2014河北省中考数学考试说明

合集下载

2014年河北省中考数学试卷分析

2014年河北省中考数学试卷分析

2014年河北省中考数学试卷分析一、试题总体特点2014年河北省中考数学试卷在形式上和2013年河北省中考数学试卷接近,但在考查内容和考查角度上与2013年中考数学试卷有很大不同,试题整体难度比2013年中考数学试卷偏低。

可以说是应试试卷下的一次非应试尝试。

从考查形式上看2014年中考数学试卷依然是选择题、填空题、解答题三大板块,分值和去年一样是42、12、66的分布,题量也和去年一样是16、4、6的分布,不同的是解答题的分值由去年的9、10、10、11、12、14变为今年的10、10、11、11、11、13,分值分布更均衡。

从考查内容和考查角度上看2014年中考数学试卷的变化主要有以下几个方面:1、常规大题小问化。

取消传统的函数应用题,整套试题没有应用题,这会令很多学生非常不适应,全国各地近年的中考模考题目压轴题必出函数应用题,学生们已经习惯了有个应用题的大题。

2014年河北省中考数学试卷是将应用题以小问的形式呈现,在选择题第9题、解答题第22题第3问、解答题第26题第4大问都用到了应用题的解题思路,出现了应用题的形式。

这种考查形式知识覆盖面广,涉及一次函数、二次函数应用题,涉及利润类、行程类、运输类应用题,考查全面而基础。

再比如第22题第3问和第25题第2问中涉及的解直角三角形也是传统常规大题的考查形式。

2、核心考点平淡化。

对于数与式中的解方程、解不等式,空间图形中的四边形性质、圆的性质、切线判定,函数中的函数与空间图形结合,动态几何问题等常规核心考点未做特别考查,选择填空题的小切口命题、解答题的以点带面命题,都体现了这一特点。

而压轴题中涉及的核心考点也比较少,最后一道大题涉及纯数学知识的内容则更少。

3、数学知识生活化。

数学作为一门应用学科主要是为了解决实际问题的,之前常规的函数与空间图形结合,动态几何问题等问题更多的是就数学知识解决数学问题,此套试题的26题实际上是将数学知识和生活常识结合起来考查解决生活实际问题,有力驳斥了近年流行的数学无用论、买菜不用函数等论调,回归到数学学习本质是思维学习,是为提高学生逻辑思维能力和归纳分析能力的目的。

2014年河北省中考数学试卷知识点分析

2014年河北省中考数学试卷知识点分析

A BDEC图1 O K图2 100° ab70°2014年河北省初中毕业升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-6小题每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2是2的( )A.倒数B.相反数C.绝对值D.平方根 涉及知识点:相反数04012302.如图1,△ABC 中,D 、E 分别是边AB 、AC 的中点,若DE=2,则BC=( ) A.2 B.3 C.4 D.5 涉及知识点:三角形的中位线04181223.计算:852-152= ( )A.70B.700C.4900D.7000 涉及知识点:因式分解0414300;公式法04143204.如图2,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( )A.20°B.30°C.70°D.80° 涉及知识点:三角形的外角及其性质04112035.a ,b 是两个连续整数,若a<7<b ,则a ,b 分别是( ) A.2,3 B.3,2 C.3,4 D.6,8lxy o图3 涉及知识点:无理数的概念04063016.如图3,直线l 经过第二、三、四象限,l 的解析式是y=(m -2)x+n ,则m 的取值范围在数轴上表示为( )ABC D涉及知识点:一次函数的图象0419222;数轴上的点与有理数的关系04012227.化简:=---112x xx x ( ) A.0 B.1 C.x D.1-x x涉及知识点:分式的加减法法则04152218.如图4,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( )A.2B.3C.4D.5 涉及知识点:简单的图案分析04233029.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米,当x=3时,y=18,那么当成本为72元时,边长为( ) A.6厘米 B.12厘米 C.24厘米 D.36厘米 涉及知识点:一次函数的简单应用041922710.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小图412正方形顶点A,B在围成的正方体...上的距离是( )A.0B.1C.2D.3涉及知识点:勾股定理的应用041710311.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的拆线统计图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4涉及知识点:用频率估计概率0425300;描述数据——条形图、扇形图、折线图12.如图7,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是( )涉及知识点:尺规作图040420513.在研究相似问题时,甲、乙同学的观点如下:频率0.10100 200 次数图6300 400 5000.050.150.200.25·····图5-2AB C图7图5-1··AB对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对 涉及知识点:相似多边形0427103;相似三角形的判定042721014.定义新运算:()()⎪⎪⎩⎪⎪⎨⎧<->=⊕.0.0b ba b bab a 例如:5454=⊕,()5454=-⊕,则函数()02≠⊕=x x y 图象大致是( )涉及知识点:反比例函数的图象和性质042612015.如图9,边长为a 的正六边形内有两个三角形(数据如图),则=空白阴影S S ( ) A.3 B.4 C.5 D.6图8-1111 甲:将边长为3,4,5的三角形按图8-1的方式 向外扩张,得到新三角形,它们的对应边间 距均为1,则新三角形与原三角形相似.图8-21111 乙:将邻边为3和5的矩形按图8-2的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不.相似. 图9a aa 60°60°涉及知识点:正多边形和园042430016.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一..众数是7,则他们投中次数的总和可能是( ) A.20 B.28 C.30 D.31 涉及知识点:中位数和众数0420120卷Ⅱ(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.计算:=⨯218 涉及知识点:二次根式的乘除041620018.若实数m ,n 满足()0201422=-+-n m ,则m -1+n 0=涉及知识点:零指数幂的性质0414145;整数指数幂0415231;绝对值的概念0410241 19.如图10,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形. 则=扇形S cm 2涉及知识点:扇形的面积公式042440220.如图11,点O ,A 在数轴上表示的数分别是0,0.1,将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1分成100等份,其分点由左向右依次为N 1,N 2,…,N 99;继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2,…,P 99.则点A(B) A228图10· · · BP 37所表示的数用科学记数法表示为 .涉及知识点:科学计数法0415232三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程()002≠=++a c bx ax 的求根公式时,对于042>-ac b 的情况,她是这样做的:(1)嘉淇的解法从第 步开始出现错误:事实上,当042>-ac b 时,方程()002≠=++a c bx ax 的求根公式是 .(2)用配方法解方程:02422=--x x涉及知识点:解一元二次方程0421200;配方法0421212 22.(本小题满分10分)如图12-1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C. a 2ac 4b b x, ) 0ac 4b (a4ac4b a 2b x , a 4ac 4b ) a 2b x ( , ) a2b (a c ) a 2b (x a b x ,acx a b x 变形为0c bx ax ,方程0a 由于22222222222-+-=>--=+-=++-=++-=+=++≠ :…………………………………………第一步…………………第二步………………………………第三步………………第四步 ………………………………五步第ABC图12-1北东ABCD EF 40°100°图13的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:(1)求表中∠C 度数的平均数x ;(2)求A 处的垃圾量,并将图12-2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75) 涉及知识点:描述数据——条形图、扇形图、折线图;算术平均数0420111;解直角三角形在实际问题中的应用0428204 23.(本小题满分11分)如图13,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F.(1)求证:△ABD ≌△ACE(2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.涉及知识点:全等三角形的性质0412103;三角形全等的判定0412200;菱形的性质0418222;旋转的性质0423102甲 乙 丙 丁 ∠C(单位:度) 34363840AB C 垃圾点320 240 160 80 0图12-2垃圾量/千克 各点垃圾量条形统计图 图12-3C A B 50%37.5%各点垃圾量扇形统计图24.(本小题满分11分)如图14,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(-1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接..写出所有满足这样条件的抛物线条数.涉及知识点:二次函数042200025.(本小题满分11分)图15-1和15-2中,优弧AB⌒所在⊙O的半径为2,AB=32,点P为优弧AB⌒上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′(1)点O到弦AB的距离是;当BP经过点O时,∠ABA′= °;(2)当BA′与⊙O相切时,如图15-2,求折痕BP的长.(3)若线段..BA′与优弧AB⌒只有一个公共点B,设∠ABP=α,G2图14FHByE DxC1A12O·········BDA(出口) 图16-2· 1号车2号车C(景点)K(甲)确定α的取值范围.涉及知识点:圆0424000;勾股定理0417101;垂径定理及其推论0424104;圆的切线的性质定理0424223;锐角三角函数的概念0428101 26.(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD ,如图16-1和16-2,现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图16-2,游客甲在BC 上的一点K(不与点B ,C 重合)处候车,准备乘车到出口A ,设CK=x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车; 情况二:若他刚好错过1号车,便搭乘即将到来的2号车. 比较哪种情况用时较多?(含候车时间)BDA(出口) 图16-1··1号车 2号车C(景点)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?涉及知识点:运用一次函数选择最佳方案0419301;列不等式组解应用题的一般步骤0409304;一元一次方程0403000。

