2021届高考数学专题:立体几何之内切球和外接球(答案不全)

合集下载

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

则这个球的表面积是( )
A.16π
B.20π
C.24π
D.32π
4
举一反三-突破提升
2.正六棱柱的底面边长为 4,高为 6,则它的外接球的表面积为
A. 20 B. 25 C. 100 D. 200
4
举一反三-突破提升
已知正三棱锥 P-ABC 的主视图和俯视图如图所 示,
则此三棱锥的外接球的表面积为 ( )
ห้องสมุดไป่ตู้
切(如图).求:
(1)这个正三棱锥的表面积; (2)这个正三棱锥内切球的表面积与体积.
考点一 考点二 考点三
4
举一反三-突破提升
-30-
解:(1)底面正三角形中心到一边的距离为1 × 3×2 6 = 2,则正棱锥
32
侧面的斜高为 12 + ( 2)2 = 3.
∴S 侧=3×12×2 6 × 3=9 2.
,五个顶点都在同一个球面上,
P
设外接球半径为 R,在△OO1A 中有
D
解得 . ∴ .
O1
O C
A B
6
测棱相等的锥体顶点的投影在底面外接圆心
例 7、.若三棱锥 S-ABC 的底面是以 AB 为斜边的等腰直角三角形,AB=2,
SA=SB=SC=2,则该三棱锥的外接球的球心到平面 ABC 的距离为( )
B、体积为 3
D、外接球的表面积为 16
3
1正视图
1
3 1 侧视图
俯视图
点 A、B、C、D 均在同一球面上,其中
是正三角形,
AD 平面 ABC,AD=2AB=6,则该球的体积为 ( )
(A)
(B)
(C)
(D)
平面四边形 ABCD中, AB AD CD1, BD 2, BD CD ,

2021年高考数学(理)立体几何二轮专项提升《专题04空间几何体的内切球、外接球问题》(原卷版)

2021年高考数学(理)立体几何二轮专项提升《专题04空间几何体的内切球、外接球问题》(原卷版)

《2021年数学(理)立体几何二轮专项提升》专题04 空间几何体的内切球、外接球问题一、 高考题型特点:是高考中的热点问题,以小题形式呈现,难度中等偏上.二、重难点:1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.三、易错注意点:(1)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.(2)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.四、典型例题:例1.(2019全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68π B.64π C .62π D .6π例2.(2017天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .例3.(2017江苏卷)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。

记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .例4.(2016全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3 五、强化提升训练:1.已知三棱锥P -ABC 中,PB ⊥平面ABC ,∠ABC =90°,P A =5,AB =BC =1,则三棱锥P -ABC 的外接球的表面积为( )A .12πB .6πC .24π D.46π32.(2019·金水区校级月考)如图是一个空间几何体的三视图,则该几何体的外接球的表面积是()A .24πB .36πC .48πD .60π3.某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25πB.26πC.32πD.36π4.(2019·广州模拟)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π 5. (2019·东北三省四市模拟)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π6.(2019·广州二测)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 7.(2019·南康区校级月考)已知球的直径SC =2,A ,B 是该球球面上的两点,AB =1,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A. 3B.34C.33D.368.(2019·成都七中模拟)《九章算术》中将底面是直角三角形、侧棱垂直于底面的三棱柱称之为“堑堵”,现有一“堑堵”型石材,其底面三边长分别为3,4,5,若此石材恰好可以加工成一个最大的球体,则其高为( )A .4B .3C .2D .19.(2019·东莞市一模)三棱锥P -ABC 中,P A ⊥平面ABC ,∠ABC =30°,△APC 的面积为2,则三棱锥P -ABC的外接球体积的最小值为( )A .4πB.4π3 C .64π D.32π310.体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 11.三棱锥P -ABC 的四个顶点均在同一个球面上,其中P A ⊥平面ABC ,△ABC 是正三角形,P A =2BC =4,则该球的表面积为________.12.(2019·青岛一模)在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PD ⊥面ABCD ,且PD =1,若在这个四棱锥内有一个球,则此球的最大表面积为________.。

高考数学中的内切球和外接球问题(附习题)-精选.pdf

高考数学中的内切球和外接球问题(附习题)-精选.pdf
高考数学中的内切球和外接球问题
一、 有关外接球的问题
如果一个多面体的各个顶点都在同一个球面上, 那么称这个多面
体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接
球的问题, 是立体几何的一个重点, 也是高考考查的一个热点 . 考查
学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要
学习 .
五 .确定球心位置法
例 5 在矩形 ABCD 中, AB 4, BC 3,沿 AC 将矩形 ABCD 折成一
个直二面角 B AC D ,则四面体 ABCD 的外接球的体积为
125
A. 12
125
B. 9
125
C. 6
125
D. 3
D
A
O
C
图4 B
解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知
例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的
表面积为 24 ,则该球的体积为 ______________.4 3 . 2、求长方体的外接球的有关问题
例 3 一个长方体的各顶点均在同一球面上, 且一个顶点上的三条
棱长分别为 1,2,3 ,则此球的表面积为
.14 .
例 4、已知各顶点都在一个球面上的正四棱柱高为 4,
只是希望能有个人,在我说没事的时候,知道我不是真的没事;能有个人,在我强颜欢笑的时候,知道我不是真的开心。 ——张小娴
OA OB OC OD .∴点 O 到四面体的四个顶点 A、B、C、D 的距离相
等,即点 O 为四面体的外接球的球心,如图 2 所示 .∴外接球的半径
5 R OA
V 球 4 R3 125
2 .故
3
6 .选 C.

