TLC2543 芯片资料

合集下载

tlc2543中文资料

tlc2543中文资料

PACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)5962-9688601QRA ACTIVE CDIP J201TBD A42N/A for Pkg Type TLC2543CDB ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDBG4ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLC2543CDBLE OBSOLETE SSOP DB20TBD Call TI Call TITLC2543CDBR ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDBRG4ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDW ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWG4ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWR ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CDWRG4ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543CFN ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNG3ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNR ACTIVE PLCC FN201000Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CFNRG3ACTIVE PLCC FN201000Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543CN ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543CNE4ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543IDB ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBG4ACTIVE SSOP DB2070Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBR ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDBRG4ACTIVE SSOP DB202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDW ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWG4ACTIVE SOIC DW2025Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWR ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IDWRG4ACTIVE SOIC DW202000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC2543IFN ACTIVE PLCC FN2046Green(RoHS&no Sb/Br)CU SN Level-1-260C-UNLIMTLC2543IFNG3ACTIVE PLCC FN2046Green(RoHS&CU SN Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)TLC2543IFNR OBSOLETE PLCC FN20TBD Call TI Call TITLC2543IN ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg TypeTLC2543INE4ACTIVE PDIP N2020Pb-Free(RoHS)CU NIPDAU N/A for Pkg Type TLC2543MJ ACTIVE CDIP J201TBD A42N/A for Pkg Type TLC2543MJB ACTIVE CDIP J201TBD A42N/A for Pkg Type (1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS),Pb-Free(RoHS Exempt),or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free(RoHS Exempt):This component has a RoHS exemption for either1)lead-based flip-chip solder bumps used between the die and package,or2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free(RoHS compatible)as defined above.Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flame retardants(Br or Sb do not exceed0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF TLC2543,TLC2543M:•Automotive:TLC2543-Q1•Enhanced Product:TLC2543-EPNOTE:Qualified Version Definitions:•Automotive-Q100devices qualified for high-reliability automotive applications targeting zero defects•Enhanced Product-Supports Defense,Aerospace and Medical ApplicationsTAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TLC2543CDBR SSOP DB 202000330.016.48.27.5 2.512.016.0Q1TLC2543IDBRSSOPDB202000330.016.48.27.52.512.016.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TLC2543CDBR SSOP DB202000346.0346.033.0TLC2543IDBR SSOP DB202000346.0346.033.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDLP®Products BroadbandDSP Digital ControlClocks and Timers MedicalInterface MilitaryLogic Optical NetworkingPower Mgmt SecurityMicrocontrollers TelephonyRFID Video&ImagingRF/IF and ZigBee®Solutions WirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2009,Texas Instruments Incorporated。

TLC2543应用

TLC2543应用

基于高精度的12位串行A/D转换器TLC2543的模拟数据采集应用简介:在工业污水处理过程当中,往往需要监测污水的COD 值,而现场的监测仪器所监测到的数据是通过各种模拟信号输出,这些模拟信号必须通过A/D 转换器变换为数字 ...在工业污水处理过程当中,往往需要监测污水的COD 值,而现场的监测仪器所监测到的数据是通过各种模拟信号输出,这些模拟信号必须通过A/D 转换器变换为数字信号后才能送入上位机或外接数据采集器。

基于此,本文给出了基于A/D 转换器TLC2543 的软硬件设计,并结合最小二乘法将输出数据进行修正,达到了环保部分对有机污染物监测数据精度的要求。

1 系统硬件设计介绍如图1所示,是系统电路图,A/D转换器采用TLC2543,它是12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程,由于是串行输入结构,能够节省51系列单片机I/O 资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

其特点如下所述:A/D转换器有12位分辨率;在工作温度范围内转换时间为10us;有1 1个模拟输入通道;采用3路内置自测试方式[1];有转换结束(EOC)输出;具有单、双极性输出;有可编程的MSB或LSB前导;输出数据长度可以编程设定为8位、12位或16位。