2014年河北《中考说明》变化(数学部分)

2014年河北《中考说明》变化(数学部分)

2014年河北中考说明变化·数学
◎考试性质部分
“一、指导思想”与“二、命题范围”与2013年相比做了调整,调整后表述更清晰明确,且“一、指导思想”明确指出“数学学科命题,坚持围绕《义务教育数学课程标准(2011年版》,考查学生对基础知识和基本技能的理解和掌握程度。

◎考试内容调整如下
2.删除12处:数与代数部分删除3处;图形与几何部分删除7处;综合与实践部分删除2处,具体
◎考试要求调整如下
1.新增15处:数与代数部分新增1处;图形与几何部分新增11处;统计与概率部分新增1处;综合
2.删除20处:数与代数部分删除5处;图形与几何部分删除8处;统计与概率部分删除1处;综合与实践部分删除6处,具体如下:
3.变化43处:数与式变化5处;方程与不等式变化6处;函数变化8处;图形的性质变化11处;图形的变化变化8处,图形与坐标变化1处;抽样与数据分析变化1处;综合与实践部分变化3处,具体如下:
◎考试内容位置或名称调整4处
1. 将2013年的“图形的证明”调整为2014年“图形的性质”中的“定义、命题、定理”,且位置调整到了“尺规作图”之后;
2. 将2013年的“图形的性质”中的“视图与投影”调整为2014年“图形的变化”中的“图形的投影”,且位置调整到了“图形的相似”之后;
3. 将2013年的“图形与坐标”调整为“(一)坐标与图形位置”和“(二)坐标与图形运动”;
4. 将2013年“综合与实践部分”中的“课题学习”和“数学方法与数学思想”精简调整为2014年的“综合语实践部分”,不再分为两点去讲。

2014年河北中考数学试卷分析

2014年河北中考数学试卷分析

2014中考数学试卷分析注重基础,渗透思想,突出能力,力求创新今年中考数学试题在继续落实“注重基础,渗透思想,突出能力”的基础上,力求“创新”,呈现形式多样。

试题覆盖面广,通过简洁直观的图形语言,准确的陈述表达,合理有序的难度分布,给学生创造了轻松和谐的答题环境,有利于学生稳定发挥其真实的数学水平,重在对学生综合能力的考查。

本套试卷有以下几个亮点:亮点一、遵循《课程标准》紧扣《学科考试说明》。

今年的试卷题型结构与去年相比,稳中有变,注重数学在生活中的应用。

整套试题考查的内容都在《课程标准》和《考试说明》所规定的范围之内。

所有的试题,从展现方式和解决方法上,也都较好地体现了《课程标准》的要求。

内容分布较好的体现了《考试说明》对数与代数、图形与几何、统计与概率各领域考查所占比例的要求。

许多试题的素材源于《考试说明》,但绝不是照搬和简单的改造,而是对这些素材深入的进行挖掘、引深和创新,以崭新的方式展现,在知识和方法的交汇处进行有机的巧妙整合,从独特的角度切入,问题设置巧妙,试题新颖,并注重了对数学本质问题的考查。

亮点二、回归课本,关注基础内容,再现课堂教学的学习过程。

回归基础,重视基本概念、性质、定理、运算及研究学生学习过程中困难产生的根本原因是今年的亮点之一,试题考查了学生对基础知识和基本技能的理解和掌握,内容涵盖了如数与式、方程与不等式、函数、角、相交线与平行线、三角形、四边形、圆、变换、坐标、证明、概率与统计。

如第12题源于学生学习中熟悉的尺规作图,以巧妙的问题设计把中垂线的性质定理进行了考查,而中垂线的性质定理及判定定理也是今年考试说明中新增加的内容。

第21题的呈现方式新颖,以挑错误的形式给出,设计的问题巧妙地考查了用配方法解一元二次方程,与考试说明在方程与方程组这部分新增加的内容是吻合的。

第22题,是本卷的亮点题,将统计知识与三角函数进行了有机的整合,考查了学生的知识迁移能力。

第24题是一个二次函数的纯数学问题,设计问题从多个角度考查了二次函数的图象及性质等核心的数学知识,体现了试卷很好的效度。

2014河北中考数学

2014河北中考数学
知道圆内接四边形的对角互补;
知道过圆外一点所画圆的两条切线长相等.
(2)考试要求变化: 2014年:会过不在同一条直线上的三点作圆(知道可作三角 形的外接圆、内切圆;知道可作圆的内接正方形和正六边形) 2013年:能过一点、两点、不在同一条直线上的三点作圆
三、对近四年的中考试题的分析
(2010)6.如图3,在5×5正方形网格中,一条圆弧经过 A,B,C三点, 那么这条圆弧所在圆的圆心是 A.点P B.点Q C.点R D.点M 考点:垂径定理确定圆心。
三、对近四年的中考试题的分析
考点:直线与圆的位置关系;点 到直线的距离;平行线之间的距 离;旋转的性质;解直角三角形 。此题主要考查了切线的性质定 理以及平行线之间的关系和解直 角三角形等知识,根据切线的性 质求解是初中阶段的重点题型, 此题考查知识较多综合性较强, 注意认真分析.
三、对近四年的中考试题的分析
二 、研读说明
1、2014年河北中考考试说明变化
(1)考试内容新增:弧、弦、直径之间的关系;作三角形的外
接圆、内切圆;作圆的内接正方形和正六边形.
(2)、考试内容变化
2014年:过不在同一条直线上的三点作圆。 2013年:过一点、两点和不在同一条直线上的三点作圆。
二 、研读说明
1、2014年河北中考考试说明变化 (1)考试要求新增:
四 科学备考
1、三轮复习法:
(1)、一轮基础复习 (2)、二轮专题复习 (3)、三轮模拟练习 2、模拟贯穿始终
1.注重基础知识与基本技能的系统复习,形 成知识网络,复习时注意通性通法的归纳提 升。 2.精选试题,注重基本运算能力和计算ห้องสมุดไป่ตู้巧的 培养 3.注意发现学生错误的原因,加强知识的落实.

2014年河北省中考试题分析

2014年河北省中考试题分析

2014年河北省1、知识点:相反数解题方法:只有符号不同的两个数互为相反数2、知识点:三角形中位线性质解题方法:根据三角形的中位线平行于第三边并且等于第三边的一半3、知识点:因式分解解题方法:直接利用平方差进行分解4、知识点:三角形的外角性质解题方法:三角形的一个外角等于与它不相邻的两个内角的和5、知识点:估算无理数的大小解题方法:完全平方数对无理数大小进行比较6、知识点:一次函数图象性质;在数轴上表示不等式的解集解题方法:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断7、知识点:分式的加减法解题方法:原式利用同分母分式的减法法则计算,约分8、知识点:图形的分割解题方法:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法9、知识点:二次函数的应用解题方法:由待定系数法就可以求出解析式,当y=72时代入函数解析式10、知识点:展开图折叠成几何体解题方法:根据展开图折叠成几何体,可得正方体,根据勾股定理11、知识点:利用频率估计概率;折线统计图解题方法:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者12、知识点:尺规作图解题方法:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件13、知识点:相似三角形的判定;相似多边形的性质解题方法:根据题中条件,凑出相似三角形,对应边成比例求解。