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.结论1:正方体或长方体的外接球的球心其体对角线的中点.例1 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为3,2,3,则此球的表面积为 .结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.例2 若一个底面边长为32,棱长为6的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 例3 在直三棱柱111ABC A B C -中,22AB =,3BC =,14AA =,π4ABC ∠=,则它的外接球体积为 . 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得.BC 222a b c R ++=(以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 例4 已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1===AB BC AC OO ,则球O 的表面积为 .结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜边的一半就是其外接球的半径.例5 已知三棱锥的四个顶点都在球O 的球面上,AB ⊥BC 且P A =7,PB =5,PCAC =10,则球O 的体积为 .(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1. 可构造正方体的类型:① ② ③ ①正四面体:棱长对应正方体的面对角线.例6 一个正四面体P-ABC 的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 .②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长.例7 设是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===,则球心O 到截面ABC 的距离是 .③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线.例8 在四面体S ABC -中,SA ⊥平面ABC ,90ABC ︒∠=,1SA AC AB ==,则该四面体的外接球的表面积为( )A .23π B .43πC .4πD .5πA BC DA BCPABCP2.可构造长方体和正方体的类型①与②与③ ④①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;例9 如果三棱锥的三个侧面两两垂直,面积分别为6cm 2、4cm 2和3cm 2,那么它的外接球的体积是 .③有三个面是直角三角形的三棱锥;例10 已知球上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2. 所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.例11 在三棱锥S ABC -中,5,17,10SA BC SB AC SC AB ======,则该三棱锥外接球的表面积为 .⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’ 的距离为d ,则有R 2=r 2+d 2.例12 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边 三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(hr R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .例13 在三棱柱ABC-A 1B 1C 1中,AC BC ⊥,若12AA AB ==,当四棱锥11B A ACC -体积最大时,三棱柱外接球的体积为 .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.例14 在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,22PA PB AB ==,若PBC ∆和PCD ∆的面积分别为1和3,则四棱锥P ABCD -的外接球的表面积为 .变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.例15 已知A ,B ,C ,D 为同一球面上的四个点.在△ABC 中,23BAC π∠=,23AB AC ==,AD=6,AD ⊥平面ABC ,则该球的体积为 .二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合.例16正三棱锥的高为1,底面边长为26.求它的内切球的表面积.例17正四棱锥S ABCD -,底面边长为2,侧棱长为3,则其外接球和内切球的半径是多少?结论4:基本方法:构造三角形利用相似比和勾股定理.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. 例18 一个正方体的棱长是4 cm ,它的内切球的体积为__cm 3,棱切球的体积为__cm 3.例19 甲球内切于正方体的各面,乙球内切于正方体的各条棱,丙球外接于正方体,则三球表面积之比为 .(二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31ABCP ABC P S Vr --=⇔3内切球 一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SVr 3=.例20正三棱锥的高为3,底面边长为83,正三棱锥内有一个球与其四个面相切,则球的表面积与体积分别为.(说明:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R.这样求球的半径可转化为求球心到三棱锥面的距离,而点面距离常可以用等体积法解决.)例21 如图,在棱锥P ABCD-中,底面ABCD是正方形,2PD AB==,PD⊥平面ABCD.在这个四棱锥中放入一个球,则球的最大半径为()A.2B.21+C.2 D.21-(三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r,内切球的半径R,则R=r.(2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记截面△ABC的面积为S,周长为C,内切球的半径R,则CSR2=.例22 圆柱的底面直径和高都是6,求该圆柱内切球的半径____.例23 圆锥的高为4,底面半径为2,求该圆锥内切球与外接球的半径比.三、有关内切球和外接球的综合问题1.正四面体的内切球与外接球的半径之比(正四面体的内切球与外接球的两个球心“二心合一”)设正四面体A-BCD的棱长为a,内切球半径为r,外接球半径为R,则OA=OB=R ,OE=r ,且R+r=AE.⊥底面△BCD 为正三角形,∴BE=a 33在ABE Rt ∆中,a aaBE AB AE 36312222=-=-=,∴a r R 36=+ ① 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫⎝⎛= ②由①②,得a r a R 12646==, ∴1:3:=r R , 即球心O 为正四面体高h 的四等分点.例24 求棱长为2的正四面体内切球和外接球的体积.2.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322== . 在O D A Rt 11∆中,得,22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=.1251a R =∴ 因此1:5:21=R R . 例25 一个正三棱柱恰好有一个内切球和一个外接球,则此内切球与外接球表面积之比为 .巩固练习1. 在正三棱锥S ABC -中,6AB BC CA ===,点D 是SA 的中点,若SB CD ⊥,则该三棱锥外接球的表面积为 .2.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( ) A .343aB .23a πC .33a π D .212a3.在平面四边形PACB 中,已知120APB ∠=︒,23PA PB ==,10AC =,8BC =.沿对角线AB 折起得到四面体P ABC -,当PA 与平面ABC 所成的角最大时,该四面体的外接球的半径为 .4.已知正三棱柱111ABC A B C -中,侧面11BCC B 的面积为4,则正三棱柱111ABC A B C -外接球表面积的最小值为( ) A .23πB .43πC .83πD .163π5.已知正方体1111ABCD A BC D -棱长为2,点P 是上底面1111D C B A 内一动点,若三棱锥P ABC -的外接球表面积恰为414π,则此时点P 构成的图形面积为________. 6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.备注:1.三角形内切圆的半径S S S S AO B AO C BO C ABC∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===.①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.。

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

2 3 A. 3
B. 3 3
3 3 C. 2
正方体 ABCD A1 B1C1 D1 的棱长为 2 , MN 是它的内切球的一条弦 (我们把球面上任意两点之间的线段称为球的弦) , P 为正方体表面上 的动点,当弦 MN 的长度最大时, PM PN 的取值范围是 .
,∴ , ,∴

, .
∴外接球的半径为
,∴球的表面积等于
解析:球内接多面体,利用圆内接多边形的性质求出小 圆半径,通常用到余弦定理求余弦值,通过余弦值再利 c 用正弦定理得到小圆半径 sin C 2r ,从而解决问题。
5
A.
正棱锥的外接球的球心是在其高上
,侧棱 PA 与底面 )
例 5 在三棱锥 P-ABC 中,PA=PB=PC=
测棱相等的锥体顶点的投影在底面外接圆心
例 7、.若三棱锥 S-ABC 的底面是以 AB 为斜边的等腰直角三角形,AB=2, SA=SB=SC=2,则该三棱锥的外接球的球心到平面 ABC 的距离为( )
B.
C.1
D.
S
O
,即 .
C M B
A
7

解: 因为 所以 在 且
若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
D
1 r S全 3 2 2 3 r 3


E
r
6 2 S球 85 2 6
1 1 V多面体 S 全 r V S全 内切球 多 面 体3
3
r内 切 球
变式训练:一个正方体内接于一个球,过球心作一截面,如图所示,则截 面的可能图形是( )
考点三 4
组合体的表面积与体积

专题05 立体几何外接球、内切球专题(解析版)

专题05 立体几何外接球、内切球专题(解析版)

