如梯度法和共轭梯度法共57页文档

合集下载

优化设计梯度法和共轭梯度法

优化设计梯度法和共轭梯度法

优化设计梯度法和共轭梯度法梯度法和共轭梯度法是常用的数值优化算法,用于求解非线性优化问题。

它们在工程领域中的应用广泛,能够有效解决很多实际问题。

本文将对优化设计梯度法和共轭梯度法进行介绍,并比较它们的优劣。

1. 优化设计梯度法优化设计梯度法是一种通过调整设计变量来最小化给定目标函数的方法。

它基于梯度下降的思想,每一步都会更新设计变量的取值,使得目标函数在设计变量的邻域内最小化。

优化设计梯度法的具体步骤如下:1)初始化设计变量;2)计算目标函数在当前设计变量取值下的梯度;3)根据梯度方向和步长因子更新设计变量;4)重复步骤2和步骤3,直到满足收敛条件。

优化设计梯度法的优点是简单易用,容易实现。

但是它也存在一些问题,比如容易陷入局部最小值,收敛速度慢等。

2. 共轭梯度法共轭梯度法是一种通过迭代算法求解线性方程组的方法,也可以用于非线性优化问题。

它的特点是每一步迭代都要寻找一个新的搜索方向,使得每一次迭代都能够有效利用之前的搜索历史。

共轭梯度法的具体步骤如下:1)初始化设计变量和搜索方向;2)计算目标函数在当前设计变量取值下的梯度;3)根据搜索方向和步长因子更新设计变量;4)计算新的搜索方向,使其与上一次的搜索方向共轭;5)重复步骤2到步骤4,直到满足收敛条件。

共轭梯度法的优点是能够在较少的迭代次数内收敛到最优解,且具有较好的数值稳定性。

然而,共轭梯度法在非精确线搜索时有一定局限性,并且对于非二次凸函数可能陷入非全局最小值。

3. 优化设计梯度法与共轭梯度法的比较在实际应用中,选择合适的优化算法对于问题的解决和效率的提高至关重要。

下面对优化设计梯度法和共轭梯度法进行比较。

(1)收敛速度:在一般情况下,共轭梯度法比优化设计梯度法收敛速度更快。

这是由于共轭梯度法在搜索方向上的选择更加优化。

(2)算法复杂度:优化设计梯度法通常较为简单,易于实现,而共轭梯度法则相对复杂一些,需要额外计算共轭方向。

(3)全局最优解:共轭梯度法在处理非二次凸函数时可能陷入局部最小值,而优化设计梯度法的表现相对较差。

共轭梯度法

共轭梯度法
Hesteness和Stiefel于1952年为解线性方程组而提出
•基本思想:把共轭性与最速下降法相结合,利用已 知点处的梯度构造一组共轭方向,并沿着这组方 向进行搜索,求出目标函数的极小点
4.4共轭梯度法
先讨论对于二次凸函数的共轭梯度法,考虑问题
min f (x) 1 xT Ax bT x c
3, giT d (i) giT gi (蕴涵d (i) 0)
证明: 显然m1,下用归纳法(对i)证之.
当i 1时,由于d (1) g1,从而3)成立,对i 2时, 关系1)和2)成立,从而3)也成立.
4.4共轭梯度法
设对某个i<m,这些关系均成立,我们证明对于i+1
也成立.先证2),
因此
2 / 3 1 5/ 9
d (2)



1/ 1
3

1 9

2 0



5/9 1

从x(2)出发,沿方向d (2)进行搜索,求步长2,使满足 :
f
( x (1)

2d (1) )

min
0
f
(x(2)

d (2))


2 0

4.4共轭梯度法
显然, d (1)不是目标函数在x(1)处的最速下降方向.
下面,我们用FR法构造两个搜索方向.
从x(1)出发,沿方向d (1)进行搜索,求步长1,使满足 :
f
( x (1)
1d (1) )

min
0
f
( x (1)

d (1) )
得1 2 3
A正定,故x是f(x)的极小值点.