14、知识点:反比例函数的图象解题方法:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状15、知识点:正多边形和圆解题方法:先求得两个三角形的面积,再求出正六边形的面积,求比值16、知识点:众数;中位数解题方法:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围17、知识点:二次根式的乘除法解题方法:先对二次根式进行化简,再根据二次根式的乘法法则进行计算18、知识点:负整数指数幂;绝对值;偶次方;零指数幂解题方法:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂19、知识点:扇形面积的计算解题方法:根据扇形的面积公式S=×弧长×半径求出扇形20、知识点:科学记数法解题方法:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3= 10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P3721、知识点:解一元二次方程-配方法解题方法:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方22、知识点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数解题方法:1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用23、知识点:全等三角形的判定与性质;菱形的判定;旋转的性质解题方法:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形24、知识点:二次函数综合题解题方法:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数25、知识点:圆的综合题;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义解题方法:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′(2)根据切线的性质,切线垂直于半径,再利用垂径定理求解。

河北省2014年中考数学试题(word版,含解析)

河北省2014年中考数学试题(word版,含解析)

2014年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。

2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107 B.4.23×106 C.42.3×105 D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×1063.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。

4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A 、B 、C 都不符合,选D 。

5.若x =1,则||x -4= A .3 B .-3 C .5 D .-5 答案:A解析:当x =1时,|x -4|=|1-4|=3。

2014年河北省中考数学试卷

2014年河北省中考数学试卷

2014年河北省初中毕业生升学文化课考试一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2分)(2014•河北)﹣2是2的( ) A . 倒数 B .相反数C .绝对值D .平方根考点: 相反数.分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数. 解答: ﹣2是2的相反数,故选:B .点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.(2分)(2014•河北)如图,△中,D ,E 分别是边,的中点.若2,则( )A . 2B .3C .4D .5考点: 三角形中位线定理.分析: 根据三角形的中位线平行于第三边并且等于第三边的一半可得2. 解答: ∵D ,E 分别是边,的中点,∴是△的中位线,∴22×2=4.故选C .点评: 本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=( ) A . 70 B .700C .4900D .7000考点: 因式分解-运用公式法.分析: 直接利用平方差进行分解,再计算即可. 解答: 原式=(85+15)(85﹣15)=100×70=7000.故选:D .点评: 此题主要考查了公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=()(a ﹣b ).4.(2分)(2014•河北)如图,平面上直线a ,b 分别过线段两端点(数据如图),则a ,b 相交所成的锐角是( )A . 20°B .30°C .70°D .80°考点: 三角形的外角性质分析: 根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: a ,b 相交所成的锐角=100°﹣70°=30°.故选B .点评: 本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a ,b 是两个连续整数,若a <<b ,则a ,b 分别是( ) A . 2,3 B .3,2C .3,4D .6,8考点: 估算无理数的大小.分析: 根据,可得答案.解答: ,故选:A .点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l 经过第二、三、四象限,l 的解析式是(m ﹣2),则m 的取值范围在数轴上表示为( )A .B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:∵直线(m﹣2)经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y 轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A .0B.1C.xD.1xx考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:原式.故选C.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A .2 B.3 C.4 D.5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米.当3时,18,那么当成本为72元时,边长为()A .6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为2,由待定系数法就可以求出解析式,当72时代入函数解析式就可以求出结论.解答:设y与x之间的函数关系式为2,由题意,得18=9k,解得:2,∴2x2,当72时,72=2x2,∴6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A ,B 围成的正方体上的距离是( )A . 0B .1C .D .考点: 展开图折叠成几何体分析: 根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案. 解答: 是正方体的边长,1,故选:B .点评:本题考查了展开图折叠成几何体,勾股定理是解题关键. 11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D . 掷一个质地均匀的正六面体骰子,向上的面点数是4 考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△(<),用尺规在上确定一点P,使,则符合要求的作图痕迹是()A .B.C.D.考点:作图—复杂作图分析:要使,必有,所以选项中只有作的中垂线才能满足这个条件,故D正确.解答:D选项中作的是的中垂线,∴,∵,∴故选:D.点本题主要考查了作图知识,解题的关键是根据作图得出.评:13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( )A . 两人都对B .两人都不对C .甲对,乙不对 D.甲不对,乙对。

2014年河北省初中中考数学试卷

2014年河北省初中中考数学试卷

2014年河北省初中毕业升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-6小题每小题2分;7-16小题,每小题3分, 共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2是2的( )A.倒数B.相反数C.绝对值D.平方根2.如图1,△ABC 中,D 、E 分别是边AB 、AC 的中点,若DE=2,则BC=( )A.2B.3C.4D.5 3.计算:852-152= ( )A.70B.700C.4900D.70004.如图2,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( ) A.20° B.30° C.70° D.80°5.a ,b 是两个连续整数,若a<7<b ,则a ,b 分别是( )A.2,3B.3,2C.3,4D.6,8ab6.如图3,直线l 经过第二、三、四象限,l 的解析式是y=(m -2)x+n ,则m 的取值范围在数轴上表示为( )A BC D7.化简:=---112x x x x ( ) A.0 B.1 C.x D.1-x x 8.如图4,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( ) A.2 B.3 C.4 D.59.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米,当x=3时,y=18,那么当成本为72元时,边长为( )A.6厘米B.12厘米C.24厘米D.36厘米10.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小正方形顶点A ,B 在围成的正方体...上的距离是( ) A.0 B.1 C.2 D.311.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的拆线统计图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.如图7,已知△ABC(AC <BC),用尺规在BC 上确定一点P ,使PA+PC=BC,则符合要求的作图痕迹是( )13.在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.定义新运算:()()⎪⎪⎩⎪⎪⎨⎧<->=⊕.0.0b ba b b a b a 例如:5454=⊕,()5454=-⊕,则函数()02≠⊕=x x y 图象大致是( )甲:将边长为3,4,5的三角形按图8-1的方式乙:将邻边为3和5的矩形按图8-2的方式向外15.如图9,边长为a 的正六边形内有两个三角形(数据如图),则=空白阴影S S ( ) A.3 B.4 C.5 D.616.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一..众数是7,则他们投中次数的总和可能是( )A.20B.28C.30D.31卷Ⅱ(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.计算:=⨯218 18.若实数m ,n 满足()0201422=-+-n m ,则m -1+n 0=19.如图10,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形.则=扇形S cm 220.如图11,点O ,A 在数轴上表示的数分别是0,0.1,将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1分成100等份,其分点由左向右依次为N 1,N 2,…,N 99;继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2,…,P 99.则点P 37所表示的数用科学记数法表示为 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程()002≠=++a c bx ax 的求根公式时,对于042>-ac b 的情况,她是这样做的:(1)嘉淇的解法从第 步开始出现错误:事实上,当042>-ac b 时,方程()002≠=++a c bx ax 的求根公式是 .(2)用配方法解方程:02422=--x x22.(本小题满分10分)如图12-1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C 的度数如下表: . a2ac 4b b x , ) 0ac 4b (a 4ac 4b a 2b x , a 4ac 4b ) a 2b x ( , ) a 2b (a c ) a 2b (x a b x ,a c x a b x 变形为0c bx ax ,方程0a 由于22222222222-+-=>--=+-=++-=++-=+=++≠ : …………………………………………第一步 …………………第二步他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:(1)求表中∠C 度数的平均数x ;(2)求A 处的垃圾量,并将图12-2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(本小题满分11分)如图13,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F.(1)求证:△ABD ≌△ACE(2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.24.(本小题满分11分)如图14,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(-1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接..写出所有满足这样条件的抛物线条数.25.(本小题满分11分)图15-1和15-2中,优弧AB⌒所在⊙O的半径为2,AB=32,⌒上一点(点P不与A,B重合),将图形沿BP折点P为优弧AB叠,得到点A的对称点A′(1)点O到弦AB的距离是;当BP经过点O时,∠ABA′= °;(2)当BA′与⊙O相切时,如图15-2,求折痕BP的长.⌒只有一个公共点B,设∠ABP=α,确定α的取值范围.(3)若线段..BA′与优弧AB26.(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD,如图16-1和16-2,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图16-2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)C(景K(甲A(出决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?2020-2-8。