专题05 立体几何外接球、内切球专题1、在三棱锥P ABC -中,PA ⊥底面,ABC AB BC ⊥.若2PA AB BC ===,,E F 分别是,PB PC 的中点,则三棱锥P AEF -的外接球的表面积为__________.答案: 5π解析: 根据题意,结合题中几何体的结构,将题中棱锥的外接球问题转化为长方体外接球问题. 【详解】因为PA ⊥底面ABC ,所以PA BC ⊥.又AB BC ⊥,所以BC ⊥平面PAB ,故BC AE ⊥. 又PA AB =,故AE PB ⊥, 所以AE ⊥平面PBC , 所以,AE EF AE PE ⊥⊥. 又//EF BC ,所以EF PE ⊥,故,,EF PE AE 两两垂直.又11,22EF BC PE AE ====, 故该三棱锥外接球的半径与一个棱长分别为1,2,2. 所以三棱锥P AEF -的外接球的半径为122522++=, 故外接球的表面积为25452ππ⎛⎫⨯= ⎪ ⎪⎝⎭.故答案为:5π.2、已知三棱锥O ABC -中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC -的体积为3,则球O 的表面积为( )A .323πB .16πC .52πD .64π答案: C 解析:由题意2AB BC ==,120ABC ∠=︒,可求得ABC ∆的面积,进而通过O ABC -的体积得到三棱锥的高,即球心到平面ABC 的距离.通过外接圆的半径公式,求得截面圆的半径,得到球O 的半径,即得解. 【详解】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=, 1333O ABC ABC V S h h -∆==∴=.又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===因此球O 的半径222313R =+= 球的表面积:2452S R ππ==. 故选:C3、已知球O 是三棱锥P ABC -的外接球,1PA AB PB AC ====,2CP =,点D 是PB 的中点,且72CD =,则球O 的表面积为( ) A .73π B .76π C .72127πD .72154π答案: A 解析:证明AC ⊥平面PAB ,以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球,计算半径得到答案. 【详解】由1PA AB PB AC ====,2CP =,得PA AC ⊥. 由点D 是PB 的中点及PA AB PB ==,易求得32AD =,又72CD =,所以AD AC ⊥,所以AC ⊥平面PAB .以PAB ∆为底面,AC 为侧棱补成一个直三棱柱,则球O 是该三棱柱的外接球, 球心O 到底面PAB ∆的距离1122d AC ==, 由正弦定理得PAB ∆的外接圆半径12sin 603PA r ==︒,所以球O 的半径为22712R d r =+=,所以球O 的表面积为2743S R ππ==.故选:A .4、已知四边形ABCD 是菱形,60BAD ︒∠=,2AB =,将菱形ABCD 沿对角线BD 翻折后,二面角A BD C --的余弦值为13,则四面体ABCD 的外接球的表面积为( ). A .5πB .6πC .7πD .8π答案: B解析: 由菱形ABCD 中,连接AC 和BD 交于O ,求出3OA OC ==,由二面角A BD C --的余弦值为13,可得2AC =,即四面体ABCD 为棱长为2的正四面体求解可得表面积,将正四面体补成一个正方体,求出正方体的外接球半径即可得结果. 详解:由题意,菱形ABCD 中,连接AC 和BD 交于O , 可知AC BD ⊥,即OA BD ⊥,OC BD ⊥, ∵60BAD ︒∠=,2AB =,∴3OA OC ==, ∴AOC ∠为二面角A BD C --的平面角,即1cos 3AOC ∠=, 22212cos 3323343AC OA OC OA OC AOC =+-⋅⋅∠=+-⨯⨯⨯=即2AC =,即四面体ABCD 为棱长为2的正四面体,将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为6, ∵正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为26462S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故选:B.5、已知A ,B ,C 是球心为O 的球面上三点,60AOB ∠=,120AOC ∠=,若三棱锥O ABC -体积的最大值为1,则球O 的表面积为( ) A .12π B .16π C .24π D .36π 答案: B 解析:根据题意分析可知,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大.此时,点B 到平面AOC 的距离达到最大值,为正三角形AOB 的OA 边上的高,根据三棱锥的体积公式计算体积,可解得R ,根据球的表面积公式可得结果.详解:设球O 半径为R ,当平面AOB ⊥平面AOC 时,三棱锥O ABC -体积的最大. 注意AOB 是正三角形,AOC △是顶角等于120︒的等腰三角形, 所以231131sin120123228V R R R R ⎛⎫=︒⨯==⇒=⎪⎝⎭,所以16S π=. 故选:B.6、在四面体ABCD 中,60ACB ∠=︒,90DCA ∠=︒,2DC CB CA ===,二面角D-AC-B 的大小为120°,则此四面体的外接球的表面积是________.答案: (100163)9π+解析:取,AC AD 的中点,M N ,和ABC ∆的中心E ,点N 是ACD ∆外接圆的圆心,点E 是ABC ∆外接圆的圆心,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,在四边形OEMN 中找几何关系,构造方程求解外接圆的半径和表面积.【详解】由条件可知ABC ∆是等边三角形,取,AC AD 的中点,M N ,和ABC ∆的中心E ,过点,E N 分别作平面ABC 和平面ACD 的垂线,交于点O ,120EMN ∠=,60EON =∠,如图:由条件可知,33EM =,60EMG ∠= 30OEH ∠= 331322HN EG ∴==⨯=,316EH GN GM MN ==+=+ 33123tan 301636OH EH ⎛⎫+∴=⋅=+⨯= ⎪ ⎪⎝⎭, 323ON OH HN +∴=+=, ()222222322543239R OD ON ND ⎛⎫++==+=+=⎪ ⎪⎝⎭, 210016349S R ππ+==7、如图,在体积为233的四棱锥P ABCD -中,底面ABCD 为边长为2的正方形,PAB △为等边三角形,二面角PAB C 为锐角,则四棱锥P ABCD -外接球的半径为( )A .213 B .2C .3D .32答案: A解析:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,易得AB ⊥平面PEF ,PH ⊥平面ABCD ,根据四棱锥的体积为233,得到32PH =,进而得到30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥,然后利用截面圆的性质求得外接球的球心再求半径即可. 详解:如图所示:取AB 的中点E ,CD 的中点F ,连E 、PF 、EF ,过点P 作PH EF ⊥,垂足为H. 则AE BE =、CF DF =,有AB EP ⊥,AB EF ⊥, 所以AB ⊥平面PEF ,所以AB PH ⊥,又PH EF ⊥, 所以PH ⊥平面ABCD , 因为四棱锥的体积为233, 所以123433PH ⨯=, 解得32PH =,由3PE =,得30PEF ∠=︒,32EH =,12HF =,1PF =,PE PF ⊥. 三角形PEF 的平面图如下:2PM EM =,N 为EF 的中点,由图可知四棱锥外接球的球心O 为过点M 的EP 的垂线1和EF 的中垂线的交点,设四棱锥P ABCD -外接球的半径为R ,33EM =,23EQ =,13NQ =,33NO =,17212333R =+==. 故选:A8、已知三棱锥A BCD -的四个顶点在球O 的球面上,AB AC AD ==,BCD 是边长为2的正三角形,M 、N 分别为AB 、BC 中点,且MD MN ⊥,则球O 的表面积为__________.答案: 3π解析: 利用已知条件可知三棱锥A BCD -是正三棱锥,结合MD MN ⊥可得AC ⊥面ABD ,即可知ABC 是等腰直角三角形,可得1AB AC AD ===且两两垂直,借助于正方体的外接球,即可求出三棱锥的外接球.详解:由题意知A BCD -为正三棱锥,取BD 中点F ,连接,AF CF , 所以CF BD ⊥ ,AF BD ⊥ ,且AF CF F ⋂= , 所以BD ⊥平面ACF ∴AC BD ⊥,又M 、N 分别为AB 、BC 中点,易知||MN AC , 由已知MD MN ⊥, 所以AC MD ⊥ MD BD D ⋂=, 所以AC ⊥面ABD ,所以AC AB ⊥,即ABC 是等腰直角三角形,因为斜边2BC =,所以1AB AC AD ===且两两垂直,则A BCD -为以A 为顶点的正方体一部分,()222221113R AB AC AD =++=++=, 即243R =所以球O 的表面积为243S R ππ==. 故答案为:3π9、已知三棱锥P ABC -的底面是正三角形,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的体积为( )A B C .6π D 答案: D解析: 设点O 是点P 在底面ABC 的射影,先分析可得O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,再求得外接球的体积即可【详解】设点D 为BC 的中点,则AD BC ⊥,因为点A 在侧面PBC 内的射影H 是PBC ∆的垂心,所以PA BC ⊥,PC AB ⊥, 设点O 是点P 在底面ABC 的射影,则BC ⊥平面PAD ,所以O 一定在AD 上, 因为AB PC ⊥,AB PO ⊥,所以CO AB ⊥,所以O 是底面ABC 的垂心,也是外心,则当,,PA PB PC 互相垂直时体积最大,设球的半径为R ,故选:D10、点,,,A B C D 在同一个球的球面上,,若四面体ABCD 体积)A B .8πC D 答案: A 解析:根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积. 【详解】根据题意知,ABC ∆是一个等边三角形,其面积为334,由正弦定理322sin3r π==知,外接圆的半径为1r =.设小圆的圆心为Q ,若四面体ABCD 的体积有最大值,由于底面积ABC S ∆不变,高最大时体积最大, 所以,DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ∆⨯=,4DQ ∴=,设球心为O ,半径为R ,则在直角AQO ∆中,222OA AQ OQ =+, 即2221(4)R R =+-,178R ∴=则这个球的表面积为:2172894()816S ππ==故选:A . 11、如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,AD BP ⊥,PA AC =,若三棱锥P ABC -外接球的表面积为8π,则三棱锥P ACD -体积的最大值为( )A .23B .12C .34D .24答案: A解析:详解:设AB a ,BC b =,由三棱锥P ABC -外接球的表面积为8π,得外接球的半径2R =.又PA ⊥平面ABC ,AB BC ⊥,所以()2222222228AB BC AP AC AP AP R ++=+===,所以2AP =,所以224a b +=.因为PA ⊥平面ABC ,AD PB ⊥,所以24PB a =+,224a BD a=+,过D 作DE AB ⊥,垂足为E ,则DE ⊥平面ABC ,所以DE PA ∥,所以DE BD PA BP =,所以2224a DE a=+,所以()()()222221124423643432P ABC D ABCACD P ACD a ab abV V S PA DE ab V a a a b ---⎛⎫-=-=-== ⎪++⎝=+⎭△44223623a b b a =≤=⎛⎫+ ⎪⎝⎭,当且仅当2a b b a =,即233a =,263b =时,“=”成立,所以三棱锥P ACD -体积的最大值为23.故选A.12、已知直三棱柱111ABC A B C ﹣中,AB AC ⊥,11AB AC AA ===,若点M 在线段1AA 上运动,则四棱锥11M BCC B -外接球半径的取值范围为( )A .252,28⎡⎤⎢⎥⎣⎦ B .232,24⎡⎤⎢⎥⎣⎦ C .352,28⎡⎤⎢⎥⎣⎦D .332,24⎡⎤⎢⎥⎣⎦ 答案: C解析: 首先把三棱柱体转换为正方体,利用B 、C 、1C 、1B 在球面上,球心G 在线段2OO上,整理出关系式222 R x y=+,且2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,然后利用勾股定理的应用建立二次函数的关系式,再利用二次函数的最值的应用求出结果.详解:将三棱柱111ABC A B C-补成一个正方体1111ABDC A B D C-.设四棱锥体11M BCC B-外接球的球心为G,1AA的中点为1O,1DD的中点为2O,12O O的中点为O,如图所示,则122OO=,32OB=,由于B、C、1C、1B在球面上,所以球心G在线段2OO上,设GM GB R==,1O M x=,1O G y=,则22OG y=-,在1Rt O MG△中,222R x y=+①在1Rt O BG中,2223222R y⎛⎫⎛⎫=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭②,联立①②得2524x y=-,由于12x≤≤,故25228y≤≤,故222225233252,424432R x y y y y⎛⎫⎡⎤=+=-+=+∈⎪⎢⎥⎪⎣⎦⎝⎭所以352,28R⎡⎤∈⎢⎥⎣⎦.故选:C .13、在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 折起,使二面角B AC D --的大小为60,则所得三棱锥A BCD -的外接球表面积为( )A .4πB .529πC .6πD .203π 答案: B解析: 由已知可得ABC 、ACD 都是边长为2的等边三角形,由菱形的对角线互相垂直,可得BED ∠为二面角B AC D --的平面角,即60BED ∠=,作出图形,找出三棱锥A BCD -的外接球球心,利用四点共圆结合正弦定理求解三棱锥A BCD -的外接球的半径,代入球的表面积公式可得结果. 详解:由于四边形ABCD 是边长为2的菱形,且23BD =,则22222AC CE AB BE ==-=,所以,ABC 、ACD 都是边长为2的等边三角形,由于菱形的对角线互相垂直,则BE AC ⊥,DE AC ⊥,所以,BED ∠为二面角B AC D --的平面角,即60BED ∠=,过点B 作平面ACD 的垂线BM ,垂足为点M ,则点M 在线段DE 上,由3BE DE ==,60BED ∠=,可得1322ME MD DE ===, 且BDE 是等边三角形,所以,3BD BE ==,设ACD 的外心为点G ,BD 的中点H ,在平面BED 内,过点G 、H 分别作平面ACD 、BD 的垂线交于点O ,则点O 为三棱锥B ACD -的外接球的球心, 60BDE ∠=,则136012=由于O 、G 、D 、H 四点共圆,可得13603= 所以,三棱锥B ACD -的外接球的表面积为13⎫故选:B.。