在本系统中采用的输出长度设定为12位。

另外TLC2543与外围电路的连线简单,它有三个控制输入端为CS(片选)、输入/ 输出时钟(I/O CLOCK)以及串行数据输人端(DATA INPUT);模拟量输入端AIN0 ~AIN10 (1 ~9 脚、11 ~12 脚),11路输入信号由内部多路器选通,对于本系统,选用了AIN0 模拟输入端;系统时钟由片内产生并由I/O CLOCK同步;正、负基准电压(REF+ ,REF-)由外部提供, 通常为VCC 和地, 两者差值决定输人范围。

在本系统中,输入模拟信号为4~20mA 电流的模拟量,也就是转换输入范围电压是0~5V。

AD芯片TLC2543与51系列单片机的接口设计

AD芯片TLC2543与51系列单片机的接口设计

第23卷第3期2006年9月广东工业大学学报Journa l of Guangdong Un i versity of Technology Vol .23 No .3Sep te mber 2006收稿日期:2005208231作者简介:夏益民(19802),女,助教,主要研究方向为嵌入式系统、高速数据采集系统等.AD 芯片T LC2543与51系列单片机的接口设计夏益民,谢 云,刘冰茹(广东工业大学自动化学院,广东广州510006)摘要:从应用角度出发介绍了具有11个输入端的12bit A /D 转换器T LC2543的结构、主要特点、工作原理与编程要点,探讨了T LC2543与51系列单片机的接口方法,用软件合成SP I 操作,给出了T LC2543与51系列单片机的接口电路和单片机汇编程序.关键词:T LC2543;单片机;接口中图分类号:TP368.1 文献标识码:A 文章编号:100727162(2006)0320118204在单片机开发中,很多都要涉及到将模拟量转换为数字量,因此使用ADC 的场合很多.选择一款合适的ADC 芯片就显得尤为重要.由于51单片机往往要控制比较多的I/O 口,因此使用并行ADC 会限制系统I/O 口功能的扩展,采用串行ADC 比较适合那些低速采样而控制管脚又比较多的系统.T LC2543是有11个输入端的12bit 模数转换器,具有转换快、稳定性好、与微处理器接口简单、价格低等优点.由于它带有串行外设接口(SP I ),而51系列单片机没有SP I,因此研究它与单片机的接口非常有意义.1 T LC2543的特点及引脚T LC2543是12bit 串行A /D 转换器,使用开关电容逐次逼近技术完成A /D 转换过程.由于是串行输入结构,能够节省51系列单片机的I/O 资源.其特点有:1)12bit 分辨率A /D 转换器;2)在工作温度范围内10μs 转换时间;3)11个模拟输入通道;4)3路内置自测试方式;5)采样率为66kb /s;6)线性误差+1LS B (max );7)有转换结束(EOC )输出;8)具有单、双极性输出;9)可编程的MS B 或LS B 前导;10)可编程的输出数据长度.T LC2543的引脚排列如图1所示.第3期夏益民,等:AD 芯片T LC2543与51系列单片机的接口设计图1 T LC2543管脚图图1中A I N 0~A I N 10为模拟输入端;/CS 为片选端;D I N 为串行数据输入端;DOUT 为A /D 转换结果的三态串行输出端;EOC 为转换结束端;CLK 为I/O 时钟;REF +为正基准电压端;REF -为负基准电压端;VCC 为电源;G ND 为地.2 T LC2543的使用方法2.1 控制字的格式控制字为从DATE I N P UT 端串行输入的8bit 数据,它规定了T LC2543要转换的模拟量通道、转换后的输出数据长度以及输出数据的格式.其中高4bit (D7~D4)决定通道号,对于0通道至10通道,该4bit 为0000~1010H,当为1011~1101时,用于对T LC2543的自检,分别测试(V ref ++V ref 2)/2、V ref +、V ref 2的值,当为1110时,T LC2543进入休眠状态.低4bit 决定输出数据长度及格式,其中D3、D2决定输出数据长度,018bit,11表示输出数据长度为16bit,其他为12bit .D1决定输出数据是高位先送出,还是低位先送出,为0表示高位先送出.D0决定输出数据是单极性(二进制)还是双极性(2的补码),若为单极性,该位为0,反之为1.2.2 转换过程上电后,片选/CS 必须从高到低,才能开始一次工作周期,此时E OC 为高,输入数据寄存器被置为0,输出数据寄存器的内容是随机的.开始时,片选/CS 为高,I/O CLOCK 、DAT A I N P UT 被禁止,DAT A OUT 呈高阻状态,EOC 为高.使/CS 变低,I/O CLOCK 、DAT A I N P UT 使能,DAT A OUT 脱离高阻状态.12个时钟信号从I/O CLOCK 端依次加入,随着时钟信号的加入,控制字从DAT A I N P UT 一位一位地在时钟信号的上升沿时被送入T LC2543(高位先送入),同时上一周期转换的A /D 数据,即输出数据寄存器中的数据从DAT A OUT 一位一位地移出.T LC2543收到第4个时钟信号后,通道号也已收到,此时T LC2543开始对选定通道的模拟量进行采样,并保持到第12个时钟的下降沿.