2014年河北省中考数学试题及答案解析

2014年河北省中考数学试题及答案解析

河北省2014年中考数学试卷一、选择题(共16小题,1-6小题,每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2分)(2014•河北)-2是2的( )A .倒数B .相反数C .绝对值D .平方根 【考 点】 M111相反数 【难易度】 容易题【分 析】 因为-2+2=0,根据相反数特性:若a ,b 互为相反数,则a+b=0,反之若a+b=0, 则a 、b 互为相反数. 知-2是2的相反数,故答案为B. 【解 答】 B【点 评】 本题属于概念题,考查了对相反数的理解,本质上我们称只有符号不同的两个 数互为相反数,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 2.(2分)(2014•河北)如图,△ABC 中,D ,E 分别是边AB ,AC 的中点.若DE=2,则BC=( )A .2B .3C .4D .5 【考 点】 M323三角形的中位线 【难易度】 容易题【分 析】 ∵D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线, ∴BC=2DE=2×2=4(根据三角形中位线定理).故选C . 【解 答】 C【点 评】 本题比较基础,考查了三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半,这一定理极其重要,无论在填空选择,还是在几何证明中 都起着关键作用,因此熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=( ) A .70 B .700 C .4900 D .7000 【考 点】 M11P 因式分解 【难易度】 容易题【分 析】 直接利用平方差公式进行求解.即原式=(85+15)(85-15)=100×70=7000.故答案为D. 【解 答】 D【点 评】 本题是比较简单的计算题,主要考查了利用公式法进行分解因式,掌握平方差公式:a 2﹣b 2=(a+b)(a-b )是解决本题的关键.4.(2分)(2014•河北)如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( )A .20°B .30°C .70°D .80° 【考 点】 M321三角形内(外)角和 【难易度】 容易题【分 析】 根据三角形的一个外角等于与它不相邻的两个内角的和, 得:a ,b 相交所成的锐角=3070100=-.故答案选B.【解 答】 B【点 评】 本题比较容易,考查了三角形外角的性质:三角形的一个外角等于与它不相邻 的两个内角的和的性质,熟记此性质是解题的关键,5.(2分)(2014•河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( ) A .2,3 B .3,2 C .3,4 D .6,8 【考 点】 M116无理数 【难易度】 容易题 【分 析】 因为()97742<=<,所以974<<,解得:372<<,故答案为A. 【解 答】 A【点 评】 本题比较基础,考查了估算无理数的大小,本题利用先平方再开方的方法进行 比较.6.(2分)(2014•河北)如图,直线l 经过第二、三、四象限,l 的解析式是y=(m-2)x+n ,则m 的取值范围在数轴上表示为( )A .B .C .D .【考 点】 M12M 一元一次不等式(组)解集的数轴表示 M142一次函数的图象、性质 【难易度】 容易题【分 析】 ∵直线y=(m ﹣2)x+n 经过第二、三、四象限, ∴m ﹣2<0且n <0,∴m <2且n <0.故选C . 【解 答】 C【点 评】 本题考查了一次函数图象与系数的关系:一次函数y=kx+b (k 、b 为常数,k ≠0) 是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0, 图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0, b ).也考查了在数轴上表示不等式的解集,注意含等号的用实心圈,不含等号 的用空心圈.7.(3分)(2014•河北)化简:112---x xx x =( ) A .0 B .1 C .x D .1-x x 【考 点】 M11S 分式运算 【难易度】 容易题【分 析】 首先利用同分母分式的减法法则计算,再通过因式分解化简,进行约分即可得到结果,即:原式=()x x x x x x x =--=--1112.故答案为C. 【解 答】 C【点 评】 本题是最基本的计算题,非常简单,此题考查了分式的加减法,及提取公因式, 熟练掌握运算法则并运用因式分解法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( )A.2 B.3 C.4 D.5【考点】 M415图形的剪拼【难易度】中等题【分析】利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法,如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故答案为A.【解答】 A【点评】本题有一定难度,主要考查了图形的剪拼,利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法是解题关键.9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米 B.12厘米 C.24厘米 D.36厘米【考点】 M143求一次函数的关系式M144一次函数的应用【难易度】容易题【分析】由题意知:设y与x之间的函数关系式为y=kx2,根据待定系数法:把x=3,y=18代入上述函数关系式解得k=2,即y与x之间的函数关系式为y=2x2令y=72,解得x=6. 故答案为A.【解答】 A【点评】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.2 D.3【考点】 M411图形的折叠、镶嵌【难易度】容易题【分析】根据展开图,折叠成几何体后可得正方体,而AB是正方体的边长,因此AB=1,故答案为B.【解答】 B【点评】本题通过展开图折叠成几何体考查了同学们的空间想象能力.比较简单. 11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4 【考 点】 M224概率的意义、应用 M215频数、频率、方差 【难易度】 容易题【分 析】 根据统计图可知,试验结果在0.17附近波动,即其概率P ≈0.17, A 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为31,故 此选项错误; B 、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率 是:415213 ;故此选项错误; C 、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄 球的概率为32,故此选项错误; D 、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为61≈0.17, 故此选项正确.故答案为D . 【解 答】 D【点 评】 此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知 识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式. 12.(3分)(2014•河北)如图,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使PA+PC=BC ,则符合要求的作图痕迹是( )A .B . . .C. D.【考 点】 M313线段垂直平分线性质、判定 M318尺规作图 【难易度】 容易题【分 析】 要使PA+PC=BC ,必有PA=PB ,所以选项中只有作AB 的中垂线才能满足这个条 件,而D 选项中作的是AB 的中垂线,故答案为D . 【解 答】 D【点 评】 本题既考查了垂直平分线段的性质:垂直平分线上的点到线段 两端点的距离相等,又考查了如何做线段的垂直平分线,因此 熟练掌握是解题的关键.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( ) A .两人都对 B .两人都不对 C .甲对,乙不对 D .甲不对,乙对 【考 点】 M32I 相似多边形的性质与判定 M32H 相似三角形性质与判定 【难易度】 容易题【分 析】 甲:根据题意得:AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′,即可证得∠A=∠A ′, ∠B=∠B ′,可得△ABC ∽△A ′B ′C ′,故甲说法正确; 乙:根据题意得:AB=CD=3,AD=BC=5,则A ′B ′=C ′D ′=3+2=5,A ′D ′=B ′C ′=5+2=7, 则可得DA ADB A AB ''=≠=''7553,即新矩形与原矩形不相似, 故乙说法正确;故答案为A【解 答】 A【点 评】 此题考查了相似三角形的判定方法:边边角、角角边,以及 相似多边形的判定:对应边成比例.熟练掌握相似图形的判 定方法是解答此题的关键.14.(3分)(2014•河北)定义新运算:a ⊕b=⎪⎪⎩⎪⎪⎨⎧<->)0()0(b ba b ba例如:4⊕5=54,4⊕(-5)=54.则函数y=2⊕x (x ≠0)的图象大致是( )A .B .C .D .【考 点】 M152反比例函数的图象、性质 M154反比例函数的应用【难易度】 容易题【分 析】 根据题意可得y=2⊕x=()⎪⎪⎩⎪⎪⎨⎧<->)0(202x xx x,根据反比例函数的性质可得函数图象的形状为双曲线及所在象限:当x >0时,反比例函数y=x 2在第一象限, 当x <0时,反比例函数y=x2-在第二象限,因此选D. 【解 答】 D【点 评】 本题型比较新颖,比较简单,通过给出新定义的形式,主要考查了反比例函数 ()0≠=x xky 的性质:当0>k 时,函数图像位于一、三象限,当0<k 时,函 数图像位于二、四象限;及反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a 的正六边形内有两个三角形(数据如图),则空白阴影S S =( ) A .3 B .4 C .5 D .6 【考 点】 M325三角形的面积M32D 特殊角三角函数的值 【难易度】 中等题【分 析】 先求得两个三角形的面积,再求出正六边形的面积,求比值即可 【解 答】 解:如图,∵直角三角形的斜边长为a ,其中一锐角为60, ∴利用特殊角的三角函数值解得同一三角其余两条直角边 长为a a a a 2360sin ,2160cos =⋅=⋅, ∴24322321212a a a S S =⨯⋅⨯=⨯=)(三角形空白, ∵AB=a ,∴OC=a 23,∴223323216a a a S =⋅⨯=正六边形, ∴22243543233a a a S S S =-=-=空白正六边形阴影,∴54343522==a a S S 空白阴影,故选C . 【点 评】 本题难度适中,主要考查了利用特殊角的三角函数值解直角三角形,从而求出 三角形的面积,以及利用分割法将正六边形分成六个全等的三角形来求其面积, 灵活运用所学知识是解题的关键. 16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是( )A .20B .28C .30D .31 【考 点】 M214中位数、众数 【难易度】 容易题【分 析】 根据中位数的定义:把数据按从小到大的顺序排列,位于最中间的一个数或两 个数的平均数为中位数,以及众数的定义:一组数据中出现次数最多的数据(注 意众数可以不止一个).则最大的三个数的和是:6+7+7=20,两个较小的数一 定是小于5的非负整数,且不相等(根据题目中众数的唯一性),则可求得五 个数的和的范围一定大于20且小于29.故答案为B. 【解 答】 B【点 评】 本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往 对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时 候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇 数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数 . 二、填空题(共4小题,每小题3分,满分12分) 17.(3分)(2014•河北)计算:218⨯= . 【考 点】 M11H 二次根式混合运算 【难易度】 容易题【分 析】 本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出 结果.具体过程如下解:222122218=⨯=⨯.故答案为:2. 【解 答】 2【点 评】 本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则: 两个因式的算术平方根的积,等于这两个因式积的算术平方根,是本题的关键.18.(3分)(2014•河北)若实数m ,n 满足|m ﹣2|+(n ﹣2014)2=0,则m ﹣1+n 0= . 【考 点】 M113绝对值M11O 整式运算(加、减、乘、除、乘方、开方) 【难易度】 容易题【分 析】 根据绝对值与平方运算的非负性知,要使|m ﹣2|+(n ﹣2014)2=0, 则⎩⎨⎧=-=-0201402n m ,求得⎩⎨⎧==20142n m因此根据负整数指数幂及零指数幂得23121201420101=+=+=+--n m . 故答案为23. 【解 答】23 【点 评】 本题比较基础,首先由绝对值与平方运算的非负性求出m 、n 的值,再根据负整 数指数幂及零指数幂求得结果,熟练掌握这些性质与运算法则是解答本题的关 键.19.(3分)(2014•河北)如图,将长为8cm 的铁丝尾相接围成半径为2cm 的扇形.则S 扇形= cm 2.【考 点】 M34B 圆的弧长和扇形的面积 【难易度】 容易题【分 析】 由题意知,弧长=cm cm cm 4228=⨯-,因此由扇形的面积公式得:扇形的面 积是242421cm cm cm =⨯⨯,故答案为:4. 【解 答】 4【点 评】 本题考查了扇形的面积公式的应用,r l S ⋅⋅=21扇主要考查学生能否正确运用 扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1,分成100等份,其分点由左向右依次为N 1,N 2,…,N 99; 继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2.