共轭梯度法原理

共轭梯度法原理

共轭梯度法原理共轭梯度法是线性代数中一种求解稀疏矩阵下的大规模线性方程组的方法。

它的优点是它具有迭代次数小的特点,同时也能得到比较准确的解。

共轭梯度法基于梯度下降法,但是避免了梯度下降法的缺点。

梯度下降法每一次迭代都需计算整个向量的梯度,这在高纬度数据中非常复杂,同时使用步长较大时又容易产生来回震荡的现象。

共轭梯度法的优点是在每一次迭代都会寻找一个与上次方向不同的方向,这点可以消除梯度下降法的缺陷。

令A为若干个线性矩阵的乘积,如果我们要解矩阵方程Ax=b,其中b是已知向量,求解的x向量是未知向量。

首先,我们可以用梯度下降法求出一个初值向量x0,称之为迭代初始值。

然后,我们可以利用高斯打乘法和高斯消元得到向量P,并设向量R0=Ax0-b,然后再设P逆矩阵为Pt。

共轭梯度法迭代的主要步骤如下:1. 根据目标函数和梯度函数确定初值x0;2. 初始化残差向量r0=b-Ax0,并设置迭代数k=0;3. 设置搜索方向向量p0=r0;4. 使用一维搜索方法(如Armijo步长准则)寻找最优步长αk;5. 将搜索方向向量移动到新的位置:xk+1=xk+αkp,计算新的残差rk+1=rk+αkAp;6. 如果rk+1=0或者迭代次数已达到设定值,则停止迭代;否则:7. 确定下一个搜索方向pk+1,并重复步骤4-6直到满足收敛条件。

共轭梯度法迭代的优点是每一步都在原解空间的一个线性子空间中求解,因此不需要保存全部解向量,从而大大减少了计算量和存储空间,特别适用于高纬度的线性方程组的求解。

在参数优化、图像处理和物理模拟等领域中广泛应用。

在参数优化中,共轭梯度法可以加速大规模函数的梯度计算,从而加快参数搜索的速度;在图像处理中,共轭梯度法常用于求解稀疏线性系统,例如图像压缩、图像去噪和图像恢复等;在物理模拟中,共轭梯度法可以用于求解偏微分方程组、流体力学问题和计算机视觉等领域。

共轭梯度法

共轭梯度法

最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。

对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。

因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。

2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。

(2)计算搜索方向d = -▽f(x(k))。

(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。

共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。

以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。

设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。

共轭梯度法

共轭梯度法
例 3.1 用共轭梯度法求解无约束非线性规划问题
2 2 min f ( x ) = x1 + 2x2 x
⎛1⎞ 给定初始点 x (0) = ⎜ ⎜1⎟ ⎟。 ⎝ ⎠
13
⎛ 2 x1 ⎞ ⎛ 2 0⎞ 2 首先, ∇f ( x ) = ⎜ ⎜ 0 4⎟ ⎟ ,以下利用(4.14)确定 β k 。 ⎜ 4x ⎟ ⎟ ,H= ∇ f ( x ) = ⎜ ⎝ ⎠ ⎝ 2⎠ k=0:
0
k +1
) 与搜索方向 s 0 ," , s k 均正交。同时,利用引理 4.1 马上
设 H ∈ R n×n 是对称正定阵,s ," , s
0
n −1
0
n −1
是非零 G—共轭方向组,x ∈ R 。 若对问题(UQP),
0
n
从 x 出发,依次沿 s ," , s
0
进行最优一维搜索,最终得到 x ,则 x 是(UQP)的最优解。
为保证 H-共轭性,在 x 处必须取 s 为搜索方向,而不能取 α s (α > 0) 为搜索方向。
k k
k
利用定理 4.3,马上得到上述算法的有限终止性。 定理 4.4 设 H ∈ R n×n 是对称正定阵。若用凸二次规划的共轭梯度法求解 (UQP) 时产生迭代点
x1 ," , x K ,则 x K 是(UQP)的最优解,并且 K ≤ n 。
首先由(4.7)知, g = ∇f ( x ) ( j = 0, " , k -1)是 s ," , s 的线性组合,因此根据定理 4.2,
j j 0 j
( g k )T g j =0, j = 0, " , k -1
由于