高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)

高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)

专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π 答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R,=,即344π33R V R π=∴==,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC△为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ABCP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π32.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BC D ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为()A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC∴-为正方体的一部分,2R,即344π33R V R π∴===,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ACP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π31.答案 B 解析 三棱锥A -BCD 的三条侧棱两两互相垂直,所以把它补为长方体,而长方体的体对角 线长为其外接球的直径.所以长方体的体对角线长是12+22+32=14,它的外接球半径是142,外接球的表面积是4π×⎝⎛⎭⎫1422=14π.2.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π2.答案 D 解析 依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3, 因此可将三棱锥BACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________. 3.答案6π 解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.4.答案 9π 解析 由PB ⊥平面ABC ,AB ⊥AC ,可得图中四个直角三角形,且PC 为△PBC ,△P AC 的公共斜边,故球心O 为PC 的中点,由AC =1,AB =PB =2,PC =3,∴球O 的半径为32,其表面积为9π.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π5.答案 B 解析 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B .6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π6.答案 B 解析 在空间直角坐标系内画出A ,B ,C ,D 四个点,可得BA ⊥AC ,DC ⊥平面ABC , 因此可以把四面体ABCD 补成一个棱为2的正方体,其外接球的半径R =22+22+222= 3.所以外接球的表面积为4πR 2=12π,故选B.7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BCD ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π 7.答案 D 解析 画出对应的平面图形和立体图形,如图所示.AAB BC CD DO在立体图形中,设AC 的中点为O ,连接OB ,OD ,因为平面ABD ⊥平面BCD ,CD ⊥BD ,所以CD ⊥平面ABD ,又AB ⊥BD ,所以AB ⊥平面BCD ,所以△CDA 与△CBA 都是以AC 为斜边的直角三角形,所以OA =OC =OB =OD ,所以点O 为三棱锥A -BDC 的外接球的球心.于是,外接球的半径r =12AC=12CD 2+DA 2=1212+(3)2=1.故外接球的表面积S =4πr 2=4π.故选D .8.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的 外接球的表面积为( )A .6πB .12πC .32πD .36π8.答案 B 解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A -BCD 为鳖臑,AB ⊥平面BCD , 且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________. 9.答案 56π 解析 四面体A -BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A -BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =43.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.10.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点,若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.10.答案 35π 解析 过点E 作EF ∥AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EFFG=3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E ,∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E 外接球的表面积S =35π.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ===,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R ==,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得4R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为( )A .B .12πC .8πD .3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD . 24π专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ==,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R =,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.1.答案 163 解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R =6,因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =22.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=163.2.表面积为( )A .B .12πC .8πD .2.答案 B 解析 表面积为将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.3.答案 7π 解析 在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥CD .在Rt △AED 中,CD =6,∴AE =102.同理BE =102,取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1,取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.同理得OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 4.答案 14π 解析 如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC =AB =a 2+b 2=10,SA =BC =b 2+c 2=13,SB =AC =a 2+c 2=5,从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π.5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.5.答案 22 解析 由题意可知,四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长 方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π×⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,可得x =y =2,∴a =x 2+y 2=22.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD .24π6.答案 A 解析 将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则BE =2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a +--=,解得a =,则正四面体棱长为4倍,所以,设外接球半径为R ,则223R =,则表面积244312S R πππ===.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).AB. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).O 1C 1AA 1B 1O BC Rrh2hO 2A .2a πB .273a πC .2113a πD .237a π答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该 六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A .40π3B .4030π27C .32030π27D .20π5.已知矩形ABCD 中,AB =2AD =2,E ,F 分别为AB ,CD 的中点,将四边形AEFD 沿EF 折起,使二 面角A -EF -C 的大小为120°,则过A ,B ,C ,D ,E ,F 六点的球的表面积为( ) A .6π B .5π C .4π D .3π6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A .32π3B .3πC .4π3D .8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60︒,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A B .2倍 C . D .3倍 8.正四棱柱1111ABCD A B C D -中,2AB =,二面角11A BD C --的大小为3π,则该正四棱柱外接球的表面积为( )A .12πB .14πC .16πD .18π9.正四棱柱1111ABCD A B C D -中,AB =12AA =,设四棱柱的外接球的球心为O ,动点P 在正方 形ABCD 的边上,射线OP 交球O 的表面点M ,现点P 从点A 出发,沿着A B C D A →→→→运动一次,则点M 经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为________.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.2 B. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A .2a πB .273a πC .2113a πD .237a πO 1C 1AA 1B 1O BC Rrh2hO 2答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π1.答案 A 解析 由题知此直棱柱为正三棱柱ABC -A 1B 1C 1,设其上下底面中心为O ′,O 1,则外接球 的球心O 为线段O ′O 1的中点,∵AB =2,∴O ′A =33AB =233,OO ′=12O ′O 1=1,∴OA =O ′O 2+O ′A 2=213,因此,它的外接球的半径为213,故球O 的表面积为28π3.故选A . 2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该。

