建筑隔震与消能减震知识分享
上海建筑消能减震及隔震技术标准
上海建筑消能减震及隔震技术标准随着城市建设的不断发展,建筑结构的安全与抗震性越来越受到人们的关注。
尤其是在上海这样一个地处地震带的城市,建筑消能减震及隔震技术标准显得格外重要。
本文将深入探讨上海的建筑消能减震及隔震技术标准,带你一起了解这一重要领域的最新进展。
一、建筑消能减震技术概述1.1 什么是建筑消能减震技术?建筑消能减震技术是一种利用特定的材料和结构设计,来减少地震对建筑物造成的破坏和损失的技术。
它主要包括减震、隔震和消能三大技术手段。
1.2 建筑消能减震技术的重要性在地震发生时,建筑物的抗震性能直接关系到人们的生命安全和财产安全。
加强建筑的抗震能力,采用合适的消能减震技术,对于城市的安全建设至关重要。
二、上海建筑消能减震技术标准2.1 上海地震设计规范上海地震设计规范中明确了建筑抗震设计的基本要求和技术规定。
其中,对建筑消能减震技术提出了具体的指导和要求,为上海地区的建筑消能减震技术标准提供了依据。
2.2 上海建筑消能减震技术的最新发展近年来,上海在建筑消能减震技术领域取得了许多重要进展。
包括开展了一系列研究项目,推广了先进的消能减震技术,以及加强了建筑企业的技术培训和指导等方面。
2.3 上海建筑消能减震技术标准的应用上海建筑消能减震技术标准已经在许多重点建筑项目中得到应用,并取得了良好的效果。
通过实际案例的分析和总结,可以为未来类似项目的施工和设计提供经验和参考。
三、个人观点和理解在我看来,上海建筑消能减震技术标准的制定和实施对于城市的安全发展至关重要。
只有不断完善和提高建筑的抗震能力,才能有效保障人民的生命财产安全。
我对上海在建筑消能减震技术领域的努力和成就表示由衷的钦佩和赞扬。
总结回顾通过本文的探讨,我们更深入地了解了上海建筑消能减震及隔震技术标准的重要性和发展情况。
建筑消能减震技术的应用将极大地提升城市建筑的抗震能力,保障人们的生命安全。
我们希望上海在这一领域持续取得更多的进步,为城市的可持续发展做出更大的贡献。
浅述建筑结构减震与消能减震设计
浅述建筑结构减震与消能减震设计建筑结构减震与消能减震设计是目前建筑工程设计领域中重要的技术方向,对于提高建筑结构的抗震能力和保护人员生命财产安全具有至关重要的作用。
本文将从基本概念、设计思路、主要方法和应用案例等方面进行阐述。
一、基本概念建筑结构减震是指通过一系列的减震措施,降低地震对建筑结构的影响,进而保护建筑结构的完整性和稳定性。
而消能减震是指在地震发生时,通过消除地震能量的传递和吸收,使建筑结构免受破坏。
二、设计思路建筑结构减震与消能减震设计的核心思路是通过改变建筑结构的刚度和能量耗散机制,将地震能量转化为非结构能量,减小地震对建筑结构的作用力。
常见的设计思路包括增加耗能装置、减小刚度、提高阻尼等。
三、主要方法1.增加耗能装置:通过在建筑结构中增加耗能装置,如高阻尼橡胶支座、摩擦阻尼器等,将地震能量转化为热能和摩擦能,从而减小建筑结构的震动响应。
2.减小刚度:通过采用灵活的结构系统,如钢结构、框架结构等,减小建筑结构的刚度,从而降低地震作用力。
3.提高阻尼:通过在建筑结构中增加阻尼装置,如粘滞阻尼器、液体阻尼器等,提高结构的阻尼比,减小地震能量的传递效应。
四、应用案例1.台北101大楼:台北101大楼是世界上首座采用金属球阻尼器的大楼,通过在楼顶设置800吨的金属球阻尼器,将地震能量转化为球体的动能和热能,有效减小了地震对大楼的影响。
2.八达岭长城高速公路桥:该桥采用了摩擦阻尼器作为剪力连接件,通过摩擦力将地震能量转化为热能和摩擦力,使桥梁在地震作用下能够有一定的位移和变形,保证桥梁结构的完好性。
3.日本东京迪士尼乐园:该乐园采用了高阻尼橡胶支座作为支撑装置,通过橡胶材料的阻尼特性,将地震能量转化为热能和弹性变形,保护了乐园内的建筑结构和设施。
综上所述,建筑结构减震与消能减震设计是提高建筑结构抗震性能的重要手段,通过增加耗能装置、减小刚度、提高阻尼等方法,能够有效降低地震对建筑结构的破坏作用。
试析建筑结构的隔震、减振及振动控制措施
试析建筑结构的隔震、减振及振动控制措施一.隔震与消能减振原理建筑结构在地震过程能够相互消除荷载力,使建筑结构变成良好的变形吸收形式,并且在建筑建设中通过建筑自身能力来提高主要因素,在建筑结构中,隔震和消能是一套系统。
建筑结构处于小型地震中可以起到良好的低于作用,但是在7级以上地震时,这种减灾能力就显得十分脆弱。
二.主动控制主动控制是使用现代结构控制技术,对建筑的地震结构施行联机观测,在根据实际监控分析来对结构进行调整。
对结构提高控制力,使其实现自动控制。
主动控制在很多结构中和动力形态中,都被设置到实际允许的控制范围,是结构在调整的过程中保护整体的问题性。