共轭梯度法在优化问题中的应用

共轭梯度法在优化问题中的应用

共轭梯度法在优化问题中的应用共轭梯度法是一种高效的优化算法,在许多优化问题中都得到了广泛的应用。

它是一种迭代方法,用于解决最小化二次函数的优化问题。

在本文中,我将介绍共轭梯度法的原理和算法,并探讨它在优化问题中的应用。

一、共轭梯度法的原理共轭梯度法的核心思想是通过迭代的方式,找到一个与之前迭代步骤方向相互垂直的搜索方向,以加快收敛速度。

在每一次迭代中,共轭梯度法根据当前的搜索方向更新搜索点,直到找到最优解或达到预定的收敛标准。

具体来说,共轭梯度法从一个初始搜索点开始,计算对应的梯度,并沿着负梯度方向进行搜索。

通过一定的方法找到一个与之前搜索方向相互垂直的新搜索方向,并以一定步长更新搜索点。

迭代过程将重复进行,直到满足收敛标准或达到最大迭代次数。

二、共轭梯度法的算法共轭梯度法的算法包括以下几个步骤:1. 初始化搜索点x0和梯度g0,设置迭代次数k=0。

2. 计算当前搜索方向d_k=-g_k(k为当前迭代次数)。

3. 通过一维搜索方法找到最佳步长α_k。

4. 更新搜索点x_k+1 = x_k + α_k * d_k。

5. 计算更新后的梯度g_k+1。

6. 判断是否满足收敛标准,若满足则算法停止,否则转到步骤7。

7. 计算新的搜索方向β_k+1。

8. 将迭代次数k更新为k+1,转到步骤3。

这个算法保证了每一次迭代中的搜索方向都是彼此相互垂直的,从而加快了收敛速度。

三、共轭梯度法的应用共轭梯度法在优化问题中有广泛的应用,特别是在二次规划、线性规划和非线性规划等领域。

在二次规划问题中,共轭梯度法可以高效地求解线性系统Ax=b,其中A是一个对称正定的矩阵。

由于共轭梯度法的特性,它只需要进行n 次迭代,其中n是问题的维度,就能得到精确的解。

这使得共轭梯度法在大规模线性系统求解中具有重要的应用价值。

在线性规划问题中,共轭梯度法可以用于求解带有线性约束的最小二乘问题。

共轭梯度法通过将线性约束转化为一系列的正交子空间,从而在求解最小二乘问题时能够更快地收敛。

共轭梯度法matlab

共轭梯度法matlab

共轭梯度法matlab中文:共轭梯度法(Conjugate Gradient),是一种非常有效的求解对称大型线性系统的近似解的算法。

使用共轭梯度法来求解线性系统最终收敛于最小值,它是在不构造正定矩阵时,可以快速求解系统的一个有效解法。

拉格朗日方程,线性系统通常表示为Ax = b,其中A为系数矩阵,b为常数矩阵,x 为未知标量或未知向量。

给定矩阵A和b,共轭梯度法可以用来求解x。

共轭梯度法的基本思想是,不断改变梯度的方向直到梯度收敛为零。

梯度收敛的定义是:在不同的两个迭代过程中,两个梯度的乘积的值小于一个特定的参数。

由于梯度的收敛程度越小,时间复杂度也就越低。

matlab中,我们可以使用共轭梯度法导入函数cgs来解决线性系统的代数方程。

语句形式为[x,flag,relres,iter,resvec] = cgs(A,b),其中A是系数矩阵,b为常数矩阵,x 为未知量,flag表示结束状态,relres为相对残差,iter表示迭代次数,resvec为残差向量。

若要解决Ax = b,即:A = [1 2;3 4]我们用matlab cgs 函数进行求解,可以这样写:[x,flag,relres,iter,resvec] = cgs(A,b);flag表示收敛情况,flag=0代表收敛,flag=-1代表系数矩阵A不能被处理。

relres 是收敛的相对误差,iter是迭代次数,resvec是残差向量,x为未知量。

上面的程序可以得到flag=0,relres=1.537e-14,iter=13,resvec=[1.0135e-14]。

上面的解为x=[-1;1],解析解一致,表明matlab cgs函数可以成功求解对称大型线性方程组。

最后,共轭梯度法是一种近似求解线性系统的有效算法,它的优势是具有快速的收敛性,在计算时省去构造正定矩阵的时间,并且稳定。

梯度下降法、牛顿迭代法、共轭梯度法

梯度下降法、牛顿迭代法、共轭梯度法

梯度下降法、牛顿迭代法、共轭梯度法(参见:神经网络->PGM-ANN-2009-C09性能优化)优化的目的是求出目标函数的最大值点或者最小值点,这里讨论的是迭代的方法梯度下降法首先,给定一个初始猜测值 ,然后按照等式k k k k ΡαΧ+=X +1 (1)或kk k k k P =X -X =∆X +α)(1 (2)逐步修改猜测。