…,P 99. 则点P 37所表示的数用科学记数法表示为 . 【考 点】 M11D 科学记数法 M513推理与证明 M414坐标与图形运动 【难易度】 容易题【分 析】 由题意可得M 1表示的数为0.1×1001=10﹣3,N 1表示的数为1001×10﹣3=10﹣5, P 1表示的数为10﹣5×1001=10﹣7,因此类推P 37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.【解 答】 3.7×10﹣6【点 评】 此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.并且考查了科学计数法.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax 2+bx+c=0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx+c=0变形为:x 2+a b x=﹣ac,…第一步 x 2+a b x+(a b 2)2=﹣a c +(ab 2)2,…第二步(x+ab 2)2=2244a ac b -,…第三步x+a b 2=aac b 242-(b 2﹣4ac >0),…第四步 x=aac b b 242-+-,…第五步嘉淇的解法从第 步开始出错误;事实上,当b 2﹣4ac >0时,方程ax 2+bx+c=0(a ≠O )的求根公式是用配方法解方程:x 2﹣2x ﹣24=0. 【考 点】 M127解一元二次方程 【难易度】 容易题【分 析】 从第四步出现错误,开方时出错;注意找一个数的平方根有两个,一正一负; 在配方解方程中,按如上过程即可,把常数项24移项后,应该在左右两边同时 加上一次项系数﹣2的一半的平方.【解 答】 解:在第四步中,开方应该是x+a b 2=a acb 242-±.所以求根公式为:x=aacb b 242-±-.故答案是:四;x=aacb b 242-±-; ……5分用配方法解方程:x 2﹣2x ﹣24=0解:移项得x 2﹣2x=24,配方得x 2﹣2x+1=24+1,即(x ﹣1)2=25, 开方得x ﹣1=±5,∴x 1=6,x 2=﹣4. ……10分 【点 评】 本题考查了解一元二次方程﹣﹣配方法. 用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右 两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0, 然后配方.22.(10分)(2014•河北)如图1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C 的度数如下表: 甲 乙 丙 丁 ∠C (单位:度) 34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C 度数的平均数x : (2)求A 处的垃圾量,并将图2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)【考 点】 M212(加权)平均数、方差和标准差 M211总体、个体、样本、容量 M216统计图(扇形、条形、折线) M32C 锐角三角函数的应用 【难易度】 容易题【分 析】(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C 处垃圾量以及所占百分比,进而 求出垃圾总量,从而得出A 处垃圾量;(3)利用锐角三角函数得出AB 的长,进而得出运垃圾所需的费用. 【解 答】 解:(1)37440383634=+++=x ; ……2分(2)∵C 处垃圾存放量为:320kg ,在扇形统计图中所占比例为:50%, ∴垃圾总量为:320÷50%=640(kg ),∴A 处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg ),占12.5%. ……4分 补全条形图如下:……6分(3)∵AC=100米,∠C=37°,又∵ 37tan =ACAB , ∴AB=ACtan37°=100×0.75=75(m ),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元), ……10分 答:运垃圾所需的费用为30元.【点 评】 此题主要考查了平均数求法、锐角三角三角函数关系以及条形统计图与扇形 统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求∠ACE 的度数;(3)求证:四边形ABEF 是菱形.【考 点】 M32A 全等三角形性质与判定M332平行四边形的性质与判定M334菱形的性质与判定M327等腰三角形性质与判定M31B 平行线的判定及性质【难易度】 中等题【分 析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全 等.(中等题)(2)根据全等三角形对应角相等,得出∠ACE=∠ABD ,即可求得.(容易题)(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF 是平行四边形, 然后依据邻边相等的平行四边形是菱形,即可证得.(中等题)【解 答】(1)证明:∵△ABC 绕点A 按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC ,∴AB=AC=AD=AE ,在△ABD 与△ACE 中⎪⎩⎪⎨⎧=∠=∠=AEAD CAE BAD AC AB∴△ABD ≌△ACE (SAS ). ……3分(2)解:∵∠CAE=100°,AC=AE ,∴()()401001802118021=-=∠-=∠CAE ACE ; ……6分 (3)证明:由(2)知:∠ABD=∠ADB=∠ACE=∠AEC=40°.又∵∠BAE=∠BAD+∠DAE=140°,∴∠BAE+∠ABD=140°+40°=180°,∠BAE+∠AEC=140°+40°=180° ∴AE//BF,AB//FE(同旁内角互补,两直线平行)∴四边形ABEF 是平行四边形,而又∵AB=AE ,∴平行四边形ABEF 是菱形(有一组邻边相等的平行四边形是菱形).……11分【点 评】 此题难度不大,考查了全等三角形的判定与性质,等腰三角形的性质以及菱形 的判定等基本知识点,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G 、H ,O 九个格点.抛物线l 的解析式为y=(﹣1)n x 2+bx+c (n 为整数).(1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.【考 点】 M163求二次函数的关系式M162二次函数的图象、性质M412图形的对称、平移、旋转【难易度】 中等题【分 析】(1)根据﹣1的奇数次方等于﹣1,再利用待定系数法把点H 、C 的坐标代入抛 物线解析式计算即可求出b 、c 的值,然后利用配方法把函数解析式整理成顶点 式形式,写出顶点坐标即可;(容易题)(2)根据﹣1的偶数次方等于1,再把点A 、B 的坐标代入抛物线解析式计算即 可求出b 、c 的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判 断;(中等题)(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数. (中等题)【解 答】 解:(1)n 为奇数时,y=﹣x 2+bx+c ,∵l 经过点H (0,1)和C (2,1),∴⎩⎨⎧=++-=1241c b c ,解得⎩⎨⎧==12c b ,∴抛物线解析式为y=﹣x 2+2x+1, ……2分配方得:y=﹣(x ﹣1)2+2,∴顶点为格点E (1,2); ……3分(2)n 为偶数时,y=x 2+bx+c ,∵l 经过点A (1,0)和B (2,0),∴⎩⎨⎧=++=++02401c b c b ,解得⎩⎨⎧=-=23c b ,∴抛物线解析式为y=x2﹣3x+2,……5分当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;……7分(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.……11分【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.2.点P 25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=3为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′= °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.【考点】 M32B勾股定理M347垂径定理及其推论M345切线的性质与判定M412图形的对称、平移、旋转M32C锐角三角函数的应用【难易度】中等题【分析】(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′;(容易题)(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(中等题)(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点 A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段 BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.(中等题)【解 答】 解:(1)①过点O 作OH ⊥AB ,垂足为H ,连接OB ,如图1①所示. ∵OH ⊥AB ,AB=32,∴AH=BH=3(垂径定理).∵OB=2,∴OH=1322222=-=-HB OB (勾股定理). ∴点O 到AB 的距离为1. ……2分②当BP 经过点O 时,如图1②所示.∵OH=1,OB=2,OH ⊥AB ,∴21sin ==∠OB OH OBH . ∴∠OBH=30°.由折叠可得:∠A ′BP=∠ABP=30°.∴∠ABA ′=60°.故答案为:1、60. ……4分(2)过点O 作OG ⊥BP ,垂足为G ,如图2所示.∵BA ′与⊙O 相切,∴OB ⊥A ′B ,∴∠OBA ′=90°,∵∠OBH=30°,∴∠ABA ′=120°,∴∠A ′BP=∠ABP=60°,∴∠OBP=30°,∴OG=21OB=1,BG=3(锐角三角函数的应用). ∵OG ⊥BP ,∴BG=PG=3(垂径定理).∴BP=32,∴折痕的长为32. ……7分(3)若线段BA ′与优弧只有一个公共点B ,Ⅰ.当点A ′在⊙O 的内部时,此时α的范围是0°<α<30°. Ⅱ.当点A ′在⊙O 的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA ′与优弧只有一个公共点B 时,α的取值范围是0° <α<30°或60°≤α<120°. ……11分【点 评】 本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对 的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范 围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD ,如图1和图2.现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米) 与t (分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图1,游客甲在BC 上的一点K (不与点B ,C 重合)处候车,准备乘车到出口A ,设CK=x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA 上从D 向出口A 走去.步行的速度是50米/分.当行进到DA 上一点P (不与点D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由:(2)设PA=s (0<s <800)米.若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?【考 点】 M611数学综合与实践M124一元一次方程的应用M143求一次函数的关系式【难易度】 较难题【分 析】 探究:(1)由路程=速度×时间就可以得出y 1,y 2(米) 与t (分)的函数关 系式,再由关系式就可以求出两车相距的路程是400米时t 的值;(中等题)(2)求出1号车3次经过A 的路程,进一步求出行驶的时间,由两车第一次相 遇后每相遇一次需要的时间就可以求出相遇次数;(中等题)发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出 结论;(中等题)决策:(1)根据题意可以得出游客乙在AD 上等待乘1号车的距离小于2个边 长,而成2号车到A 出口的距离大于3个边长,进而得出结论;(中等题)(2)分类讨论,若步行比乘1号车的用时少,就有200280050s s -⨯<,得出s <320.就可以分情况得出结论.(较难题)【解 答】 解:探究:(1)由题意得y 1=200t ,y 2=﹣200t+1600; ……2分 ①当相遇前相距400米时,有﹣200t+1600﹣200t=400,解得:t=3,②当相遇后相距400米时,200t ﹣(﹣200t+1600)=400,解得:t=5. ……5分 答:当两车相距的路程是400米时t 的值为3分钟或5分钟;(2)由题意得1号车第三次恰好经过景点C 行驶的路程为:800×2+800×4×2=8000, ∴1号车第三次经过景点C 需要的时间为:8000÷200=40分钟, 两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意得 情况一需要时间为:200162004800x x -=-⨯, 情况二需要的时间为:200162004800x x +=+⨯ ∵2001620016x x +<-∴情况二用时较多. …… 9分决策:(1)∵游客乙在AD 边上与2号车相遇,∴此时1号车在CD 边上,∴乘1号车到达A 的路程小于2个边长,乘2号车的路程大于 3个边长,∴乘1号车的用时比2号车少. ……11分(2)若步行比乘1号车的用时少,200280050s s -⨯< ,∴s <320.∴当0<s <320时,选择步行.同理可得当320<s <800时,选择乘1号车,当s=320时,选择步行或乘1号车一样 ……13分 【点 评】本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.。