立体几何外接球及内切球问题

立体几何外接球及内切球问题

立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。

常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。

根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。

2021届高考数学专题:立体几何之内切球和外接球

2021届高考数学专题:立体几何之内切球和外接球

高考数学中的内切球和外接球问题一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为______________.2、求长方体的外接球的有关问题例3 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为,则此球的表面积为 .例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A.π16B. π20C. π24D.π323.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .241,2,3二、构造法(补形法)1、构造正方体例6 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例 7 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A. π3B. π4C. π33D. π6例8 在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分布沿ED 、FC 向上折起,使A 、B 重合于点P ,则三棱锥P-DCE 的外接球的体积为( ). A. π2734 B.π26 C. π86 D. π246例9 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .2、构造长方体例10.已知点A 、B 、C 、D 在同一个球面上,AB ⊥平面BCD ,BC ⊥DC ,若AB=6,AC=132,AD=8,则球的体积是.三.多面体几何性质法例1 1.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.π16B.π20C.π24D.π32四.寻求轴截面圆半径法例12.正四棱锥S-ABCD 的底面边长和各侧棱长都为2,点S 、A 、B 、C 、D 都在同一球面上,则此球的体积为 .五 .确定球心位置法例13.在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为 A.π12125 B.π9125 C.π6125 D.π3125高考题汇编1.(2020年全国三·理科15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .2.(2018年全国三·理科10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .3.(2017年全国三·理科8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π44.(2016年全国三·理科10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A .4πB .92πC .6πD .323π 5.(2020年全国二·理科10)已知ABC ∆是面积为439的等边三角形,且其顶点都在球O 的球面上。

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

C 1
注意:①割补法,② V多面体 3 S全 r内切球
变式训练:一个正方体内接于一个球,过球心作一截面,如 图所示,则截面的可能图形是( )




• A .①② B.②④ C.①②③ D.②③④
D A
D1 A1
C
B O
C1 B1
球的内接正方体的对角线等于球直径。
变式训练:已知正四面体内接于一个球,某人画出四 个过球心的平面截球与正四面体所得的图形如下,
的动点,当弦 MN 的长度最大时, PM • PN 的取值范围是

感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
2023最新整理收集 do something
球与多面体的内切、外接
球的半径r和正方体 的棱长a有什么关系?
.r
a
一、 球体的体积与表面积


二、球与多面体的接、切
定义1:若一个多面体的各顶点都在一个球的球面上,
则称这个多面体是这个球的内接多面体,
这个球多是面这体个的外接球

定义2:若一个多面体的各面都与一个球的球面相切,
,即 为该四面体的外接球的球心
A
O
C
所以该外接球的体积为
03
破译规律-特别提

2 例题剖析-针对讲 解
04
举一反三-突破提

4 举一反三-突破提 升 1、(2015 海淀二模)已知斜三棱柱的三 视图如图所示,该斜三棱柱的体积为 ______.
4 举一反三-突破提 升
2、(2015 郑州三模) 正三角形ABC的2 边3 长
5 正棱锥的外接球的球心是在其 高上

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力•研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为_________________ 27—例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为_________________ 3届.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 _________ .14.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().CA. 16兀B. 20兀C. 24兀D. 32兀3•求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知 8,底面周长为3,则这个球的体积为的半径的常用公式.二、构造法(补形法) 1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 ' 3,则其外 接球的表面积是 __________________ 护.例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外 接球的表面积是 ________ .2故其外接球的表面积S=4「:R =9二.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a 、b 、c,则就可以将这个三棱锥补成一个长方体, 于是长方体的 体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R ,该六棱柱的顶点都在同一个球面上, 且该六棱柱的体积为 解 设正六棱柱的底面边长为x ,咼为h,则有6x =3, 9 3 2U 6 x h,841 x ,2_ h = . 3.二正六棱柱的底面圆的半径 接球的半径R ^-:r 2d 2.体积:小结本题是运用公式R 2 1r = 2 ,球心到底面的距离4兀3VR 3. 3d 2求球的半径的,该公式是求球则有 2R 二、•. a 2 b 2 c 2 .出现“墙角”结构利用补形知识,联系长方体。