这里向量 kP 代表一个搜索方向,一个大于零的纯量kα 为学习速度,它确定了学习步长。

当用 k k k k ΡαΧ+=X +1 进行最优点迭代时,函数应该在每次迭代时都减小,即)()(1k k F F X <X +考虑(3)的)(X F 在k X 的一阶泰勒级数展开:kTk k k k k g F F F ∆X +X ≈∆X +X =X +)()()(1(4)其中,Tk g 为在旧猜测值k X 处的梯度kF g k X =X X ∇≡)( (5) 要使)()(1k k F F X <X +只需要(4)中右端第二项小于0,即<P =∆X k T kk k T k g g α (6)选择较小的正数k α。

这就隐含0<k Tk P g 。

满足0<k Tk P g 的任意向量成为一个下降方向。

如果沿着此方向取足够小步长,函数一定递减。

并且,最速下降的情况发生在k T k P g 最小的时候,容易知道,当k k -g P =时k Tk P g 最小,此时,方向向量与梯度方向相反。

在(1)式中,令k k -g P =,则有k k k k g αΧ-=X +1 (7)对于式(7)中学习速率k α的选取通常有两种方法:一种是选择固定的学习速率k α,另一种方法是使基于学习速率k α的性能指数或目标函数)(1k +X F 在每次迭代中最小化,即沿着梯度反方向实现最小化:k k k k g X X α-=+1。

注意:1、对于较小的学习速度最速下降轨迹的路径总是与轮廓线正交,这是因为梯度与轮廓线总是正交的。

最优化方法3-5共轭梯度法和共轭方向法

最优化方法3-5共轭梯度法和共轭方向法

算法 3.5.1
设目标函数为 f (x) 1 xTGx bT x c,其中G 正定。 2
给定控制误差 。
Step1. 给定初始点 x0及初始下降方向 p0,令k 0。
Step2. 作精确一维搜索,求步长k
f
( xk
k
pk )

min
0
f
( xk

pk
)
Step3. 令 xk1 xk k pk 。
称 Fletcher-Reeves 公式,简称 FR 公式。
k 1

gkT Gpk1 pkT1Gpk 1
Gpk 1

1
k 1
(gk

g
k 1 ) ,
gkT Gpk1

1
k 1
gkT
(gk

g
k 1)

pkT1Gpk 1

1
k 1
(g
k1 k2
pk2 )T
(gk

g
k 1)

1
k 1
g
g T
k 1 k
1
(2)Polak-Ribiere-Polyak 公式

k 1

g
T k
(
gk

g
k 1)
gkT1gk 1
此式是 Polak 和 Ribiere 以及 Polyak 分别于 1969
年提出的,故称 Polak-Ribiere-Polyak 公式,简称 PRP