2014年河北省中考数学试卷(解析版)

2014年河北省中考数学试卷(解析版)

2013年河北省中考数学试卷答案与解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)4 230 000人.将4 230 000用科学记数法表示为2.(2分)(2013•河北)截至2013年3月底,某市人口总数已达到.C D.C.=±3=27.(3分)(2013•河北)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每.==C=D.=可得方程=,8.(3分)(2013•河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()9.(3分)(2013•河北)如图,淇淇和嘉嘉做数学游戏:10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()得到y=得到得到11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()∴,=12.(3分)(2013•河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()13.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()14.(3分)(2013•河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()D.πCD=2CE=DE=CD==2﹣×﹣×.15.(3分)(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()<AD16.(3分)(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD﹣DC﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y 与t的函数图象大致是().C D.=13=13A=EF ty=EFB=,EF PN=二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•河北)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.与桌面接触的概率是:=故答案为:18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为1.)÷=×=19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.∠BMF=×BNM=BNF=×20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.第二步;②==5.323.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.,过点(,,则+b24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.与==8∵××,即点的距离为;点在优弧25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),﹣70x﹣﹣[40m%=或26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.=3×,∴;,且B=,得∠.×1+﹣﹣参与本试卷答题和审题的老师有:sd2011;zhjh;caicl;lantin;星期八;HJJ;sks;gbl210;HLing;未来;sjzx;zcx(排名不分先后)菁优网2014年1月9日。

【精选资料】河北省中考数学考试说明

【精选资料】河北省中考数学考试说明
数感主要是指理ห้องสมุดไป่ตู้或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系的变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。
空间观念主要是指根据物体特征抽象出几何图形;根据几何图形描述图形的运动和变化;依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。借助几何直观可以吧复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
核心观念和能力是指:数感、符号感、空间观念、统计观念、推理能力和应用意识等.
基础知识是指:初中数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法.
基本技能是指:能够按照一定的程序与步骤,应用一定的方法和策略进行运算、作图或画图、进行简单的应用和推理.
思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;会运用数学概念、原理、思想和方法辨明数学关系.
创新意识主要是指考查学生独立思考、数学思考,归纳概括得到猜想和规律,并加以验证。
二、命题范围
数学学科命题范围是以《全日制义务教育数学课程标准》第三学段所规定的内容为考试范围,考查七至九年级所学数学基础知识与技能、数学活动过程与思考以及用数学解决问题的意识。我省各地各校的初中毕业生,无论在教学时所使用的是哪种版本的义务教育课程标准实验教科书,在中考前复习时均应以本说明所规定的考试内容及要求为依据.
数学学科命题范围是以《全日制义务教育数学课程标准》第三学段所规定的内容为考试范围,考查七至九年级所学数学基础知识与技能、数学活动过程与思考以及用数学解决问题的意识。我省各地各校的初中毕业生,无论在教学时所使用的是哪种版本的义务教育课程标准实验教科书,在中考前复习时均应以本说明所规定的考试内容及要求为依据.