主动控制是电子机械和工程结构的产物,它在结构尺寸和荷载的控制上来说十分稳定,但是在建设成本和投资上十分巨大,如果以保护单体建筑的角度来说十分适用,并且控制形式有效。
三.油阻尼板主动控制这种控制结果能够兼顾被动控制和主动控制等优点,并且在控制效果上能够通過电能调节改变结构性能。
非常适合结构工程的抗震设计。
通过调控油孔流量可以使几点控制阀门的调节度加大,并且通过流动阻尼达到更换的目的。
我国已经能够自主研发变阻尼半主动控制系统,根据不同的油路设计方案来提高应用设备的控制方法,提出合理的分析设计软件。
根据电液伺服阀发展成变阻尼半主动控制系统。
以此提出了两套油路设计方案,另外这项技术针对隔震房屋的隔震层中,应用广泛,在变阻尼半主动控制非常活跃。
阻尼的减振效果十分有限。
尤其以自由度体系基座受到运动机理中,阻尼越大,结构的相对运动移位会使速度和加速度的不断减少,对绝对运动干扰程度较低,当干扰频率和自振频率相互比较,阻尼的移动会加大位移有研究表明当结构周期地震发生地震情况下会出现类似的情况,阻尼增加中能够根据荷载进行制动,以此降低地震反应,其中包括对位移和加速度的控制反应。
变阻尼的半主动控制效果没有上限阻尼的控制效果好,这是因为在对中和短周期结构下,抗震设计都是针对短周期,不惜要使用半主动阻尼,但是在长周期的结构中,半主动变阻尼的控制方法与上限阻尼相比时能够可以降低速度的反应,对相对的反应也不会出现不利影响。
解析基础隔震、消能减震、振动控制的原理和分类
2,解析基础隔震、消能减震、振动控制的原理和分类。
工程中的隔震(振)分两种情况:(书本内容)(1)阻止振动的输出。
(主动隔震)(2)阻止振动的输入。
(被动隔震)第一种隔振情况实际上是力的隔离,即使动力机器产生的不平衡力或地铁车辆产生的冲击力降低,不传入或减少传入到地基中。
第二种隔振情况实际上是基底振动的隔离。
隔震的原理:隔震的基本思想就是在建筑与基础之间设置一个柔软的隔震层,利用水平刚度相对很小的隔震装置减少地震对上部结构的作用。
在建筑的上部与下部结构之间设置隔震支座,当发生地震时,隔震支座上下结构发生相对水平位移使隔震支座发生弹性变形耗散能量、使结构的基本周期由常规的0.3s~1.2s延长至隔震结构的2.0s~4.0s、使上部结构的震动近似为缓慢的“整体平动”和使结构处于弹性状态,从而地震作用大大减少。
建筑隔震的分类:1,按技术类型划分:1)叠层橡胶支座隔震技术2)摩擦滑移隔震技术3)滚动隔震技术4)碟形弹簧竖向隔震技术5)复合隔震技术2,按隔震层位移划分:1)基础隔震2)层间隔震3)大跨空间屋架或网架支座隔震4)房屋内部局部隔震消能减震的原理:结构消能减震技术是在结构某些部位(如支撑、剪力墙、连接缝或连接构件)设置耗能(阻尼)装置(或元件)。
在主体进入非弹性状态前装置(或元件)率先进入耗能工作状态,通过该装置产生摩擦、弯曲(或剪切、扭转)弹塑性(或粘弹性)滞回变形来耗散能量或吸收地震输入结构的能量,以减少主体结构的地震反应。
耗能元件分为:1)数度相关型耗能元件,如线性粘滞或粘弹性阻尼器。
2)位移相关型耗能元件,如金属屈服型或摩擦型阻尼器。
3)调谐吸震型耗能元件,如TMD,TLD。
振动控制原理:在工程结构的特定部位装设某种装置(例如隔震垫等)或某种机构(例如消能支撑、消能剪力墙、消能节点、消能器等)或某种子结构(例如调频质量等)或施加外力(外部能量输入)或调整结构的动力特性,使工程结构在地震(或风)的作用下,其结构的动力响应(加速度、速度、位移)得到合理的控制,确保结构本身及结构中的人员仪器设备的安全和处于正常的使用环境状况。
10.1 结构隔震与消能减震设计基础知识
概述
结构隔震与消能减震设计基础知识
• 10.1 结构隔震概念 • 10.2 结构消能减震概念
结构隔震概念
结构基础隔震体系是在上部结构物底部与基础顶面(或底部柱顶)之间设置隔震层而形成的 结构体系,隔震装置多采用橡胶隔震支座,具有很强的垂直支持力和水平方向保持橡胶柔性 的特点。 较大程度地减少了上部结构的地震作用,其变形集中在隔震层,上部结构基本上呈现刚体运 动的特点
抗震结构
隔震结构
楼层
位移
结构隔震概念
• 隔震结构的减震机理
典型地震动的卓越周期约为0.1-1.0s,自振周期为0.1-1.0s的中低层结构在地震 时容易发生共振而遭受破坏。隔震系统通过减少结构刚度使得结构自振周期 增大(通常大于2s),从而避开地震动卓越周期,较大程度地减少了上部结 构的地震作用,从而达到隔震的目的。 隔震结构通过延长结构的自振周期,减少作用在上部结构的地震作用,但隔 震层的位移会显著增大
第十章 结构隔震与消能减震设计基础
知识
概述
如何抗震?