在第12个时钟下降沿,E OC 变低,开始对本次采样的模拟量进行A /D 转换,转换时间约需10μs,转换完成后E OC 变高,转换的数据在输出数据寄存器中,待下一个工作周期输出.此后,可以进行新的工作周期.对T LC2543的操作,关键是理清接口时序图和寄存器的使用方式.T LC2543的接口时序图如图2所示.图2是T LC2543在片选信号使能的前提下,使用12bit 模式的接口时序图.从图中可看出,在片选信号(/CS )有效的情况下,首先要根据A /D 转换的功能需要配置要输入的数据.需要注意的是,在读数据的同时,T LC2543将上一次转换的数据从数据输出口伴随输入时钟输出.为了提高A /D 采样的速率,可以采用在设置本次采样的同时,将上次AD 采样的值读出的办法.3 T LC2543与89C51单片机的接口示意图与程序89C51单片机没有SP I 接口,为了与T LC2543接口可以用软件功能来实现SP I 接口,其硬件接口如图3所示.单片机通过编程产生串行时钟,即由CLK 先高后低的转变提供串行时钟;并按时序发送与接收数据位,完成通道方式/通道数据的写入和转换结果的读出;用累加器和带进位的左循环移911广东工业大学学报第23卷图2 M S B 在前、用/CS 控制的12bit 模式时序图图3 T LC2543与89C51单片机的接口原理图位指令来合成SP I 功能;R2暂存高8bit,R3暂存低4bit .本程序选择12bit 输出数据长度,高位导前.T LC2543在每次I/O 周期读取的数据都是上次转移的结果,当前的转换结果在下一个I/O 周期中被串行移出.第一次读数由于内部调整,读取的转换结果可能不准确,应丢弃.程序如下:S AMP LE:MOVR0,#30H ;数据缓冲区首地址30H →R0MOVR1,#00000000B ;0通道方式/通道数据AC ALLRD_AD ;第一次读取的转换结果可能不准确,丢弃MOVR1,#00010000B ;1通道方式/通道数据AC ALLRD_AD ;送1通道方式/通道数据并读第0通道转换结果MOV@R0,R2;转换结果存放到数据缓冲区I N CR0MOV@R0,R3I N CR0………;其它通道操作方式类推MOVR1,#10110000B ;11通道方式/通道数据AC ALLRD_AD ;送11通道方式/通道数据并读第10通道转换结果MOV@R0,R2;转换结果存放到数据缓冲区I N CR0MOV@R0,R3I N CR0RET 021第3期夏益民,等:AD 芯片TLC2543与51系列单片机的接口设计RD_AD:C LRC LK ;清I/O 时钟SET BCS ;设置片选为高C LRCS ;设置片选为低MOVR4,#08;先读高8bit MOVA,R1;把方式/通道控制字放到A LOOP1:MOVC,DOUT ;读转换结果RLCA ;A 寄存器左移,移入结果数据位,移出方式/通道控制位MOVD I N ,C ;输出方式/通道位SET BC LK ;设置I/O 时钟为高C LRC LK ;清I/O 时钟DJNZR4,LOOP1;R4不为0,则返回LOOP1MOVR2,A ;转换结果的高8bit 放到R2中MOVA,#00H ;复位A 寄存器MOVR4,#04;再读低4bit LOOP2:MOVC,DOUT ;读转换结果RLCA ;A 寄存器左移,移入结果数据位SET BC LK ;设置I/O 时钟为高C LRC LK ;清I/O 时钟DJNZR4,LOOP2;R4不为0,则返回LOOP2MOVR3,A ;转换结果的低4bit 放到R3中SET BCS ;设置片选为高RET 参考文献:[1]武汉力源电子股份有限公司.T LC2543模数转换器数据手册及应用笔记[G].武汉:武汉力源电子股份有限公司,1999.[2]马明建,周长城.数据采集与处理[M ].西安:西安交通大学出版社,1998.[3]何立民.MCS -51单片机应用系统[M ].北京:北京航空航天大学出版社,1999.The I n terface D esi gn of TLC2543and M CS 251SC MX I A Yi 2m in,X I E Yun,L I U B ing 2ru(Faculty of Aut omati on,Guangdong University of Technol ogy,Guangzhou 510006,China )Abstract:This paper intr oduces the configurati on,main characteristic,work p rinci p le and p r ogra m point of 12bit ADC T LC2543which has 11inputs .It discusses the interface means of T LC2543and MCS 251SC M ,Co mposes the SP Ioperati on by s oft w are,and lists the interface circuit and SC M asse mb 2ler of T LC2543and MCS 251SC M.Key words:T LC2543;SC M;interface 121。

