩,所以对于矩阵A,B,AB 有rank AB rank ≥A+n rank -)B (故对于B A ,线性变换,也有ABrank AB rank ≥A +n B rank -)(25.设:,,22证明B B A A ==1;,A BA B AB B A ==是有相同值域的充要条件与 2 .,B BA A AB B A ==有相同的核充要条件是与 证1必要性.若βαβααA B V AV BV B V BV AV =∈=∈∈=使故存在向量则任取,,,,于是αβββB A A AB ===2ββα=A 故有的任意性由,同理可证 A A =β充分性.若=AB B ,A BA =,任取则有,V AV Aa ⊂∈BV Aa B BAa Aa ∈==)(于是BV AV ⊂同理可证AV BV ⊂,故BV AV =2必要性.若),0()0(11--=B A ,对任意V ∈β,作向量ββA -,因为A ββA -==-ββ2A A βA -βA =0所以 ββA -∈),0()0(11--=B A又B )ββA -=0=-ββBA B所以ββBA B =,由β的任意性,故有BA B =作向量ββA -,则)(ββB B -=02=-=-ββββB B B B所以∈-ββB )0()0(11--=A B又..,,,0)(即证必要性故有的任意性由所以AB A AB A B A ===-βββββ 充分性.若由任取),0(.,1-∈==A a BA B AB A 0)0()()(====B A B BA B ααα知从而),0(1-∈B α)0()0(11--⊂B A同理可证)0()0(11--⊂A B即证 )0()0(11--=B A。

高等代数第4章习题解

高等代数第4章习题解

第四章习题解答习题4.11、计算(1)120313012410152(,,,)(,,,)(,,,)-+(2)15012101112(,,)(,,)(,,)+- 解:(1)15517203130124101532222(,,,)(,,,)(,,,)(,,,)-+=--- (2)195012101110922(,,)(,,)(,,)(,,)+-= 2、验证向量加法满足交换律、结合律。

证明:设121212(,,,),(,,,),(,,,),n n n a a a b b b c c c αβγ=== 则 12121122(,,,)(,,,)(,,,)n nnn a a a b b b a b a b a b αβ+=+=+++ 11221212(,,,)(,,,)(,,,)n n n n b a b a b a b b b a a a βα=+++=+=+ 121212()((,,,)(,,,))(,,,)n n n aa ab b bc c c αβγ++=++ 112212((,,,))(,,,)n n n a b a b a b c c c =++++111222(,,,)n n n a b c a b c a b c =++++++111222((),(),,())n n n a b c a b c a b c =++++++121122(,,,)((,,,))n n n a a a b c b c b c =++++121212(,,,)((,,,)(,,,))n n n a a a b b b c c c =++()αβγ=++3、证明性质4.1.5。

性质4.1.5的内容是:对任意n 维向量,αβ及数k ,有()()k k k ααα-=-=-,()k k k αβαβ-=-证明:设1212(,,,),(,,,)n n a a a b b b αβ==那么1212()()(,,,)((),(),,())n n k k a a a k a k a k a α-=-=---1212(,,,)((),(),,())n n ka ka ka k a k a k a =---=---1212((),(),,())((,,,))()n n k a a a k a a a k α=---=-=-其次1212()((,,,))(,,,)n n k k a a a k a a a k αα-=-=-=-最后:12121122112212121212()((,,,)(,,,))(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)n n n n n n n n n n k k a a a b b b k a b a b a b ka kb ka kb ka kb ka ka ka kb kb kb k a a a k b b b k k αβαβ-=-=---=---=-=-=-4、设123101010001(,,),(,,),(,,)εεε===,求证:对任意的3F α∈,在F 中都有唯一的一组数123,,a a a 使112233a a a αεεε=++ 解:设α的坐标为123(,,)a a a ,那么123123123000000(,,)(,,)(,,)(,,)a a a a a a a a a α==+++=+123123000000000000(,,)(,,)(,,)(,,)(,,)a a a a a a =++++=++ 123112233100010001(,,)(,,)(,,)a a a a a a εεε=++=++由于给定向量的坐标是唯一的,所以上面等式中的数123,,a a a 是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5. 1
1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.
因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.
2.全体正实数R +
, 其加法与数乘定义为
判断R +
按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是.
. 下面一一验证八条线性运算规律
(4)
所以R +
对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为
按上述加法与通常矩阵的数乘是否构成实数域上的线性空间.
答 否.
故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.
4
答 否.
也就是说集合对加法
不封闭.
习题5.2
1
的线性相关性.