1. 地震作用的计算
抗力>地震作用
2. 结构分析
3. 抗震设计要点——概 念设计与构造措施
保证强度、变形能力; 考虑常遇地震、罕遇地 震情况。
抗震新技术
传统的抗震方法——提 高强度,增加刚度
减少结构的地震 输入; 防止局部地震作 用放大。
新技术——着眼于减少 地震作用
结构隔震概念
规范反应谱
1994年北岭地震记录 相当于三类场地 加速度峰值35gal
结构隔震概念
• 隔震层系统的特性
(1)承载特性:竖向强度、刚度; (2)隔震特性:正常使用时保持 弹性,中强地震时为柔性; (3)复位特性:震后回复到初始 状态 (4)耗能特性:具有较大的阻尼, 地震时耗散能量
隔震与消能减震设计
的具体规定,其变形特征接近剪切变形,最大高度应满足《抗震规范》 非隔震结构的要求;高宽比大于4或非隔震结构相关规定的结构采用隔 震设计时,应进行专门研究。 • (2)建筑场地宜为I、II、IQ类,并应选用稳定性较好的基础类型。
• 最后,需要说明的是:在我国目前的建设中,隔震、消能减震技术 的主要使用范围是可增加投资来提高抗震安全的建筑,除了重要机关、 医院等地震时不能中断使用的建筑外,一般建筑经方案论证后也可使 用,即可用于投资方愿意通过投资来提高安全要求的建筑。
上一页
返回
第二节隔震与消能减震建筑结构设计的 一般规定
• 建筑结构隔震设计和消能减震设计确定设计方案时,除应符合现行 《抗震规范》对一般建筑物抗震设防要求的规定外,尚应与采用抗震 设计的方案进行对比分析。
• 消能减震是通过在结构物某些部位(如支撑、剪力墙、节点、连接缝 或连接件、主附结构件等)设置消能部件(由消能器、连接支撑等组成), 通过消能装置产生摩擦弯曲(或剪切、扭转)等变形,来消散或吸收地 震输入结构中的能量,以消耗输入到上部结构的地震能量、减小主体 结构的地震反应,从而避免结构产生破坏或倒塌,达到预期的防震要 求,工作原理如图9-5所示。图9-6为某些工程中应用的消能减震装置。
第三节隔震房屋设计要点
• ③橡胶隔震支座在重力荷载代表值作用下的竖向压应力,不应超过 表9-1的规定。
• (4)隔震层的布置、竖向承载力、侧向刚度和阻尼,应符合下列规定: • ①隔震层宜设置在结构的底部或下部,其橡胶隔震支座应设置在受
力较大的位置,间距不宜过大,其规格、数量和分布应根据竖向承载 力、侧向刚度和阻尼的要求,通过计算确定。隔震层在罕遇地震下应 保持稳定,不宜出现不可恢复的变形;其橡胶支座在罕遇地震的 • 水平和竖向地震同时作用下,拉应力不应大于1 MPa • ②隔震层的水平动刚度和等效茹滞阻尼比,可按下列公式确定:
建筑结构的隔震与消能减震的分析研究
建筑结构的隔震与消能减震的分析研究建筑结构的隔震与消能减震是为了减少地震对建筑物造成的破坏而进行的研究与分析。
随着地震灾害的不断发生,科学家们逐渐认识到地震的危害性,并开始研究如何抵御地震的力量,保护建筑物及其内部人员的安全。
隔震与消能减震是两种常用的方法,下面将对它们进行分析研究。
隔震是指在建筑物与地震地面之间设置一层隔离体,通过隔离体的减振效果来减少地震力对建筑物的影响。
隔震体通常采用橡胶、弹簧等材料,可以有效地吸收和减小地震力的传递。
隔震减震的核心思想是利用隔离体的弹性特性,使地震力在穿越建筑物时减小,从而保护建筑物的完整性和稳定性。
隔震的优点是可以吸收并分散地震能量,减少建筑物所受到的地震冲击力;缺点是隔震体的安装和维护成本较高,需要对建筑物进行一定的结构调整。
消能减震是指在建筑物内部设置一种消能装置,通过消能装置吸收并转化地震能量,达到减小地震力的效果。
消能装置通常采用液体或橡胶等材料,可以吸收地震能量,并通过内部的阻尼机构将其耗散释放出去。
消能减震的核心思想是在地震发生时,通过消能装置将地震能量转化为不显式的损耗能量,从而减少地震对建筑物的破坏。
消能减震的优点是可以较好地保护建筑物的结构完整性和稳定性,减小地震危害;缺点是需要对建筑物进行一定的结构调整,且消能装置的维护和更新成本较高。
隔震与消能减震是建筑结构防护的重要手段,它们可以有效地减少地震对建筑物的破坏,提高建筑物的抗震性能。
然而,隔震与消能减震并非万能之策,还需要结合建筑物的实际情况和地震影响评估,进行综合分析和设计。
此外,隔震与消能减震也需要注意结构的稳定性和安全性,避免降低了地震危害而牺牲了建筑物的整体安全性。
总的来说,隔震与消能减震是建筑结构抗震设计中的重要内容,通过结构调整和装置设置,减小了地震对建筑物的影响。
随着科学技术的不断进步,隔震与消能减震技术也在不断改进和完善,为人们的生命财产安全提供了有力保障。
然而,隔震与消能减震技术仍然需要进一步研究和探索,以适应不同地震条件和建筑物类型的需要,提高抗震能力,实现更加可持续和安全的建筑结构。
建筑隔震与消能减震设计
建筑隔震与消能减震设计建筑隔震与消能减震设计是在建筑设计的过程中考虑到地震与震动的因素,并采取一系列措施,以减少地震造成的破坏和危险。
随着科技的发展,建筑隔震与消能减震设计已经成为建筑工程设计的重要组成部分。
下面将重点介绍建筑隔震与消能减震设计的原理、方法和应用。
建筑隔震设计的原理主要是通过将建筑结构与地面分离,使建筑对地震产生的震动具有能动响应,从而减小地震对建筑结构的破坏作用。
常见的隔震装置包括摩擦隔震器、弹簧隔震器、液体阻尼器等。
这些装置能通过减震弹簧、摩擦等消耗部分地震能量,减小地震产生的冲击力,从而减小地震对建筑的破坏。
消能减震设计的原理主要是通过在建筑结构中设置减振器,将地震的能量转化为其他形式,达到减轻结构震动和减小地震影响的效果。
常见的减震器包括液体阻尼器、颤振器、摆锤阻尼器等。
这些装置能有效消耗地震能量,并通过减振措施减小建筑结构的震动,从而减轻地震对建筑的破坏。
建筑隔震与消能减震设计的方法包括减震隔震体系设计、基础隔震设计和结构减震设计。