2024高考数学专项立体几何系统班7、外接球与内切球

2024高考数学专项立体几何系统班7、外接球与内切球

第7讲外接球与内切球知识与方法1.外接球与内切球是全国高考常考题型,模型杂、方法多,但归纳起来不外乎两大类处理方法.(1)补形:将几何体补全成长方体、正方体、直棱柱等常见几何体,计算外接球半径.(2)构建平面截球模型:寻找截面圆心以及球心到截面的距离,通过222R r d =+计算外接球半径.2.设球的半径为R ,有5个常用计算公式.(1)正方体外接球半径:R =,其中a 为正方体棱长,如图1.(2)长方体外接球半径:R =a ,b ,c 分别为长方体的长、宽、高,如图2.(3)正四面体外接球半径,4R a =,其中a 为正四面体棱长,如图3.(4)直三棱柱外接球半径:R =,其中r 为底面外接圆半径,h 为直三棱柱的高,如图4.(5)圆柱外接球半径:R =,其中r 为底面圆半径,h 为圆柱的母线长,如图5.提醒:①上面列出了一些简单模型的外接球半径计算公式,需结合图形将其记住,还有一些其他模型可以通过补形的方法转化为上述模型处理;②一些不能通过简单补形求解的模型,如球内接正棱锥,球内接圆锥等,可以通过分析几何关系,转化为平面截球模型计算外接球的半径.题组一1.(★★)已知一个正方体的所有顶点在一个球面上.若这个正方体的表面积为18,则这个球的体积为_______.【解析】设正方体的棱长为a ,则2618a =,故a =3322R a ==,其体积34932V R ππ==.【答案】92π2024高考数学专项立体几何系统班7、外接球与内切球【提炼】正方体棱长a 与其外接球半径R 之间的关系为32R =.2.(★★★)如图,在等腰梯形ABCD 中,22AB DC ==,60DAB ∠=︒,E 为AB 中点,将ADE 与BEC 分别沿ED ,EC 向上折起,使点A ,B 重合于点P ,则三棱锥P DCE -的外接球的体积为()【解析】由题意,可将平面图形等腰梯形ABCD 补全为正三角形FAB ,如图,那么在完成题干所描述的翻折后,还可将CDF △沿着CD 翻折,使得点F 也与点P 重合,显然此时得到的是一个棱长为1的正四面体,即三棱锥P DCE -是棱长为1的正四面体,其外接球半径R =343V R π==.【答案】C【提炼】正四面体的棱长为a ,则其外接球半径为64a ,内切球半径为612a ,证明方法可参考附赠的小册子《高考数学常用二级结论》.3.(★★)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.【解析】长方体的外接球半径R =,其中a ,b ,c 分别为长、宽、高,故R =O 的表面积2414S R ππ==.【答案】14π【提炼】设长方体的长、宽、高分别为a ,b ,c ,则其外接球半径2R =4.(★★)已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323π B.4π C.2π D.43π【解析】首先得知道什么是正四棱柱,它指的是底面为正方形、侧棱与底面垂直的四棱柱,也是一种特殊的长方体,高考这种名词都是直接给,必须清楚其结构特征.外接球半径1R ==,故该球的体积34433V R ππ==.【答案】D5.(★★)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】设正四棱柱底面边长为a ,则2416a =,即2a =,其外接球的半径2242R ==,故所求球的表面积2424S R ππ==.【答案】C 6.(★★★)一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为______cm 2.【解析】设正四棱柱的高为h cm ,则1112=,故h =,即该棱柱的表面积(2S =+cm 2.【答案】2+题组二7.(★★★)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()B. C.132D.【解析】这道题可能不少同学会有这么一个困惑,就是题干没给出三棱柱111ABC A B C -为直三棱柱,是不是题干有问题呢?当然不是,事实上,斜棱柱是没有外接球的,所以题干的说法本身就隐含了三棱柱111ABC A B C -为直三棱柱这一条件.本题的直三棱柱可通过补形为长方体来计算外接球半径,如图,三棱柱111ABC A B C -与长方体有相同的外接球,该球的半径为34121322R ==.【答案】C 8.(★★★)3______.【解析】本模型一般称为墙角三棱锥,可补形为正方体(或长方体)来处理.如图,将三棱锥B ACD -补全为正方体,并放到了球体之中,可以看到二者有相同的外接球,正方体棱332R =,故外接球表面积249S R ππ==.【答案】9π【提炼】三条侧棱两两垂直的三棱锥(墙角三棱锥)可补形为长方体或正方体来计算外接球半径.题组三9.(★★★)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为()A.2a π B.273a π C.2113a π D.25a π【解析】如图,设G 为ABC △的中心,ABC △外接圆半径233323r AG ==⨯=,1122a OG AA ==,球的半径22712R r OG a =+,故球的表面积22743S R a ππ==.【答案】B【提炼】①设直三棱柱底面外接圆半径为r ,高为h ,则其外接球半径222h R r ⎛⎫=+ ⎪⎝⎭;②关键是计算底面三角形外接圆半径,对于直角三角形,外接圆半径等于斜边长的一半,若是倍,等于高的23倍;若是普通的三角形,则可利用正弦定理计算外接圆半径.10.(★★★)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA -==,120BAC ∠=︒,则此球的表面积等于______.【解析】如图,在ABC △中,由余弦定理得222122222122BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得BC =.由正弦定理得42sin BC r BAC ==∠,解得2r =,故1112OG AA ==,所以球的半径R ==,故球的表面积2420S R ππ==.【答案】20π题组四11.(★★★)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A. B. C. D.【解析】如图,先计算ABC △外接圆的半径r ,设ABC △边长为a .则2122a ⋅⋅=,解得6a =,所以62sin 60r =︒,解得r =,所以2OG ==,当D 点位于GO 延长线上时,三棱锥D ABC -的高最大,底面积不变,此时体积最大,最大值为()1243V =⨯+=【答案】B【提炼】本题三棱锥D ABC -的体积最大时,D ABC -是正三棱锥,正三棱锥外接球的计算问题,解题的关键是构建AOG △,在这个三角形中,满足222OA AG OG =+,即222R r d =+,其实这就是前一小节的平面截球模型,只要是正棱锥,都可以采用这个办法处理.12.(★★★)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16πC.9πD.274π【解析】如图,由题意,得14PO =,1AO =设外接球的半径为R ,则OA OP R ==,故14OO R =-.在1OO A △中,22211AO OO AO +=,即()2224R R +-=,解得94R =,故该球的表面积28144S R ππ==.【答案】A【提炼】正四棱锥外接球的有关计算,关键是构建1AOO ,在这个三角形中,利用22211OA AO OO =+建立等量关系,其实就是平面截球模型的处理方法.13.(★★★)正四棱锥S ABCD -点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_____.【解析】解法1:如图1,设正方形ABCD 的中心为1O ,由题意,11AO =,11SO =.设正四棱锥外接球球心为O ,半径为R ,则OA R =,11OO R =-,在1AOO 中,22211OO AO AO +=,故()2211R R -+=,解得1R =,即外接球体积为34433V R ππ==.解法2:设正方形ABCD 的中心为1O ,由题意,11AO =,11SO ==,因为11SO AO =,所以1O 即为球心,球的半径为1,体积34433V R ππ==,本题实际的图形是图2.【答案】43π14.(2021·全国甲卷·理·11·★★★)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC BC ⊥,1AC BC ==,则三棱锥O ABC -的体积为()A.212B.312C.24D.34【解析】如图,由题意,2AB =,设D 为ABC △的外心,则1222AD AB ==,2222OD OA AD =-=,所以1112211332212O ABC ABC V S OD -=⋅=⨯⨯⨯⨯ .【答案】A题组五15.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.34πC.2π D.4π【解析】如图,由题意得1OA =,112OO =,故132O A =,圆柱体积233124V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.【答案】B【提炼】圆柱外接球半径222h R r ⎛⎫=+ ⎪⎝⎭,其中r 为底面圆半径,h 为圆柱的高.16.(★★★★)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.【解析】设圆柱的底面半径为r ,高为h ,则2224h r R rh +=≥,当且仅当2h r =时等号成立,故圆柱的侧面积2S rh π=的最大值为22R π,此时球的表面积与圆柱的侧面积之差为222422R R R πππ-=.【答案】22R π题组六17.(★★)正方体的内切球与其外接球的体积之比为()A. B.1:3C.1:D.1:9【解析】设正方体的棱长为a ,则其内切球、外接球的半径分别为12aR =,2R =,故正方体的内切球与其外接球的体积之比3113224343R V V R ππ==.【答案】C【提炼】设正方体的棱长为a ,则其内切球的半径2a R =.18.(★★)如图,圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是______.【解析】如图,设球的半径为R ,则213223423V R R V R ππ⋅==.【答案】3219.(2020·新课标Ⅲ卷·理·15·★★★)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______.【解析】如图,该圆锥内半径最大的球即圆锥的内切球,设其半径为R ,则OB OG R ==,1AB AG ==.由题意得PG =OP R =-,2PB PA AB =-=.在POB 中,222OB PB OP =+,故()224R R +=,解得22R =,即球的体积3433V R π==.【答案】2320.(★★★★)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是()A.4π B.92π C.6π D.323π【解析】要解决这道题,得先搞清楚一件事,那就是最大的球到底是和棱柱的侧面相切,还是与底面相切?如图,可求得底面直角三角形的斜边10AC =,将底面Rt ABC △单独拿出来分析其内切圆半径r ,图中BP NQ r ==,故8PC r =-,即8CM PC r ==-,PN BQ r ==,故6AQ r =-,即6AM AQ r ==-,所以8614210AC CM AM r r r =+=-+-=-=,解得2r =,由123r AA >=知最大球的半径为32,体积3439322V ππ⎛⎫=⨯=⎪⎝⎭.【答案】B题组七21.(★★★)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点.若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解析】设球O的半径为R,当点C位于如图所示位置(OC⊥平面AOB)时,三棱锥O ABC-的体积最大,最大值为321136326RR R⨯⨯==,即6R=,故球O的表面积24144S Rππ==.【答案】C22.(★★★)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.【解析】如图,由题意知,SAC△,SBC△都是以SC为斜边的等腰直角三角形,设球O的半径为R,故31129323S ABCRV R R R-=⋅⋅⋅⋅==,即3R=,故球O的表面积2436S Rππ==.【答案】36π第8讲经典模型之对棱相等知识与方法四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类四面体的外接球问题.如图,设长方体的长宽高分别为a 、b 、c ,则222222222a b t b c n a c m ⎧+=⎪+=⎨⎪+=⎩,三式相加可得2222222m n t a b c ++++=,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R ++=,所以R =.典型例题【例题】四面体ABCD中,AB CD ==AC BD ==,5AD BC ==,则该四面体外接球的体积为_______.【解析】由题意,四面体ABCD是对棱相等模型3464233R V R π⇒===.【答案】3变式1三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥外接球表面积为()C.432π D.43π【解析】由题意,四面体ABCD是对棱相等模型24432R S R ππ⇒====.【答案】D 变式2A 、B 、C 、D四点在半径为2的球面上,且5AC BD ==,AD BC ==,AB CD =,则四面体ABCD 的体积为______.【解析】由题意,四面体ABCD 是对棱相等模型,设AB CD x ==,则R x ==ABCD补全为如图所示的长方体,设长方体的长、宽、高分别为a 、b 、c ,则222222413425a b b c a c ⎧+=⎪+=⎨⎪+=⎩,解得:453a b c =⎧⎪=⎨⎪=⎩,所以四面体ABCD 的体积1134543452032V =⨯⨯-⨯⨯⨯⨯⨯=.【答案】20强化训练1.(★★★)四面体ABCD中,AB CD ==AC BD ==,AD BC ==,则四面体ABCD 外接球的表面积为()A.25πB.45πC.50πD.100π【解析】由题意,四面体ABCD是对棱相等模型,2524502R S R ππ====.【答案】C2.(★★★)半径为1的球面上有不共面的A 、B 、C 、D 四点,且AB CD x ==,BC AD y ==,AC BD z ==,则222x y z ++=()A.16B.8C.4D.2【解析】由题意,四面体ABCD是对棱相等模型,22218R x y z =⇒++=【答案】B3.(★★★)四面体ABCD 中,5AB CD ==,AC BD ==,AD BC ==接球的半径为()A.2B. C.132 D.13【解析】由题意,四面体ABCD是对棱相等模型,132R =【答案】C4.(★★★)在四面体ABCD 中,2AB CD ==,AC BD AD BC ====接球的表面积为_______.【解析】由题意,四面体ABCD是对棱相等模型,2144R S R ππ==⇒==【答案】4π5.(★★★★)在三棱锥P ABC -中,2PA BC ==,PB AC =,PC AB =,且4PB PC ⋅=,则三棱锥P ABC -的外接球的表面积的最小值为________.【解析】设PB AC x ==,PC AB y ==,则4xy =,所以三棱锥P ABC -的外接球半径62R =≥,当且仅当2x y ==时取等号,所以三棱锥P ABC -的外接球的表面积的最小值为246ππ⨯=⎝⎭.【答案】6π6.(★★★★)四面体ABCD 的顶点都在球O 的表面上,4AB BC CD DA ====,AC BD ==,E 为AC 中点,过点E 作球O 的截面,则截面面积的最大值与最小值之比为()A.5:42D.5:2【解析】四面体ABCD是对棱相等模型,所以R =,将四面体ABCD 放入长方体如图,截面面积的最大值为215S R ππ==,当截面面积最小时,截面与OE 垂直,其中O 为球心,设FA a =,FB b =,FC c =,则222222216182216a a b a c b OE b r c b c =⎧⎧+=⎪⎪+=⇒=⇒=⇒=⎨⎨⎪⎪=+=⎩⎩,即截面面积的最小值为222S r ππ==,故12:5:2S S =.【答案】D。