TLC2543IDWR;TLC2543CN;TLC2543IN;TLC2543CDB;TLC2543CDW;中文规格书,Datasheet资料

TLC2543IDWR;TLC2543CN;TLC2543IN;TLC2543CDB;TLC2543CDW;中文规格书,Datasheet资料

– 55°C to 125°C — — — TLC2543MJ — † Available in tape and reel and ordered as the TLC2543CDBLE, TLC2543IDBR, TLC2543CDWR, TLC2543IDWR, TLC2543CFNR, or TLC2543IFNR.
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
18 15
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
/
ห้องสมุดไป่ตู้
TLC2543C, TLC2543I, TLC2543M 12-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 ANALOG INPUTS
VCC EOC I/O CLOCK DATA INPUT DATA OUT CS REF + REF – AIN10 AIN9
FN PACKAGE (TOP VIEW)
description
The TLC2543C and TLC2543I are 12-bit, switchedcapacitor, successive-approximation, analog-todigital converters. Each device, with three control inputs [chip select (CS), the input-output clock, and the address input (DATA INPUT)], is designed for communication with the serial port of a host processor or peripheral through a serial 3-state output. The device allows high-speed data transfers from the host.

TLC2543在89C51单片机数据采集系统中的应用[1]

TLC2543在89C51单片机数据采集系统中的应用[1]

T LC2543在89C51单片机数据采集系统中的应用ΞApplication of T LC2543in MCU Data Acquisition System姚 远1,王 赛2,凌毓涛1(1.华中师范大学信息技术系 湖北武汉430079;2.华中师范大学计算机科学系 湖北武汉430079)【摘 要】 介绍了单片机数据采集系统的硬件原理和软件设计。

该系统以89C51单片机为核心,以12位TLC2543为串行模数转换器,由MC14489构成采集数据实时显示系统,带有RS2232通信接口,系统具有易实现、易编程、可移植、体积小、功耗低等优点,具有良好的推广与应用价值。

关键词:TLC2543,单片机,数据采集【Abstract】 The paper introduces the hardware principle and the software design of the MCU data acquisition system based on89C51,in which the12bit TLC2543acts as the serial A/D converter and the RS2232as the communication interface,and the real2time displaying system is constructed by MC14489. The system has the advantages of easily realize,program and transplant,and it has the small volume and low power,etc..It is therefore very promising and valuable.K eyw ords:TLC2543,MCU,data acquisition1 T LC2543芯片介绍TLC2543是TI公司的具有11个通道的12位开关电容逐次逼近串行A/D转换器,采样率为66kbit/ s,采样和保持由片内采样保持电路自动完成。