减震隔震体系设计是指通过设置隔震垫、减震器等减震装置,将建筑结构与地面分离,从而减小地震对建筑的冲击。
基础隔震设计是指在建筑的基础中设置隔震垫、减震器等装置,将地震产生的冲击力传导到地下,从而减小地震对建筑的影响。
结构减震设计是指通过设置减振器、增加耗能装置等措施,减小地震对建筑结构的振动,从而减小地震对建筑的破坏。
建筑隔震与消能减震设计已经在实际工程中得到广泛应用。
例如,日本的隔震建筑技术被广泛应用于地震频繁的地区。
这些建筑结构采用隔震装置,通过地震时的隔离和衰减作用,大大减小地震对建筑的破坏。
同时,在高层建筑中广泛使用了减振器和液体阻尼器等减震装置,通过抑制结构的振动,有效减少了地震对建筑的影响。
综上所述,建筑隔震与消能减震设计是一种通过隔震和消能装置来减小地震对建筑的破坏和影响的设计方法。
在实际工程中,通过合理地应用隔震器、减振器等装置,可以提高建筑的地震抗灾能力,确保人们的生命财产安全。
新《减震抗震设计规范》中的隔震与消能减震
新《减震抗震设计规范》中的隔震与消能减震隔震与消能减震是新《减震抗震设计规范》中的两个重要概念。
隔震是指通过设置隔震层,将结构与地震动进行隔离,使结构对地震的响应减小。
消能减震则是通过在结构中设置能够吸收和耗散地震能量的装置,实现地震能量的消耗和减震效果。
隔震是一种较为传统的减震措施,它通过设置隔震层,将结构与地震动进行隔离,使结构受到的地震力和位移减小,从而减小结构的破坏程度。
隔震层通常由隔震支座、隔震垫板等组成,这些装置能够在地震过程中自由移动,吸收和消散地震能量。
隔震的优点是能够有效减少结构的响应,保护结构的完整性,减小地震灾害的损失。
然而,隔震也存在一些问题,如隔震支座和隔震垫板的制造和安装难度较大,需要考虑地震过程中的水平限制等。
消能减震是相对较新的一种减震措施,它通过在结构中设置能够吸收和耗散地震能量的装置,实现地震能量的消耗和减震效果。
这些装置通常由减震器、摇摆框架等组成,它们能够在地震过程中发挥吸能和耗能的作用,从而减小结构的震动响应。
消能减震的优点是能够在地震过程中吸收和耗散大量的地震能量,降低地震对结构的破坏力度,提高结构的抗震性能。
然而,与隔震相比,消能减震要求设备的制造和维护难度较大,需要考虑装置的可靠性和耐久性等问题。
新《减震抗震设计规范》对隔震与消能减震提出了较为详细的要求和规范。
其中,对于隔震层的设置,规范要求应根据结构的抗震性能要求和场地条件进行合理的选择。
对于消能减震装置的设计,规范要求需要考虑装置的材料、减震效果以及装置的可靠性和耐久性等方面。
同时,规范还对隔震与消能减震的施工和验收提出了一系列具体的要求和标准,以保证减震措施的有效实施和质量控制。
总的来说,隔震与消能减震是新《减震抗震设计规范》中重要的减震措施。
它们通过不同的方式和装置,实现对结构的减震和减小地震响应的效果。
隔震通过隔离结构与地震动,减小结构的破坏程度;消能减震通过吸能和耗能装置,消耗地震能量,提高结构的抗震能力。
隔震与消能减震设计
隔震与消能减震设计隔震与消能减震设计是在工程结构设计中常常遇到的问题。
隔震设计是通过减少结构与地基之间的相互作用,将地震的水平振动转移到隔离结构上,从而减小地震对结构的影响。
而消能减震设计则是在结构中增加能够吸收地震能量的装置,通过吸收和转化地震能量,减小结构的震动峰值,从而保护结构和降低地震风险。
隔震设计将结构与地基隔离,可以有效地减小地震对结构的影响。
常见的隔震装置包括球形隔震器、弹簧隔震器和摇摆支撑等。
球形隔震器是一种通过球面的压缩和张开来减小地震峰值加速度的装置。
弹簧隔震器则是通过将结构与地基分离,使结构可以在地震中相对自由地运动,从而减小地震对结构的冲击力。
摇摆支撑则是一种通过摇摆运动来减小地震冲击的装置,能够将地震能量转化为结构的具有抵抗地震作用的摇摆动能。
消能减震设计则是在结构中安装能够吸收地震能量的装置,通过吸收和转化地震能量来减小结构的震动峰值。
常见的消能装置包括液压阻尼器、摇摆框架和摩擦阻尼器等。
液压阻尼器通过液体的流动来消耗地震能量,减小结构的振动响应。
摇摆框架则是通过框架的摆动来转化和耗散地震能量,从而减小结构的振动。
摩擦阻尼器则是通过材料之间的摩擦力来吸收地震能量,减小结构的振动。
在进行隔震与消能减震设计时,需要根据具体的工程情况和设计要求选择适合的装置。
一般来说,隔震设计适合于对结构振动峰值要求较低的工程,而消能减震设计则适合于对结构振动峰值要求较高的工程。
此外,在进行设计时还需要考虑装置的可靠性、经济性和施工的可行性。
隔震与消能减震设计能够有效地减小地震对结构的影响,提高结构的抗震性能,降低地震风险。
然而,设计与施工中的错误和不合理的选择可能会导致装置的失效和使用寿命的降低。
因此,在进行隔震与消能减震设计时,需要仔细考虑各种因素,并在设计和施工过程中进行严格的控制和监测,以确保装置的有效性和可靠性。
总之,隔震与消能减震设计是提高工程结构抗震能力和减少地震风险的重要手段。
隔震与消能减震设计简介
耗能减震
结构耗能减震技术是在结构物某些部位(如支撑、剪力墙、 连接缝或连接件)设置耗能(阻尼)装置(或元件),通过该装 置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)滞回变 形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反 应,从而避免结构产生破坏或倒塌,达到减震控制的目的。 基本原理:在消能减震结构体系中,消能(阻尼)装置或元件 在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥 耗能作用,消耗掉输入结构体系的大量地震能量,使结构本身需 消耗的能量很少,这意味着结构反应将大大减小,从而有效地保 护了主体结构,使其不再受到损伤或破坏。 由于消能减震结构具有减震机理明确、减震效果显著、安全 可靠、经济合理、适用范围广等特点,目前已被成功用于工程结 构的减震控制中。