2014年河北中考《数学考试说明》数与式部分详解及配套中考题

2014年河北中考《数学考试说明》数与式部分详解及配套中考题

一、数与式(一)有理数考试要求1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值,知道|a|的含义(a表示有理数)并解决简单的化简计算问题,会用有理数表示具有相反意义的量,掌握相反数的性质.3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.能对含有较大数的信息作出合理的解释和推断.(二)实数考试要求1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根.2.了解开方与乘方互为逆运算,会用平方运算及计算器求某些非负数的平方根,会用立方运算及计算器求某些数的立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,会求无理数的相反数和绝对值.4.能用有理数估计一个无理数的大致范围.5.了解近似数与有效数字的概念;在解决实际问题中,能按问题的要求对结果取近似值.6.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化),会确定二次根式有意义的条件.(三)代数式考试要求1.理解用字母表示数的意义.2.能分析简单问题中的数量关系,并用代数式表示.3.能解释一些简单代数式的实际背景或几何意义.4.会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的数值进行计算.能通过代数式的适当变形求代数式的值,能根据代数式的值或特征推断代数式反应的规律.(四)整式与分式考试要求1.了解整数指数幂的意义和基本性质,会用科学记数法表示数.2.了解整式的概念,理解单项式的系数和次数,多项式的次数、项和项数的概念,明确他们之间的关系,会进行简单的整式加、减运算和乘法运算(其中的多项式相乘仅指一次式相乘).能合理运用整式加、减运算构造多项式,进一步解决问题.3.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何背景,并能进行简单的计算,能根据需要进行相应的变形.4.会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数).能运用因式分解的知识进行代数式的变形,从而解决有关问题.5.了解分式的概念,会确定分式有意义的条件,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算,能灵活运用恰当的方法解决与分式有关的问题.(1)“数与代数”领域,删除了一些内容:①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)②对有效数字的要求——“了解有效数字的概念”(实验稿P32)(2)新增加的内容▲“数与代数”中既有必学的内容,也有选学的内容①知道|a|的含义(这里a表示有理数)②最简二次根式和最简分式的概念③能进行简单的整式乘法运算中增加了一次式与二次式相乘近几年考试题目实数1.下列各数中,为负数的是()1A.0 B.2C.1D.22.计算30的结果是( )A.3 B.30 C.1 D.03.计算 3³(-2) 的结果是( )A .5B 。

2014年河北中考《数学考试说明》圆部分精典解析(九年级一轮复习老师必备)

2014年河北中考《数学考试说明》圆部分精典解析(九年级一轮复习老师必备)

一、《新课程标准》及《2014年中考说明》中与圆有关知识解读知识点有:切线的判定与性质;圆心角、圆周角、弧的关系;垂径定理;圆柱、圆锥、扇形面积。

过定点到圆上的距离的最值。

频率较低的有圆的定义、圆的对称性。

未出现的考点有:三角形的内切圆;尺规作图三角形的外心、内心;新增弧、弦、直径之间的关系;直径所对圆周角的特征; 切线长定理。

补充说明:2011版新课标中圆的部分删掉圆与圆的位置关系,但在《2014年河北中考说明》中,题型示例最后一道题第20题最后一问探讨的是元和圆的位置关系。

二、《2014年河北中考说明》与《2013年河北中考说明》的不同点在考试内容中新增弧、弦、直径之间的关系,很明显加强对垂径定理的重视;在考试要求中新增“知道圆内接四边形的对角互补”、“知道过圆外一点所画圆的两条切线长相等”,加强了对圆心角与圆周角的关系和直线与圆相切的性质的重视《2014年河北中考说明》与《2013年河北中考说明》题型示例的变化总题数没有变化:2013年的78道题;2014年的78道题;圆增加了5道题。

删掉两道题(圆与特殊四边形的综合图形),增加7道题。

1、选择题由《2013年河北中考说明》中的25道题增加15道题《2014年河北中考说明》变为40道题;其中圆由4道变为6道(12新增2013年中考题垂径定理和扇形面积、14全等和直线与圆相交、24切线的性质和角的计算、26直线和圆的位置关系和计算、29圆锥侧面展开图和最短距离、30新增隐形圆圆心角和圆周角)2、填空题由《2013年河北中考说明》中的20道题减少2道题《2014年河北中考说明》变为18道题;其中圆由2道变为3道(13垂径定理和勾股定理、14圆心角和圆周角、17圆的切线的性质均为新增题)3、解答题由《2013年河北中考说明》中的33道题减少13道题《2014年河北中考说明》变为20道题;其中等题由27道题减少到13道题,较难题由6道题增加到7道题;圆由2道题(一道中等题、一道较难题)增加到4道题(2道中等题、2道较难题).9题新增:切线的性质、切线长定理及二次函数最值计算;12题新增:材料阅读,尺规作图确定外心,相切时角最大;15题新增:切线性质、勾股定理计算、直径所对圆周角为直角、相似、直线和圆的位置关系;20题新增:第③问圆和圆的位置关系。