0,i
1,2,L
,k
(ii) xk1是二次函数在k 维超平面Hk 上的极小点。
证明 由引理 3.5.2,只需证明(i),

共轭梯度法原理

共轭梯度法原理

共轭梯度法原理共轭梯度法是一种用于求解大型稀疏线性方程组的优化算法。

它是一种迭代法,通过寻找一个搜索方向,并在该方向上进行搜索,逐步逼近最优解。

共轭梯度法在优化问题中有着广泛的应用,尤其在求解大规模线性方程组时表现出色。

共轭梯度法的原理可以从最小化函数的角度进行解释。

假设我们要最小化一个二次函数f(x),其中x是一个n维向量。

共轭梯度法的目标是找到一个搜索方向d,使得沿着这个方向移动能够让函数值最小化。

在每一步迭代中,我们需要找到一个合适的步长α,使得沿着搜索方向d移动后能够使函数值减小最快。

共轭梯度法的核心思想是利用历史信息来加速收敛。

在每一步迭代中,共轭梯度法会根据历史搜索方向的信息来选择当前的搜索方向,以便更快地找到最优解。

这种方法可以在较少的迭代次数内找到最优解,尤其对于大规模问题来说,可以节省大量的计算资源。

在实际应用中,共轭梯度法通常用于求解线性方程组Ax=b,其中A是一个对称正定矩阵。

共轭梯度法的迭代过程可以通过以下步骤进行描述:1. 初始化,选择一个初始解x0,计算残差r0=b-Ax0,选择初始搜索方向d0=r0。

2. 迭代更新,在第k步迭代中,计算步长αk,更新解xk=xk-1+αkd,并计算残差rk=b-Axk。

然后根据历史搜索方向的信息,计算新的搜索方向dk= rk+βkdk-1,其中βk是一个根据历史信息计算得到的参数。

3. 收敛判断,在每一步迭代中,可以根据残差的大小来判断算法是否已经收敛。

如果残差足够小,可以停止迭代并得到近似解x。

共轭梯度法的优点在于它对存储和计算资源的要求相对较低,尤其适用于大规模稀疏线性方程组的求解。

同时,由于共轭梯度法利用了历史搜索方向的信息,可以加速收敛,节省计算时间。

然而,共轭梯度法也有一些局限性。

首先,它只适用于对称正定矩阵,对于一般的线性方程组可能不适用。

其次,共轭梯度法可能受到舍入误差的影响,在迭代过程中可能会出现数值不稳定的情况。

总的来说,共轭梯度法是一种高效的优化算法,特别适用于求解大规模稀疏线性方程组。

共轭梯度法

共轭梯度法

v
i 0
p Api
n
i T i
pi
证明:
任意向量 v (v R ) 可以表示成
v c j Pj
j 0
n 1
用 Pi A
T
(i 1,2,,n-1) 左乘式(1)得
n 1 j 0
PiT Av c j PiT APj ci PiT APi
ci P iT Av P i APi
共轭梯度法
(Fletcher-Reeves)
梯度法的特点 优点 迭代过程简单,编制程序较易,一次迭代的工作量较少,计 算机内存量小。 函数值下降方向明确,对初始点没有严格要求。 缺点 跌代过程中走许多弯路,有些情况下,收敛速度较慢。
d ( k ) -f (x ( k ) ) f (x ( k 1) ) d ( k ) 0
f (x )
(1)
f (x* ) A (x(1) 1d1 ) B A x (1) B 1Ad1 0
=
d (1)
f (x(1) ) 1Ad1 0
x*
1d (1)
d (f (x d f (x
( 0) T (0) T
(1)
) 1Ad(1) )
提供共轭向量系的方法有多种,如共轭梯度法,Powell方法等。
(二)共轭梯度法
Fletcher & Reeves (1964)
构造共轭方向的具体方法
x
(k )
x
( 0)
id(i )
i 0
k 1
(1) 初始搜索方向的确定 选定初始点
x (0) ,下降方向 d (0)

x (0) 处的负梯度方向;

线性方程组的共轭梯度法

线性方程组的共轭梯度法

迭代过程
计算方程组的雅可比矩阵A和右端项b,得到线性方程组Ax=b。 计算初始残差r0=b-Ax0。 进行迭代,对于k=0,1,2,...,max_iter,执行以下步骤
迭代过程
01
1. 计算搜索方向pk=-Ak^T。
02
2. 在搜索方向pk上进行线搜索,找到步长λk,使得 Axk+1=b-λk*r^k最小化。
感谢观看
THANKS
定义
线性方程组是由一组线性方程组成的 数学模型,其中包含未知数和已知数。
分类
根据方程的系数矩阵和常数项矩阵, 线性方程组可以分为多种类型,如超 定方程组、欠定方程组和恰定方程组。
线性方程组的求解方法
直接法
通过消元或迭代等方法将方程组化为标准形式,然后 求解。
迭代法
通过不断迭代更新解的近似值,逐步逼近方程的解。
在金融工程中的应用
投资组合优化
共轭梯度法可以用于求解投资组合优化问题 ,以最大化投资收益或最小化风险。
期权定价
在期权定价模型中,共轭梯度法可以用于求解 Black-Scholes方程,以得到期权的合理价格。
风险管理
在风险管理方面,共轭梯度法可以用于求解 风险评估模型中的最优化问题,以评估和管 理金融风险。
解效率。
02
常用的预处理方法包括对角占优预处理、不完全LU
分解预处理等。
03
预处理技术可以消除原始方程组中的病态条件,降低
数值误差的放大效应。
自适应步长调整策略
自适应步长调整策略可以根据上 一步的搜索结果动态调整步长, 提高算法的稳定性和收敛速度。
常见的自适应步长调整策略包括 Armijo线搜索、Goldstein线搜
科学计算