隔震与消能减震设计简介
抗震结构
隔震结构
消能减震结构 一.抗震结构 利用结构各构件的承载力和变形能力抵御地震作用, 吸收地震能量。 立足于“抗”。 二.隔震结构 在建筑物上部结构与基础之间设置滑移层,阻止地 震能量向上传递。 立足于“隔”。
隔振(隔震)
隔震包括基础隔震和层间隔震。
隔震技术的原理: (1)隔震系统的柔性层使结构的振动周期 加大并远离地震动的卓越周期; (2)增大了结构体系的阻尼。 基础隔震技术和层间隔震技术是建筑结构 减震防灾的有效手段。
滚动支撑类隔震系统(Roller bearing system) 为克服柔性层结构所带来的缺陷,科学家们相继提出了多种滚动支撑 类隔震系统,工作元件有球形和椭圆形等多种,但由于其隔震是有向性的 ,而地震是具有无向性,这些类型的隔震系统均未能推广应用。
2.最新隔震技术
隔震橡胶支座(The laminated rubber bearing)隔震系统。
建筑结构基础隔震设计和消能减震设计
S2值越大,其受压稳定性越好,受压失稳临界荷载就越 大。但是,S2越大,橡胶垫的水平刚度也越大,水平极限变 形能力将越小。 一般取 S2=3~6。
16
4.2
建筑结构消能减震设计
(四)夹层橡胶垫的轴压承载力
1.定义及应用意义
指橡胶垫在无任何水平变位时的竖向承载力,它 是确保
橡胶垫在无地震时正常使用的指标,也是直接影响橡胶垫在地
3.设计取值
设计容许拉伸应力 n 2Mpa 极限拉伸应力 n 5Mpa 20
4.2
建筑结构消能减震设计
(七)夹层橡胶垫水平刚度 1.定义及应用意义
指橡胶垫上下板面产生单位相对位移所需施加的水平力 。
Kh=Q/D
D—上下板面水平相对位移(mm); Q—夹层橡胶垫承受的水平剪力(N)。
选择合适的水平刚度意义:
环境温度
夹层橡胶垫阻尼比随环境温度的升高而降低。
26
4.2
建筑结构消能减震设计
4.阻尼比的试验测定和计算
作为提供实际工程应用的夹层橡胶垫,其阻尼值必须通过对实际 采用的橡胶产品的足尺试验进行测定计算求得。
通过夹层橡胶垫的水平剪切试验,直接测绘出在设计竖向恒载下,
水平剪切应变=100%时的水平剪切力Q与水平相对位移D的Q-D
29
4.2
4
4.2
建筑结构消能减震设计
(三)隔震体系的优越性及应用 1.优越性 明显有效地减轻结构的地震反应 确保结构安全 降低房屋造价 抗震措施简单明了 震后无需修复 上部结构的建筑设计限制较小
5
4.2
建筑结构消能减震设计
南加州大学医院(隔震结构),8层。
南加州大学医院地震记录 基础加速度为 0.49g,而顶层加速度只有0.21g。
建筑结构设计隔震和消能减震措施解析
108YAN JIUJIAN SHE建筑结构设计隔震和消能减震措施解析Jian zhu jie gou she ji ge zhenhe xiao neng jian zhen cuo shi jie xi张生宁近年来,我国各地区自然灾害频繁发生已经成为了政府及其关注的民生问题,尤其是地震的发生严重的造成人身财产安全以及社会经济安全。
典型的案例唐山大地震和汶川大地震,造成了多大的经济灾害,多少人流离失所,妻离子散。
所以随着这些地震灾害的频发,我国工程建筑方面对抗震功能的重视也提升到了新的高度,现在建筑结构设计对于地震的防范措施越来越规范和严格,目的就是要通过不同的结构进行抗震灾害。
本文针对建筑结构设计中做好对抗震和减震的工作,为了有效的提升建筑物的抗震效果,针对于建筑结构设计中隔震的措施以及消能减震的技术解析,以供参考。
近些年来,地震的发生对我国地区经济以及人民生命财产安全受到了直接的灾害,所以在建筑建设中对于抗震的要求也成了现在建筑施工中重点规划的课题,在建筑设计中合理的规划设计抗震问题,合理的运用抗震原理进行设计规划,尽量减少或者阻止地震对我国人身安全以至于城市建设的威胁。
针对现阶段的统计来看,我国建筑结构设计以隔震和消能减震的措施占据很大的部分并且在逐年增加,所以本文对于建筑结构设计隔震和消能减震措施进行研究和分析。
一、建筑结构隔震减震概述隔震也就是隔离地震,在建筑物的基底或者是某个特定的位置设置隔震装置隔离或者耗散地震能量,用来避免或者减少地震能量向上部结构的传输,减轻结构震动的反应,建筑物只发生轻微的震动和变性从而保障地震来临时对建筑物的伤害,保证人身财产安全。
这种技术被美国地震专家称为“进40年来世界地震工程中最重要的成果之一”。
近年来高层建筑中广泛的应用了隔震技术,尤其是汶川地震之后,隔震技术使用的橡胶材料已经成为了世界研究以及应用的主要思考对象,已经被多数国家广泛应用,我国云南昆明、思茅、临沧等很多城市的高层建筑也都广泛的应用了这种技术及材料。
建筑结构的隔震与消能减震分析
将建筑物与基础之间设置滑动层, 利用摩擦力来消耗地震能量,以达 到减震效果。
隔震结构的性能评估
隔震装置的性能要求
隔震装置应具有足够的承载能力、刚 度和延性,以确保在地震作用下能够 有效地隔离地震能量。
整体结构的性能评估
对隔震结构进行整体分析,评估其在 地震作用下的响应,确保其具有足够 的稳定性和安全性。
抗震性能评估:通过对消能减震结构进行地震模拟分析,评估其在地震 作用下的响应和性能,如变形、加速度、应力等指标,以验证其抗震性
能是否满足设计要求。
结构安全性评估:通过对消能减震结构进行静力荷载试验或动力响应分 析,评估其在地震作用下的结构安全性,如稳定性、裂缝发展等指标, 以确保结构在地震作用下的安全性。
研究背景:地震灾害频发,传统抗震 设计存在局限性,需要发展新的减震 技术。
建筑结构的隔震和消能减震技术是减 轻地震灾害的有效手段之一。
研究意义:提高建筑结构的抗震性能 ,减少地震造成的生命和财产损失, 保护人类安全和可持续发展。
研究目的和方法