TLC2543TLC1543

TLC2543TLC1543

TLC2543TLC1543 12位10位AD数据转换时序图:下降沿输出数据,上升沿输⼊地址CS⽚选拉低,⼀次转换开始,同时输出上次转换的数据时序使⽤⽅法:1、CS⽚选拉⾼,EOC拉⾼,CLK时钟拉低2、CS⽚选拉低,开始读出第⼀位数据3、在第⼀个时钟上升沿,输⼊⼀个地址数据4、之后在每个时钟的下降沿输出AD转换数据,在上升沿输⼊地址数据5、TLC1543是10位AD,因此有10个时钟,TLC2543是位AD,因此有12个时钟6、⼀个操作过程结束后,⽚选CS拉⾼,EOC会在最后第10个时钟的下降沿触发拉低,开始AD转换,此时,输出被禁⽌,等到转换结束后EOC置位1,代表转换结束。

等到CS⽚选再次拉低,开始第⼆次操作。

TLC1543与单⽚机的连接TLC15433的引脚图A0~A10为11个模拟输⼊通道REF-通常接地REF+接+5v则输⼊可测电压为0~5vcs位⽚选段,低电平有效,不⽤时置1,⽤时保持为0DATAOUT为AD转换数据输出端(10位)ADDRESS为地址输⼊端,可输⼊相关的命令,前四位⽤于选择不同的输⼊通道,如:0000位选择0通道,0001位选择1通道,及数据输出的格式(⾼位先出还是低位先出)。

TLC1543⼦函数uint read1543(void){uchar i=0;uint ad_value=0;TCL2543_CLK=0; //⼀次转换开始前,CS⽚选置1,EOC置1,时钟置0TCL2543_CS=1;EOC=1;delay_1ms(); //保持⼀段时间,拉低CS⽚选TCL2543_CS=0;delay_1ms(); //保持⼀段时间,等数据稳定后再读取第⼀位数据A9(最⾼位)for(i=0;i<10;i++){if(TCL2543_DOUT) ad_value|=0x0001; //读取第⼀位数据TCL2543_DIN=0; //将通道选择数据准备好,上升沿锁存进TLC1543TCL2543_CLK=1; //上升沿delay_1ms(); //保持⼀段时间TCL2543_CLK=0; //下降沿保持⼀段时间,在读取数据delay_1ms();ad_value=ad_value<<1; //移位,将最低位空出,以装⼊第2位数据(A8)}TCL2543_CS=1; //⼀次转换结束后将CS⽚选拉⾼ad_value=ad_value>>1; //由于多左移了1位,所以return ad_value;}。

TLC2543

TLC2543

摘要:TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,它具有三个控制输入端,采用简单的3线SPI串行接口可方便地与微机进行连接,是12位数据采集系统的最佳选择器件之一。

本文介绍了该芯片的功能、时序,并给出了8051单片机的接口电路。

关键词:模数转换器; SPI串行接口; TLC25431. 概述A/D、D/A转换器是过程及仪器仪表、设备等检测与控制装置中应用比较广泛的器件。

随着大规模集成电路技术的发展,各种高精度、低功耗、可编程、低成本的A/D转换器不断推出,使得微机控制系统的电路更加简洁,可靠性更高。

TLC2543与外围电路的连线简单,三个控制输入端为CS(片选)、输入/输出时钟(I/O CLOCK)以及串行数据输入端(DATA INPUT)。

片内的14通道多路器可以选择11个输入中的任何一个或3个内部自测试电压中的一个,采样-保持是自动的,转换结束,EOC输出变高。

TLC2543的主要特性如下:●11个模拟输入通道;●66ksps的采样速率;●最大转换时间为10μs;●SPI串行接口;●线性度误差最大为±1LSB;●低供电电流(1mA典型值);●掉电模式电流为4μA。

2. TLC2543引脚功能与接口时序2.1 TLC2543引脚排列TLC2543的引脚排列如图1所示。

引脚功能说明如下:AIN0~AIN10:模拟输入端,由内部多路器选择。

对4.1MHz的I/O CLOCK,驱动源阻抗必须小于或等于50Ω;CS:片选端,CS由高到低变化将复位内部计数器,并控制和使能DATA OUT、DATA INPUT 和I/O CLOCK。