专题2球的内接外切问题-2021年高考数学立体几何中必考知识专练

专题2球的内接外切问题-2021年高考数学立体几何中必考知识专练

专题2:球的内接外切问题(解析版)几何体的外接球问题:题目中涉及几何体外接球体,或者球内接几何体,再或者说球面上有几个点围成几何体,这类题型称之为几何体的外接球问题。

几何体的外接球问题你通常会想到:①画出球体、标明球心→②画出球的内接几何体→ ③寻找突破口建立方程。

这类题80%以上都不用画图,只需要2步搞定:①识别模型→②代入公式,就可以轻松求出外接球半径R 常见几何体的外接球半径:例1.已知正方体1111ABCD A B C D -棱长为2,点P 是上底面1111D C B A 内一动点,若三棱锥P ABC -的外接球表面积恰为414π,则此时点P 构成的图形面积为________. 【答案】π. 【分析】设三棱锥P ABC -的外接球为球O ',分别取AC 、11A C 的中点O 、1O ,先确定球心O '在线段AC 和11A C 中点的连线上,先求出球O '的半径R 的值,然后利用勾股定理求出OO '的值,于是得出11O O OO OO ''=-,再利用勾股定理求出点P 在上底面轨迹圆的半径长,最后利用圆的面积公式可求出答案. 【详解】如图所示,设三棱锥P ABC -的外接球为球O ',a正方体abc长方体1O OVABC正四面体 a分别取AC 、11A C 的中点O 、1O ,则点O '在线段1OO 上, 由于正方体1111ABCD A B C D -的棱长为2, 则ABC 的外接圆的半径为2OA =,设球O 的半径为R ,则24144R ππ=,解得414R =.所以,2234OO R OA '=-=, 则1135244O O OO OO ''=-=-=而点P 在上底面1111D C B A 所形成的轨迹是以1O 为圆心的圆, 由于414O P R '==,所以22111O P R OO =-=, 因此,点P 所构成的图形的面积为21O P ππ⨯=.【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.例2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .10 B .20πC .24πD .32π【答案】C 【分析】各顶点都在一个球面上的正四棱柱,棱柱的体对角线即为球的直径,再由球表面积公式即可求解. 【详解】因为正四棱柱高为4,体积为16,所以正四棱柱的底面积为4,正四棱柱的底面的边长为2, 正四棱柱的底面的对角线为2正四棱柱的对角线为即2R =2424R S R ππ===球,故选:C例3.在直三棱柱111ABC A B C -中,AB =3BC =,14AA =,π4ABC ∠=,则该直三棱柱的外接球体积为______.【分析】由直棱柱的特点可知,外接球球心位于上下底面外心连线的中点处,先通过解三角形得出底面的外接圆半径,然后求出外接球半径,得出外接球的体积. 【详解】在ABC 中,由余弦定理得222π2cos54AC AB BC AB BC =+-⋅=,得AC =所以ABC的外接圆半径112sin 22AC r ABC =⨯==∠.所以该三棱柱的外接球半径2R ===.所以外接球体积34ππ323V ⎛== ⎝⎭.. 【点睛】本题考查直棱柱的外接球半径计算,考查球的体积计算公式,难度一般,找出球心,解出半径是关键.模型一——圆柱外接球模型一个底面半径为r ,高为h 的圆柱,求它的外接球半径.变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如右图所示: 我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型。

高考数学中地内切球和外接球问题(附习题)

高考数学中地内切球和外接球问题(附习题)

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球. 有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1 若棱长为 3 的正方体的顶点都在同一球面上,则该球的表面积为______________ .27 .例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.4 3 .2、求长方体的外接球的有关问题例3 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.14 .例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). CA. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h,则有6x 3, 1x ,29 326 x h,h 3.8 4∴正六棱柱的底面圆的半径 1r ,球心到底面的距离23d .∴外2接球的半径R 2 d . 体积:r24V 3 .RV 3 .3小结本题是运用公式 2 2 2R r d 求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是_______________.9 .例3 若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是.故其外接球的表面积 2S 4 R 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c ,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2 222Ra bc .出现“墙角”结构利用补形知识,联系长方体。