研究目的
研究建筑结构的隔震与消能减震 技术,提高建筑结构的抗震性能 ,减少地震响应。
联合设计的应用实例
应用实例1
某高层建筑在设计中采用了消能减震技术和隔震支座联合设计。通过优化结构和选择合适的材料,成功提高了结 构的抗震性能,并在实际地震中表现出色。
应用实例2
某桥梁在地震高发区采用了橡胶隔震支座和铅阻尼器进行联合设计。这些措施有效地降低了地震对桥梁结构的影 响,确保了交通的畅通性。
隔震支座:隔震支座是一种能够将地震地面运动与建 筑结构隔离的装置,其原理是通过支座的变形来减小 地震能量传递到建筑结构。常见的隔震支座包括橡胶 隔震支座、铅芯隔震支座等。
建筑隔震与消能减震
第十五讲建筑隔震与消能减震设计规定一、隔震与消能减震是减轻建筑结构地震灾害的新技术地震释放的能量以震动波为载体向地球表面传播。
通常的建筑物因和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上部结构,进入到上部结构的能量被转化为结构的动能和变形能。
在此过程中,当结构的总变形能超越了结构自身的某种承受极限时,建筑物便发生损坏甚至倒塌。
1、什么是房屋结构的“隔震设计”《隔震》,即隔离地震。
在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。
地震时,隔震结构的震动和变形均可只控制在较轻微的水平,从而使建筑物的安全得到更可靠的保证。
表15.1列出了隔震设计和传统设计在设计理念上的区别。
表 15.1 隔震房屋和抗震房屋设计理念对比隔震器的作用是支承建筑物重量、调频滤波,阻尼器的作用是消耗地震能量、控制隔震层变形。
隔震器的类型很多。
目前,在我国比较成熟的是“橡胶隔震支座”。
因此,本《规范》所指隔震器系指橡胶隔震支座(规范12.1.1条注1)。
在隔震设计中采用其他类型隔震器时,应作专门研究。
2、什么是房屋建筑的“消能减震设计”在建筑物的抗侧力结构中设置消能部件(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供附加阻尼,吸收与消耗地震能量。
这样的房屋建筑设计称“消能减震设计”。
采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转换为结构的动能和变形能。
这样,也可以达到降低结构地震反应的目的。
阻尼器有粘弹性阻尼器、粘滞阻尼器、金属阻尼器、电流变、磁流变阻尼器等。
3、隔震和消能减震设计的主要优点隔震体系能够减小结构的水平地震作用,已被理论和国外强震记录所证实。
国内外的大量试验和工程经验表明:“隔震”一般可使结构的水平地震作用降低60%左右,从而消除或有效地减轻结构和非结构的地震损坏,提高建筑物及其内部设施、人员在地震时的安全性,增加震后建筑物继续使用的能力。
简述隔震和减震的原理和方法
隔震和减震都是降低地震对建筑物影响的重要手段。
隔震是在建筑物基础或下部或上部结构之间设置由隔震器(橡胶隔震支座等)、阻尼装置等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,同时延长上部结构的自振周期,降低上部结构的地震反应,使建筑物的振动控制在允许范围内,从而达到保护建筑物的目的。
隔震技术可以分为基底隔震、层间隔震、高位隔震和局部隔震等多种类型。
减震则主要是通过各种装置或材料来消耗地震能量,减小地震对建筑物的冲击。
常见的减震方法有橡胶隔震、弹簧隔震和液体阻尼等。
例如,橡胶隔震是采用橡胶材料作为隔震装置,如橡胶支座、橡胶垫等,它们具有较好的弹性和抗震能力,能够吸收地震产生的能量,减少地震对建筑物的影响;弹簧隔震则是采用弹簧装置作为隔震装置,可以通过弹性变形吸收地震能量,减小地震对建筑物的冲击,常用于大型建筑物或桥梁等结构中;液体阻尼减震是利用液体阻尼特性来减震,通过在建筑结构中设置液体阻尼装置,消耗地震能量,降低地震对建筑物的振动影响。
建筑隔振消能减震技术探讨
建筑隔振消能减震技术探讨针对地震这种严重的自然灾害对建筑物的不利影响,分析介绍了隔震及减震的原理及工程应用方法,并对这些方法的优缺点进行了分析比较,为实际建筑结构的隔震及减震分析提供了参考。
标签:隔震;消能减震;振动控制1 地震的危害建筑物除了承受竖向荷载外,还要承担风和地震水平荷载的作用,建筑物越高,这个水平荷载效应就越明显。
我国41%的国土、50%以上的城市位于地震烈度7度以上的地区,面临的地震灾害形势非常严峻。
地震是人类面临的最严重的突发性的自然灾害之一,对人民的生命和财产安全造成很大的危害。
1.1 造成大量人员伤亡1976年唐山发生的7.8级强烈地震,顷刻间,百余万人口工业城市被夷为平地,造成24.2万人死亡,16.4万余人重伤。
自1900年有记录以来,我国死于地震的人数达55万之多,占全球地震死亡人数的53%。
1.2 破坏人类赖以生存的环境自我国1900年有记录以来,地震成灾面积达30多万平方公里,房屋倒塌达700万间。
1.3 冲击人类社会的正常运行秩序和造成大量的经济损失唐山地震的直接经济损失近百亿元,震后重建投资达百亿元。
1995年,日本阪神地震中经济损失超过1000亿美元。
随着经济的高速发展,城市化使人口和财富高度密集,强烈地震造成的伤亡和损失将越来越大,地震后的修复和城市的复兴就越有难度,对国家经济发展和社会稳定的冲击也将更为剧烈。
2 传统抗震方法地震造成的破坏给人类留下的烙印是深刻的。
而我们结构工程师们一直没有停止过对建筑物抗震的研究。
建造抗强烈地震的建筑物和构筑物成为建筑工程领域重要的课题。
为了抵御地震灾害,通常的建筑结构设计采用的是抗震设计,强调的是“抗”,即采用“延性结构体系”适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等等)在地震时,进入非弹性状态,并且具有较大的延性,以消耗地震能量,减轻地震反映,使结构物“裂而不倒”。