最优化方法 共轭梯度法

最优化方法 共轭梯度法
则从任意一点x(1)出发,分别沿每个坐标轴方向进 行一维搜索,进行一遍(共进n次线搜索)以后,一定 就能得到minf(x)的最优解。
而对于形为上述二次函数,其中G为实对称正定矩 阵,只要我们适当选取Rn的一组{p1,p2,...pn},使得pi 满足条件piTQpj=0(i≠j)
则易见在新的基下,f(x)就成为变量分离的形式。 于是,从任何一个初始点x(1)出发,分别沿每个pi方向 作线搜索,经过一轮后,肯定就能得到最优解,我们把 满足上述条件的n维方向称为是G-共轭的。
共轭梯度法
贺小燕
二、共轭梯度法 共轭梯度法是针对二次函数f(x)=(1/2)xTGx+bTx+c ,x=
(x1,x2,...,xn)T的无约束极小问题,考虑出一种搜索 方向的合理选取方法,然后形式地推广到一般的可微函 数。
首先注意到,对于变量分离的函数 f(x)=f1(x1)+f2(x2)+....+fn(xn)
Hale Waihona Puke 三、算法特点:1、全局收敛(下降算法);线性收敛;
2、每步迭代只需存储若干向量(适用于 大规模问题);
3、有二次终结性(对于正定二次函数, 至多n次迭代可达opt.)
注:对不同的β k公式,对于正定二次函 数是相等的,对非正定二次函数,有不 同的效果,经验上PRP效果较好。
定义:设G为n阶实对阵正定矩阵,若n维方 向x和y满足xTGy=0则称方向x和y是G-共轭 的。
共轭梯度法就是在每个迭代点x(k)处,以负 梯度- ▽f(x(k))和前一个搜索方向pk-1适当组合, 构成和前面k-1个搜索方向p1,p2,...pk-1均两两G共轭的搜索方向pk,故以此命名。
基于上面的考虑,现在的问题是如何构造出 两两G-共轭的方向?

第四章 共轭梯度法

第四章 共轭梯度法
n 设水平集 L x f ( x ) f ( x 0 ) 有界,f 是 R 上具有一阶连续
{ 偏导数的凸函数。 x k } 是由Fletcher-Reeves共轭梯度算法产生的迭代点列。则 { 1) f ( x k )} 为严格单调下降序列,且
lim f ( x k )
k
存在。
n

k 1
g k ( g k g k 1 )
T
d k 1 ( g k g k 1 )
T

gk gk g k 1 g k 1
T
T
共轭梯度法的迭代公式为:
x k 1 x k k d k ( d k 为共轭方向, k 为最佳步长因子)
对二次函数
k
gk dk dk Gdk
(4.7)
2)
k
g k 1 g k 1 gk gk
T
T
(Fletcher-Reeves公式)
(4.8)
3)
k
g k 1 ( g k 1 g k ) (Polak-Ribiere-Polyak 公式)
T
(4.9)
gk gk g k 1 g k 1 dk gk
T T
T
4)
m y
2 T 2 2
,使得
n
y f ( x ) y M y , y R , x L ,
其中 L x R n f ( x ) f ( x 0 ) 是有界水平集。
定理4.9 假定假设条件1和2满足,那么,每r步再开始的PRP和FR共轭梯度 法产生的迭代点列 x k n步二阶收敛,即存在常数c>0,使得
设 又设
fˆkr
0 表示应用到 fˆkr 上的共轭梯度法,并且令 d kr d kr g kr

共轭梯度法求解优化问题

共轭梯度法求解优化问题

共轭梯度法求解优化问题
共轭梯度法是一种用于求解优化问题的迭代算法。

它主要应用于求解大规模线
性方程组和最小二乘问题,特别适用于对称正定矩阵。

共轭梯度法的基本思想是利用梯度信息来进行迭代优化。

它的优点在于每次迭
代只需要计算一次梯度,相对于其他常见的优化算法,如梯度下降法,它的收敛速度更快。

具体来说,共轭梯度法首先需要确定一个初始点和一个初始搜索方向,然后通
过不断迭代来逼近最优解。

在每次迭代中,它会沿着当前搜索方向移动一定的步长,并更新下一个搜索方向。

这个搜索方向是通过利用上一次的梯度和当前梯度之间的差异来确定的,这样可以确保在每次迭代中找到一个相互正交的搜索方向,从而加快收敛速度。

在实际求解中,共轭梯度法通常与预处理技术相结合,以进一步提高求解效率。

预处理技术通过对矩阵进行变换,将其转化为更容易求解的形式。

常见的预处理技术包括对角预处理、不完全Cholesky分解预处理等。

总结来说,共轭梯度法是一种高效的优化算法,特别适用于求解大规模线性方
程组和最小二乘问题。

它通过利用梯度信息来迭代逼近最优解,并通过寻找相互正交的搜索方向来加快收敛速度。

在实际应用中,我们可以结合预处理技术来进一步提高求解效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档