2

001
1
⎪⎪⎪
⎪⎝⎭−−−−初等行变换1ααα在基,下的坐标为 ( 1, 0 , - 1 , 0 ).
⎫-1

(-7,11,-21,30). 4
(Ⅰ):
(Ⅱ)
(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;
(2)
(3)
解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由
C
(2
(3
(4)
5.已知P [x ]4的两组基
(Ⅰ)(Ⅱ)(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;
解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由
⎝1⎛
(2)设多项式f (x )
(*)
所以方程组(*)只有零解,则f (x )
,所以f (x ) = 0
习题5.3
证明线性方程组
.
证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.
3, 所以此线性方程组的解空间与实系数多项式空
.
习题5.4
1.的长度.

2..

3.求下列向量之间的夹角
(1)
(2)
(3
解(1
(2()
,αβ=
1
α=
(3
3.n维欧氏空间中的向量,证明
证明
习题5.5
1.
正交.

则有
(*). 齐次线性方程组(*)的一个解为
2.
.
解 (1 )正交化, 取
(2 )
R 3
的一组基标准正交基. 3.求齐次线性方程组
的解空间的一组标准正交基.
分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.
解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵
可得齐次线性方程组的一个基础解系
由施密特正交化方法, 取
.
3

…是
n 中的一组标准正交基, A 是n 阶正交矩阵,
证明

中的一组标准正交基.
证明
n , 所以
又因为A 是n 阶正交矩阵, 则
. 53维欧氏空间V 的一组标准正交基, 证明
也是V 的一组标准正交基.
证明 由题知
构成V 的一组标准正交基.
习题五 (A)
一、填空题
1.当k 满足 时,

2
所生成的子空间的维数为 .
解 , 故答案为1.
3
解 根据定义, 求解方程组就可得答案.
为了便于计算, 取下列增广矩阵进行运算
4.

5. 正交矩阵A 的行列式为
.

6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.

.

1.
二、单项选择题
1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A )
(B )
(C ))
x 解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).
). (A) 1 (B) 2 (C) 3 (D) 4 解 向量组A A 的秩, 故选(A ).
解 因 ( B )
.
故选(B ).

所以( C )选项中向量组线性相关, 故选(C ). 5
.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).
(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )
6. 已知A, B 为同阶正交矩阵, 则下列( )
是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数)
解 A, B 故选(C ).
7. 线性空间中,两组基之间的过渡矩阵(
).
(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )
(B)
1 (Ⅰ):(Ⅱ)
( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.
解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知
所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为
(2
由坐标变换公式可得

(*)齐次线性方程(*
故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为
解 ( 1 ) 由题有

3
(2 ) 因为
解 (1) 所以所以
证明
. ,
所以方程组(*)只有零解
1, 2, 3).
5.当a 、b 、c 为何值时,矩阵A = 1020010a b
c ⎛⎫ ⎪


⎪ ⎪ ⎪ ⎪


是正交阵.
解 要使矩阵A 为正交阵,应有 T AA E = 110010022001001000
10001a b a c b
c ⎛⎫⎛⎫ ⎪
⎪⎛⎫
⎪⎪ ⎪
⇒=
⎪
⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪
⎪ ⎪⎪⎝
⎭⎝
⎭ 2221
01002201001000102
b
a ac b
ac b c ⎛⎫++ ⎪
⎛⎫ ⎪ ⎪
⇒=
⎪ ⎪ ⎪
⎪⎝⎭ ⎪++ ⎪⎝

⇒2221120 21a b ac b c ⎧+=⎪⎪⎪+=⇒⎨⎪⎪+=⎪⎩
①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩;②121212a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩;③121212a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212
a b c ⎧=-
⎪⎪
⎪=-
⎨⎪
⎪=-⎪⎩. 6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-
=为正交矩阵. 证明 因为
是n 维非零列向量, T αα所以是非零实数.
又22T
T
T T T
T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭
,
所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫
==-- ⎪⎪⎝⎭⎝⎭
()
()
22
2
4
4
4
4
()()T T T T T T
T
T
T
T
E E E
αααααααααααααα
αα
αααα=-+
=-+
=
故A 为正交矩阵.
7.设T
E A αα2-=, 其中12,,,T
n a a a α=
(), 若 ααT = 1. 证明A 为正交阵.
证明
A为对称阵.
所以A为正交阵.
证明
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档