这种体系在很多情况下是有效的,但也存在很多局限性:首先,由于结构物的承重构件在地震时进入非弹性状态,对某些重要的结构物是不容许的(纪念性建筑、装饰昂贵的现代化建筑、原子能发电站等);其次,对于一般性建筑,当遭遇超过设防烈度地震时,由于主体结构已发生严重非弹性变形,在地震后难以修复或在强地震中严重破坏,甚至倒塌,其破坏程度难以控制;再次,随着地震强度的增大,结构的断面和配筋都相应增大,造成经济的“浪费”。
结构隔震与消能减震设计的基础知识共61页
ห้องสมุดไป่ตู้ 谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
结构隔震与消能减震设 计的基础知识
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五讲建筑隔震与消能减震设计规定一、隔震与消能减震是减轻建筑结构地震灾害的新技术地震释放的能量以震动波为载体向地球表面传播。
通常的建筑物因和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上部结构,进入到上部结构的能量被转化为结构的动能和变形能。
在此过程中,当结构的总变形能超越了结构自身的某种承受极限时,建筑物便发生损坏甚至倒塌。
1、什么是房屋结构的“隔震设计”《隔震》,即隔离地震。
在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。
地震时,隔震结构的震动和变形均可只控制在较轻微的水平,从而使建筑物的安全得到更可靠的保证。
表15.1列出了隔震设计和传统设计在设计理念上的区别。
表 15.1 隔震房屋和抗震房屋设计理念对比隔震器的作用是支承建筑物重量、调频滤波,阻尼器的作用是消耗地震能量、控制隔震层变形。
隔震器的类型很多。
目前,在我国比较成熟的是“橡胶隔震支座”。
因此,本《规范》所指隔震器系指橡胶隔震支座(规范12.1.1条注1)。
在隔震设计中采用其他类型隔震器时,应作专门研究。
2、什么是房屋建筑的“消能减震设计”在建筑物的抗侧力结构中设置消能部件(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供附加阻尼,吸收与消耗地震能量。
这样的房屋建筑设计称“消能减震设计”。
采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转换为结构的动能和变形能。
这样,也可以达到降低结构地震反应的目的。
阻尼器有粘弹性阻尼器、粘滞阻尼器、金属阻尼器、电流变、磁流变阻尼器等。
3、隔震和消能减震设计的主要优点隔震体系能够减小结构的水平地震作用,已被理论和国外强震记录所证实。
国内外的大量试验和工程经验表明:“隔震”一般可使结构的水平地震作用降低60%左右,从而消除或有效地减轻结构和非结构的地震损坏,提高建筑物及其内部设施、人员在地震时的安全性,增加震后建筑物继续使用的能力。
采用消能方案可以减少结构在风作用下的位移已是公认的事实,对减少结构水平和竖向地震反应也是有效的。
4、隔震和消能减震设计的适用范围1)、隔震设计的适用范围规范12.1.3条对隔震结构提出了一些使用要求。
根据研究:隔震结构主要用于体型基本规则的低层和多层建筑结构。
日本和美国的经验表明,不隔震时基本周期小于1.0秒的建筑结构减震效果与经济性均最好,对于高层建筑效果较差。
国外对隔震建筑工程的较多考察资料表明:硬土场地较适合于隔震建筑;软弱场地滤掉了地震波的中高频分量,延长结构的周期有可能增大而不是减小其地震反应。
墨西哥地震就是一个典型的例子。
日本“隔震结构设计技术标准”(草案)规定,隔震建筑适用于一、二类场地。
我国Ⅰ、Ⅱ、Ⅲ类场地的反应谱周期均较小,故都可建造隔震建筑。
隔震设计中对风荷载和其他非地震作用的水平荷载给予一些限制(规范12.1.3条3款)是为了保证隔震结构具有可靠的抗倾覆能力。
就使用功能而论,隔震结构可用于:医院、银行、保险、通讯、警察、消防、电力等重要建筑;首脑机关、指挥中心以及放置贵重设备、物品的房屋;图书馆和纪念性建筑;一般工业与民用建筑;建筑物的抗震加固。
2)、消能设计的适用范围消能部件的置入,不改变主体承载结构的体系,又可减少结构的水平和竖向地震作用,不受结构类型和高度的限制,在新建和建筑抗震加固中均可采用。
二、隔震与消能减震设计要求1、设计方案建筑结构的隔震和消能减震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震设计的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。
隔震与消能减震设计第一次纳入我国《建筑抗震设计规范》,为积极、稳妥起见,应认真做好方案比较、论证工作。
2、设防目标采用隔震和消能减震设计的房屋建筑,其抗震设防目标应高于抗震建筑。
(规范第3.8.2条)。
1)、在水平地震方面,本章表15.2、15.4及规范第12.2.6、12.2.9条等保证了隔震结构具有比抗震结构至少高0.5个设防烈度的抗震安全储备。
2)、规范规定:消能减震结构的层间弹塑性位移角限值宜大于1/80。
提高了对框架及多高层钢结构等的弹塑性层间位移角限值要求。
3、隔震与消能部件设计文件上应注明对隔震部件和消能部件的性能要求;隔震和消能减震部件的设计参数和耐久性应由试验确定;并在安装前对工程中所用各种类型和规格的消能部件原型进行抽样检测,每种类型和每一规格的数量部应少于3 个,抽样检测的合格率应为100%;设置隔震和消能减震部件的部位,除按计算确定外,应采取便于检查和替换的措施。
消能部件应对结构提供足够的附加阻尼,尚应根据其结构类型分别符合本规范相应章节的设计要求。