立体几何外接球内切球专题

立体几何外接球内切球专题

立体几何外接球内切球专题1. 引言在立体几何中,外接球和内切球是两个重要的概念。

本文将介绍什么是外接球和内切球,它们在几何问题中的应用以及如何计算它们的相关参数。

2. 外接球2.1 定义外接球是指能够恰好与一个几何体的每个顶点相切的球。

对于不同的几何体,外接球的性质和计算方法也会有所不同。

2.2 外接球的应用外接球在几何问题中有广泛的应用。

例如,在三角形中,外接球的圆心是三条边的垂直平分线的交点,外接球的半径等于三角形的外接圆半径。

这个性质可以用来解决与三角形相关的计算问题。

2.3 外接球的计算方法对于不同的几何体,计算外接球的方法也会有所区别。

以球面为例,如果已知球面上的四个点的坐标,可以通过求解四个点的球心坐标和球半径来计算外接球。

1. 根据提供的四个点的坐标(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4),计算四条边的中点坐标:- 中点1:(x12, y12, z12) = ((x1 + x2) / 2, (y1 + y2) / 2, (z1 + z2) / 2)- 中点2:(x23, y23, z23) = ((x2 + x3) / 2, (y2 + y3) / 2, (z2 + z3) / 2)- 中点3:(x34, y34, z34) = ((x3 + x4) / 2, (y3 + y4) / 2, (z3 + z4) / 2)- 中点4:(x41, y41, z41) = ((x4 + x1) / 2, (y4 + y1) / 2, (z4 + z1) / 2)2. 计算四条边的长度:- 边1长度:d1 = sqrt((x2 - x1)^2 + (y2 - y1)^ 2 + (z2 - z1)^2)- 边2长度:d2 = sqrt((x3 - x2)^2 + (y3 - y2)^ 2 + (z3 - z2)^2)- 边3长度:d3 = sqrt((x4 - x3)^2 + (y4 - y3)^ 2 + (z4 - z3)^2)- 边4长度:d4 = sqrt((x1 - x4)^2 + (y1 - y4)^2 + (z1 - z4)^2)3. 计算外接球的半径R:- R = sqrt(((d1 + d3 + d2) * (d2 + d4 + d3) * (d3 + d1 + d4) * (d4 + d2 + d1)) / 144)4. 计算外接球的球心坐标:- 球心X坐标:X = ((x12 * d3 + x23 * d4 + x34 * d1 + x41 * d2) / (d1 + d2 + d3 + d4))- 球心Y坐标:Y = ((y12 * d3 + y23 * d4 + y34 * d1 + y41 * d2) / (d1 + d2 + d3 + d4))- 球心Z坐标:Z = ((z12 * d3 + z23 * d4 + z34 * d1 + z41 * d2) / (d1 + d2 + d3 + d4))3. 内切球3.1 定义内切球是指能够恰好与一个几何体的每个面相切的球。

2021年高考微专题 空间几何体外接球和内切球

2021年高考微专题 空间几何体外接球和内切球

微专题 空间几何体外接球和内切球1.求外接球半径常用方法【一】高过外心1.例题【例1】已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( )A .2πB .4πC .8πD .16π【解析】∵正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,PA =AB =2, ∴连结AC ,BD ,交于点O ,连结PO , 则PO ⊥面ABCD ,OA =OB =OC =OD 12AC === OP =O 是球心,球O 的半径r =∴球O 的表面积为S =4πr 2=8π.故选:C .2.巩固提升综合练习【练习1】在三棱锥P ABC -中.2PA PB PC ===.1AB AC ==,BC =,则该三棱锥的外接球的表面积为( ) A .8πB .163π C .43π D【解析】因为1,AB AC BC ===,由余弦定理可求得23BAC π∠=, 再由正弦定理可求得ABC ∆的外接圆的半径122sin3BCr π==, 因为2PA PB PC ===,所以P 在底面上的射影为ABC ∆的外心D,且PD =, 设其外接球的半径为R,则有2221)R R =+,解得R = 所以其表面积为24164433S R πππ==⨯=,故选B. 【二】高不过外心1.例题【例1】(1)长方体ABCD −A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =√3,AA 1=1,则球的表面积为______.(2)已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( ) (3)已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A .3B .3C .D .16π【解析】(1)因为长方体ABCD −A 1B 1C 1D 1的8个顶点在同一个球面上, 所以球的直径等于长方体的对角线长,设球的半径为R ,因为AB =2,AD =√3,AA 1=1,所以4R 2=22+√32+12=8,球的表面积为4πR 2=8π,故答案8π.(2)正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为:03,2sin 60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ====+=解得1,2OM MN h === 故棱柱的体积为:133222V Sh ==⨯⨯⨯= 故答案为:D. (3)取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC ==,∴四边形ADCE 为平行四边形 AE DC ∴=,又12DC BC =,12DE BC ∴=,AE DE BE EC ∴===,E ∴为四边形ABCD 的外接圆圆心,设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD , 作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE ==,设AF x =,OP OA R ==,则()22444x x +-=+,解得:2x =,R ∴==∴球O 的体积:3433V R π==本题正确选项:A 2.巩固提升综合练习【练习1】已知三棱柱111ABC A B C -的侧棱与底面垂直,12,4AA BC BAC π==∠=,则三棱柱111ABC A B C -外接球的体积为( )A .B .C .D .【解析】设ABC ∆的外接圆圆心为1O ,111A B C ∆的外接圆圆心为2O , 球的球心为O ,因为三棱柱111ABC A B C -的侧棱与底面垂直, 所以球的球心为12O O 的中点,且直线12O O与上、下底面垂直,且122sin4O C π==,11O O =,所以在1O Rt O C ∆中,OC ==343R π=,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学中的内切球和外接球问题
一、直接法(公式法)
1、求正方体的外接球的有关问题
例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .
例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为
______________.
2、求长方体的外接球的有关问题
例3 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为
,则此球的表面积
为 .
例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).
A.π16
B. π20
C. π24
D.π32
3.求多面体的外接球的有关问题
例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为
8
9,底面周长为3,则这个球的体积为 .
241,2,3
二、构造法(补形法)
1、构造正方体
例6 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.
例 7 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )
A. π3
B. π4
C. π33
D. π6
例8 在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分布沿ED 、FC 向上折起,使A 、B 重合于点P ,则三棱锥P-DCE 的外接球的体积为( ). A. π2734 B.π26 C. π86 D. π24
6
例9 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .
2、构造长方体
例10.已知点A 、B 、C 、D 在同一个球面上,AB ⊥平面BCD ,BC ⊥DC ,若AB=6,AC=
132,AD=8,则球的体积是 .
三.多面体几何性质法
例1 1.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.π16
B.π20
C.π24
D.π32
四.寻求轴截面圆半径法
例12.正四棱锥S-ABCD 的底面边长和各侧棱长都为2,点S 、A 、B 、C 、D 都在同一球面上,则此球的体积为 .
五 .确定球心位置法
例13.在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为 A.π12125 B.π9125 C.π6125 D.π3
125
高考题汇编
1.(2020年全国三·理科15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .
2.(2018年全国三·理科10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且
其面积为D ABC -体积的最大值为
A .
B .
C .
D .
3.(2017年全国三·理科8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A .π
B .3π4
C .π2
D .π4
4.(2016年全国三·理科10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,
8BC =,13AA =,则V 的最大值是( )
A .4π
B .92π
C .6π
D .323
π 5.(2020年全国二·理科10)已知ABC ∆是面积为
4
39的等边三角形,且其顶点都在球O 的球面上。

若球O 的表面积为π16,则O 到平面ABC 的距离为 A. 3 B. 23 C. 1 D. 2
3 6.(2020年全国一·理科10)已知A 、B 、C 为球O 的球面上的三个点,⊙O 1为ABC ∆的外接圆。

若⊙O 1的面积为π4,1OO AC BC AB ===,则球O 的表面积为
A. π64
B. π48
C. π36
D. π32
7.(2019年全国一·理科12)已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长
为2的正三角形,E ,F 分别是P A ,AB 的中点,△CEF =90°,则球O 的体积为
A .
B .
C . D
高考题汇编参考答案 1.π32
2.B
3.B
4.D
5.C
6.A
7.D。

相关文档
最新文档