2014年河北中考《数学考试说明》 三角形,四边形高频考点解析

2014年河北中考《数学考试说明》 三角形,四边形高频考点解析

ABCD 40°120°图1图15-2A D O BC 21MN图15-1AD BM N12AD OB2MO 2014年数学说复习 三角形,四边形部分一说近五年中考题(一),与三角形有关的近五年中考题 2009年17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A '处,且点A '在△ABC 外部,则阴影部分图形的周长为 cm .考点:翻折变换(折叠问题);轴对称的性质.2010年2.如图1,在△ABC 中,D 是BC 延长线上一点, ∠B = 40°,∠ACD = 120°,则∠A 等于 A .60°B .70°C .80°D .90°(填“>”、“<”或“=”). 考点:三角形外角定理 24.(本小题满分10分)在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到 图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB拉长为AO 的k 倍得到图8BD的值.图15-3,求AC考点:相似三角形的性质,垂直的判定与性质,全等三角形的性质2011年9、(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A、B、2 C、3 D、4考点:相似三角形的判定与性质;翻折变换(折叠问题).10、(2011•河北)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为()A、2B、3C、5D、13考点:三角形三边关系17、(2011•河北)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD 沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为2.考点:平移的性质;等边三角形的性质.2012年23.(本小题满分9分)如图131-,点E 是线段BC 的中点,分别以B C ,为直角顶点的EAB EDC △和△均是等腰直角三角形,且在BC 的同侧.(1)AE ED 和的数量关系为___________,AE ED 和的位置关系为___________;(2)在图131-中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH HD ,,分别得到了图132-和图133-;①在图132-中,点F 在BE 上,EGF EAB △与△的相似比是1:2,H 是EC 的中点.求证:.GH HD GH HD =⊥,②在图133-中,点F 在BE 的延长线上,EGF EAB △与△的相似比是k :1,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD GH HD =⊥且(用含k 的代数式表示).考点: 位似图形的性质和全等三角形的判定与性质,26.(本小题满分12分)如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,则AH =_______,AC =_______, ABC △的面积ABC S △=___________.拓展如图152-,点D 在AC 上(可与点A C ,重合),分别过点A C ,作直线BD 的垂线,垂足为E F ,.设.BD x AE m CF n ===,,(当点D 与点A 重合时,我们认为ABC S △=0.(1)用含x m ,或n 的代数式表示ABD S △及CBD S △;(2)求()m n +与x 的函数关系式,并求()m n +的最大值和最小值.(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现请你确定一条直线,使得A B C ,,三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.考点: 求反比例函数的解析式及反比例函数的应用,直线,线段,射线,三角形的周长和面积 及圆与线段的位置关系2013年8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 A .40海里B .60海里C .70海里 D .80海里考点:等腰三角形的判定与性质;方向角;平行线的性质13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 =A .90°B .100°C .130°D .180°考点:三角形内角和定理26.一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些 液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α (∠CBE = α,如图17-1所示).探究 如图17-1,液面刚好过棱CD ,并与棱BB′ 交于 点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如 图17-2所示.解决问题:(1)CQ 与BE 的位置关系是___________,BQ 的长是____________dm ; (2)求液体的体积;(参考算法:直棱柱体积V 液 = 底面积SBCQ ×高AB ) (3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM ⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.考点为:三角函数,三视图等积变换立体图形与平面图形之间的转换等综合题(二),与四边形有关的近五年中考题 2009年3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .5 考点:菱形的性质24.(本小题满分10分) 14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形;(3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)考点:等腰三角形的判定;全等三角形的判定与性质;正方形的性质;旋转的性质图14-1AHC (M )D EB FG (N )G 图14-2A HC DEBFNMAHCDE图BFG MNBACD图12010年4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为 A .6 B .9 C .12 D .15考点:平行四边形的性质14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .考点:数形结合思想 ,矩形的性质18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2考点:正方形的性质25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之A BC D图2 图7图10-1图10-2间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.考点:动图问题,考点:重叠问题;最值,函数问题 2011年6、(2011•河北)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的( )A 、面CDHEB 、面BCEFC 、面ABFGD 、面ADHG考点:折叠问题,正方体展开图PQ 图16(备用图)14、(2011•河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴上对应的数分别为﹣4和1,则BC= .考点:菱形性质 数形结合23、(2011•河北)如图,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE=BK=AG . (1)求证:①DE=DG ; ②DE ⊥DG(2)尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想: (4)当时,请直接写出的值.考点:正方形性质,全等,尺规作图,相似 2012年9.如图4,在ABCD 中,70A ∠=︒,将ABCD 折叠,使点D C 、分别落在点F 、E处(点,F E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A.70 B.40 C.30 D.20考点:平行四边形性质,折叠问题11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b()>,a b则()-等于()a bA.7B.6C.5D.4考点:整式的加减正方形面积20.(本小题满分8分)如图10,某市A B,两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD DC CB--.这两条公路转成等腰梯形ABCD,其中∥,::DC AB AB AD DC=10:5:2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h,返回时沿h,求市区公路外环公路行驶,平均速度是80km/h,结果比去时少用了110的长.考点,等腰梯形背景下列方程解应用题2013年11.如图4,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB. 若NF = NM = 2,ME = 3,则AN =A.3 B.4 C.5 D.6考点:菱形的性质;相似三角形的判定与性质12.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD. 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:作图—复杂作图;矩形的判定19.如图11,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B = °.考点:三角形翻折问题,平行性质二,说中考说明及配套练习题(一)五年中考试题高频考点2009年到2013年五年的河北数学中考题三角形四边形部分高频考点有:全等,相似,三角函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(0,b a≥b a≥(0,一、选择题1.下列计算正确的是()C .()3362a a -=- D .()x x -=--22(容易题) 2.(2011•肇庆)如图是一个几何体的实物图,则其主视图是( )A .B .C .D .) A .2-B .2C .1D .2(容易题) 4.若不等式组⎩⎨⎧≤->+0421x ax 有解,则a 的取值范围是( )A .a ≤3B .a <3C .a <2D .a ≤2 (容易题) A .2到3之间B .3到4之间C .4到5之间D .5到6之间(容易题) 6.(2012•长春)如图,在Rt △ABC 中,∠C=90°.,E ∥AB ,∠AE=42°,则∠B 大小( )A .42°B .45°C .48°D .58°(容易题)7.(2009•德州)若关于x 、y 的二元一次方程组 ⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程2x+3y=6的解,则k 的值为 A .43-B .43C .34-D .34(容易题)8.已知()82=-n m ,()22=+n m ,则=+22n mA .10B .6C .5D .3(容易题)A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5(容易题)A .20或16B .20C .16D .以上答案均不对(容易题)11.()()()()=++-+--225415415412541A .100B .200C .350D .0A .4πB .2πC .πD .3(容易题)13.点P (a+1,a+3)关于y 轴对称的对称点在第一象限,则a 的取值范围是( )A .a >-1B .-3<a <-1C .a >-3D .a <-1(容易题)14.(2008•佛山)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( ) A .BM >DN B .BM <DNC .BM=DND .无法确定(容易题)15.(2008•吉林)某班数学活动小组7位同学的家庭人口数分别为:3,2,3,3,4,3,3.设这组数据的平均数为a ,中位数为b ,众数为c ,则下列各式正确的是( ) A .a=b <cB .a <b <cC .a <b=cD .a=b=c(容易题)16.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( )某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( ) A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人(容易题)17.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为A .3B .4C .5D .6(容易题)18.(2013•台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为2甲s =0.63,2乙s =0.51,2丙s =0.48,2丁s =0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁(容易题)19.(2012•武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( )A .2.25B .2.5C .2.95D .3(容易题)20.(2012•广元)“若a 是实数,则|a|≥0”这一事件是( ) A .必然事件B .不可能事件C .不确定事件D .随机事件21.(2012•山西)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是( ) A .41B .31 C .21D .32(容易题)22.(2012•山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD 、BC 上的点,EF ∥AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( ) A .31B .32 C .21D .43(容易题)23.(2007•河北)在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .3(容易题)24.如图,是△ABC 和⊙O 的重叠情形,⊙O 与直线BC 相切于点C ,且与AC 交于另一点D .若∠A=70°,∠B=60°,则∠COD 的度数为( ) A .50 B .60 C .100 D .120(容易题)25.(2004•河北)把一个小球以20m/s 的速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h=20t-5t 2.当h=20时,小球的运动时间为( ) A .20sB .2sC .()s 222+ D . ()s 222-(容易题)26.(2008•丽水)如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP=x ,则x 的取值范围是( ) A .O <x ≤2 B .2-≤x ≤2C .-1≤x ≤1D .x >2(中等题)27.(2009•芜湖)在平面直角坐标系中有两点A (6,2)、B (6,0),以原点为位似中心,相似比为1:3,把线段AB 缩小,则过A 点对应点的反比例函数的解析式为( )A .y 4= B .y 4= C .y 4== D . y 18=A .B .C .D .30.如图,AB=OA=OB=OC ,则∠ACB 的大小是( )A .40°B .30°C .20°D .35°(中等题)31.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是( )A .13+B .12+C .2.5D .5(中等题)32.(2013四川宜宾)对于实数a 、b ,定义一种运算“⊗”为:a ⊗b=a2+ab ﹣2,有下列命题:①1⊗3=2;②方程x ⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x <4;④点(,)在函数y=x ⊗(﹣1)的图象上.其中正确的是( )A .①②③④B .①③C .①②③D .③④(中等题)33. (2012•杭州)已知关于x ,y 的方程组⎩⎨⎧=--=+ay x a y x 343,其中-3≤a ≤1,给出下列结论: ①⎩⎨⎧-==15y x 是方程组的解;②当a=-2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④A.m+2n=1 B.m-2n=1 C.2n-m=1 D.n-2m=1(中等题)35.(2010•潼南县)如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.(中等题)36.(2012•北京)小嘉在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q(中等题)37.(2012•乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是ABA.1个B.2个C.3个D.4个(中等题)38.(2012•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论错误的是()A.abc>0 B.3a>2bC.m(am+b)≤a-b(m为任意实数)D.4a-2b+c<0A.只有①B.只有②C.①②都正确D.①②都不正确40.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,-1}=-1.若关于x的函数y=min{2x2,a(x-t)2}的图象关于直线x=3对称,则a、t的值可能是()A.3,6 B.2,-6 C.2,6 D.-2,6(较难题)二、填空题(容易题)(容易题)(容易题)6.(2012•大庆)按照如图所示的程序计算,若输入x=8.6,则m= .(容易题)7.(2012•龙岩)为落实房地产调控政策,某县加快了经济适用房的建设力度.2011年该县政府在这项建设中已投资3亿元,预计2013年投资5.88亿元,则该项投资的年平均增长率为 . (容易题)8.(2008•乌兰察布)对于x、y定义一种新运算“*”:x*y=a x+b y,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3= .(中等题)9.在“a2□4a□4”的□中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 .(容易题)10.(2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号)(容易题)11.(2012•上海)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为 .(容易题)12.如图,连接在一起的两个正方形的边长都为1cm,现有一个微型机器人由点A开始按从A→B→C→D→E→F→C→G→A…的顺序沿正方形的边循环移动.(1)第一次到达G点时,微型机器人移动了cm;(2)当微型机器人移动了2013cm时,它停在点.(中等题)13.(2012•台州)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米(中等题)14.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B的度数为(中等题)15.如图,在一圆形跑道上,甲从A点、乙从B点同时出发,反向而行,8分后两人相遇,再过6分甲到B点,又过10分两人再次相遇.甲环行一周需分16.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2014的坐标为(中等题)17.(2012•常州)在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(-1,0)且与⊙P相切,则k+b的值为2.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,请按要求完成下列各题:(1)画AD∥BC(D为格点),连接CD;(2)通过计算说明△ABC是直角三角形;(3)在△ACB中,tan∠CAE= ,在△ACD中,sin∠CAD=(中等题)3.一条环形公路长42千米,甲,乙两人在公路上骑自行车,速度分别为21千米/时,14千米/时。

相关文档
最新文档