CS由低到高的变化将在一个设置时间内禁止DATA INPUT和I/O CLOCK;DATA INPUT:串行数据输入端,串行数据以MSB为前导并在I/O CLOCK的前4个上升沿移入4位地址,用来选择下一个要转换的模拟输入信号或测试电压,之后I/O CLOCK将余下的几位依次输入;DATA OUT:A/D转换结果三态输出端,在CS为高时,该引脚处于高阻状态;当CS为低时,该引脚由前一次转换结果的MSB值置成相应的逻辑电平;EOC:转换结束端。

TLC2543 中文资料

TLC2543 中文资料

TLC2543 中文资料TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2 TLC254 ...TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D 转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2 TLC2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差±1LSBmax;(7)有转换结束输出EOC;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程输出数据长度。

3TLC2543的引脚图(管脚图)及说明TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1。

表1 TLC2543引脚说明引脚号名称I/O 说明1~9,11,12 AIN0~AIN10 I 模拟量输入端。

11路输入信号由内部多路器选通。

对于4.1MHz的I/OCLOCK,驱动源阻抗必须小于或等于50Ω,而且用60pF电容来限制模拟输入电压的斜率15 I 片选端。

在端由高变低时,内部计数器复位。

由低变高时,在设定时间内禁止DATAINPUT和I/O CLOCK17 DATAINPUT I 串行数据输入端。

由4位的串行地址输入来选择模拟量输入通道16 DATA OUT O A/D转换结果的三态串行输出端。

为高时处于高阻抗状态,为低时处于激活状态19 EOC O 转换结束端。

在最后的I/OCLOCK下降沿之后,EOC从高电平变为低电平并保持到转换完成和数据准备传输为止10 GND 地。

关于TLC2543的总结

关于TLC2543的总结

关于TLC2543的一些问题TLC2543是我调的第四个模块,严格意义上说第三个,因为A/D与D/A是相互配合使用的,在原理上有很多相同的地方。

比如逐次逼近式的A/D转换芯片,内部就存在一个D/A转换器。

总之二者在原理上有相通的地方,下面是我在调试芯片过程中遇到的一些问题:1、下面是它的管脚图以及结构框图:图1、TLC2543NC管脚图图2、2543的结构框图2、它有0~10共11个输入端口,也就是有11个通道,这11个通道是由DA TA IN的高四位决定的,而DA TA IN的低四位决定了是采用8位、12位还是16位数据输出格式,以及输出是单极性输出还是双极性输出,详见表1.需要注意的是这里的DATA IN并不是用于转换的输入数据,而是对输入通道,及一些相关格式的选择数据,相当于命令数据。

DATA OUT是一个串行的输出端,将输入的模拟量转换为数字量后,一位一位输出出来。

转换结束的信号是由EOC决定的,当它为低时表示转换结束,为高时表示正在转换,这里需要注意的是,现在转换的信号,并须在下一次有效输出信号来临时,才被输出;而当前输出的数据世上一次操作转换的结果,所以要输出当前的转换结果,至少要执行两次有效输出,才能得到正确结果。

表1、2543的输入数据功能表3、下面是2543在使用时的两种不同模式,一种是使用~CS端进行控制,一种是不使用。

很显然,第二种,2543时刻都被选通,时刻都在准备进行数据的转换,这样必然会有一定的功耗,所以如果能合理地设计~CS的选通状态,就可以减少电路的功耗。

同样的,还有以8位数据及16位数据格式输出,原理及时序图都与12位的相同,只有输出结果的位数不同,当然,相应的精度也就不同。

可根据具体需要,进行设置。

图3、采用12位输出数据并使用~CS时的序图图4、采用12位输出数据并不使用~CS时的序图。

TL2543

TL2543

图3.5TLC2543芯片引脚图图3.6内部结构图3.6 TLC2543芯片引脚及内部结构TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,最大转换时间10us,11个模拟输入通道,3路内置自测试方式,采样率为66KSPS,线性误差±1LSBmax,有转换结束输出EOC,具有单极、双极性输出,可编程的MSB或LSB前导,可编程输出数据长度。