三、 隔震设计要点本规范隔震设计条文提出了分部设计法和水平向减震系数,在设计方法上建立起了一座联系抗震设计和隔震设计之间的桥梁,力图使设计人员已经熟悉的抗震设计知识、抗震技术在隔震设计中得到应用,这是本规范的重大特色。
1、分部设计方法把整个隔震结构体系分成上部结构(隔震层以上结构)、隔震层、隔震层以下结构和基础四部分,分别进行设计。
2、上部结构设计应用“水平向减震系数”设计上部结构。
1)、水平向减震系数概念公式(15.1)及其符号解释,描述了本《规范》提出的“水平向减震系数”概念。
7.0/)(max i ψψ= (15.1-1)i gi i Q Q /=ψ (15.1-2)其中ψ——水平向减震系数。
max )(i ψ——设防烈度下,相应于结构隔震与非隔震时各层层间剪力比的最大值。
i ψ——设防烈度下,结构隔震时第i 层层间剪力与非隔震时第i 层层间剪力比的最大值。
gi Q ——设防烈度下,结构隔震时第i 层层间剪力。
i Q ——设防烈度下,结构非隔震时第i 层层间剪力。
2)、水平向减震系数计算与取值计算水平向减震系数的结构简图可可采用剪切型结构模型(图15.1);当上部结构的质心与隔震层刚度中心不重和时,宜计入扭转变形的影响。
分析对比结构隔震与非隔震两种情况下各层最大层间剪力,宜采用多遇地震下的时程分析。
输入地震波的反应谱特性和数量,应符合本规范5.1.2条规定。
计算结果宜取其平均值。
当处于发震断层10km 以内时,若输入地震波未考虑近场影响,对甲乙类建筑,计算结果尚应乘以近场影响系数:5km 以内取1.5,5~10km 取1.25。
砌体结构及基本周期与其相当的结构可按附录L 简化计算。
当结构隔震后各层最大层间剪力与非隔震时对应层最大层间剪力的比值不大于表15.2中第一行各栏的数值时,可按该表确定水平向减震系数。
表 15.2 层间剪力最大比值与水平向减震系数的对应关系减震系数计算和取值涉及上部结构的安全,涉及《规范》规定的隔震结构抗震设防目标的实现。
因此,减震系数不应取得比表15.2列出的值低。
3)、上部结构水平地震作用计算—水平向减震系数应用①、水平地震影响系数的最大值可取本规范 5.1.4条规定的水平地震影响系数最大值(即,非隔震时的值)和水平向减震系数的乘积。
水平向减震系数不宜低于0.25,且隔震后结构的总水平地震作用不得低于非隔震时6度设防的总水平地震作用。
②、隔震后,地震时上部结构基本处于平动状态。
因此,上部结构水平地震作用沿高度可采用矩形分布。
4)、上部结构竖向地震作用计算9度和8度且水平向减震系数为0.25时,上部结构应进行竖向地震作用计算;8度且水平向减震系数不大于0.5时,宜进行竖向地震作用计算。
竖向地震作用标准值F Evk ,8度和9度时分别不应小于隔震层以上结构总重力荷载代表值的20%和40%。
各楼层可视为质点,按本规范(5.3.1-2)式计算其竖向地震作用标准值沿高度的分布。
5)、隔震及构造措施图 15.1 隔震结构计算简ςeq k h m n m n-1①、隔震建筑应采取不阻碍隔震层在罕遇地震下发生大变形的下列措施:上部结构的周边应设置防震缝,缝宽不宜小于各隔震支座在罕遇地震下的最大水平位移值的1.2倍;上部结构(包括与其相连的任何构件)与地面(包括地下室和与其相连的构件)之间,应设置明确的水平隔离缝;当设置水平隔离缝确有困难时,应设置可靠的水平滑移垫层;在走廊、楼梯、电梯等部位,应无任何障碍物。
②、丙类建筑上部结构的抗震措施,当水平向减震系数为0.75时不应降低非隔震时的要求;水平向减震系数不大于0.50时,可适当降低本规范有关章节对非隔震建筑的要求,但与抵抗竖向地震作用有关的抗震构造措施不应降低。
③、砌体结构按本规范附录L采取抗震构造措施。
④、钢筋混凝土结构柱和墙肢的轴压比控制仍应按非隔震的有关规定采用。
其他计算和构造措施要求,可按表15.3划分抗震等级,再按本规范6章的有关规定采用。
3、隔震层设计1)、隔震层布置隔震层设计应根据预期的水平向减震系数和位移控制要求,选择适当的隔震支座、阻尼器以及抵抗地基微震动与风荷载提供初刚度的部件组成隔震层。
隔震层位置宜设置在第一层以下部位。
当位于第一层及以上时,结构体系的特点与普通隔震结构可有较大差异,隔震层以下的结构设计计算也更复杂,需作专门研究。
隔震层的平面布置应力求具有良好的对称性,以提高分析计算结果的可靠性。
2)、隔震支座竖向承载力验算隔震支座应进行竖向承载力验算。
隔震层设计原则是罕遇地震不坏。
橡胶隔震支座平均压应力限值和拉应力规定是隔震层承载力设计的关键。
《规范》规定:隔震支座在永久荷载和可变荷载作用下组合的竖向平均压应力设计值不应超过表15.4列出的限值。
在罕迂地震作用下,不宜出现拉应力。
表15.4 橡胶隔震支座平均压应力限值注:1.对需验算倾覆的结构,平均压应力设计值应包括水平地震作用效应组合;对需进行竖向地震作用计算的结构,平均压应力设计值应包括竖向地震作用效应组合;2.当橡胶支座的第二形状系数小于5.0时,应降低平均压应力限值:不小于4时,降低20%,小于4不小于3时,降低40%;3. 有效直径小于300mm的橡胶支座,其平均压应力限值对丙类建筑为12Mpa。
隔震支座的基本性能之一是“稳定地支承建筑物重力”。
通过规定表15.4列出的平均压应力限值,保证了隔震层在罕遇地震时的强度及稳定性,并以此初步选取隔震支座的直径。
根据Haringx弹性理论,按屈曲要求,以压缩荷载下使叠层橡胶的水平刚度为零的压应力作为屈曲应力σcr,该屈曲应力取决于橡胶的硬度、钢板厚度与橡胶厚度的比值、第一形状系数S1和第二形状系数S2等。
通常,隔震支座中间钢板厚度是单层橡胶厚度之半,比值取为0.5。
对硬度为30~60共七种橡胶,以及s1=11、13、15、17、19、20和s2=3、4、5、6、7,累计210种组合进行了计算。