它具有三个控制输入端,采用简单三线SPI串行接口可方便的与微机进行连接,图3.5和图3.6分别是TLC2543的引脚排列图和内部结构图。

表3.2是TLC2543的引脚功能说明。

3.7 TLC2543的工作方式和输入通道的选择TLC2543是一个多通道和多工作方式的模数转换器件。

图3.5为其芯片引脚图,图3.6是它的内部结构图。

其工作方式和输入通道的选择是通过向TLC2543的控制寄存器写入一个八位的控制字来实现的。

这个八位控制字由四个部分组成:D7D6D5D4选择输入通道,D3D2选择输出数据长度,D1选择输出数据顺序,D0选择转换结果的极性。

八位控制字的各位的含义如表3.3所示。

主机以MSB为前导方式将控制字写入TLC2543的控制寄存器,每个数据位都是在CLOCK序列的上升沿被写入控制器。

表3.2引脚功能说明3.7.1 TLC2543的读写时序当片选信号/CS为高电平时,CLOCK和DATA-IN被禁止、DATA-OUT为高阻状态,以便SPI总线上的其它器件让出总线。

在片选信号/CS的下降沿,A/D转换结果的第一位数据出现在DATA-OUT引脚上,A/D转换结果的其他数据位在时钟信号CLOCK的下降沿被串行输出到DATA-OUT。

在片选信号/CS下降以后,时钟信号CLOCK的前八个上升沿将八位控制字从DATA_IN引脚串行输入到TLC2543的控制寄存器。

在片选信号/CS下降以后,经历8个(12个或16个)时钟信号完成对A/D转换器的一次读写。

TLC2543中文资料_数据手册_参数

TLC2543中文资料_数据手册_参数
பைடு நூலகம்
万联芯城专注电子元器件配单服务,只售原装现货库存,万联芯城 电子元器件全国供应,专为终端生产,研发企业提供现货物料, 价格优势明显,BOM配单整单采购可享优惠价,提交BOM表报价 ,最快可当天发货,万联芯城电子元器件配单服务可以为客户节 省采购成本,满足客户物料需求,丰富的电子元器件供应链体系 已为全国多家终端企业服务,点击进入万联芯城。
合格的汽车ApplicationsD 12位分辨率A / D ConverterD 10-µs转换时间在OperatingTemperatureD 11模拟输入ChannelsD三内建自测ModesD固 有取样保持的FunctionD线性误差。±1 LSB MaxD片上TLC2543系统ClockD转换末尾OutputD单极或双极输出操作(签署二进制对1/2 theApplied参考电压)D可编程MSB和LSB FirstD可编程电源DownD可编程输出数据LengthD CMOS TechnologyD申请报告可用‡ descriptionThe TLC2543 12位,开关电容,逐次逼近,数模转换器。每台设备有三个控制输入(芯片选择(CS)、输入-输出时钟和地址输入(数据 输入)),通过串行三态输出与主机处理器或外围设备的串口通信。该设备允许从主机高速传输数据。除了高速转换器和多用途控制能 力,该设备还有一个芯片上的14通道多路复用器,可以选择11个输入中的任意一个或3个内部自检电压中的任意一个。这个功能是自动 的。在转换结束时,转换结束(EOC)输出变高,表示转换已经完成。TLC2543集成在器件中的转换器具有不同的高阻抗参考输入,便于 比值转换、缩放和模拟电路与逻辑和电源噪声隔离。开关电容设计允许在整个工作温度范围内的低误差转换。订货信息工作原理首先, 芯片选择(CS)高,I/O时钟和数据输入被禁用,TLC2543数据输出处于高阻抗状态。CS低电平通过启用I/O时钟和数据输入开始转换序 列,并从高阻抗状态中删除数据。输入数据为8位数据流,包括4位模拟信道地址(D7−D4)、2位数据纵向选择(D3−D2)、输出MSB或LSB 第一个位(D1)和应用于数据输入的单极或双极输出选择位(D0)。TLC2543应用于I/O时钟终端的I/O时钟序列将此数据传输到输入数据寄 存器。在这个传输过程中,I/O时钟序列还将之前的转换结果从输出数据寄存器转移到数据输出。I/O时钟接收8、12或16个时钟周期长 的输入序列,这取决于输入数据寄存器中的数据长度选择。TLC2543模拟输入的采样从输入I/O时钟序列的第四个下降沿开始,并在I/O 时钟序列的最后一个下降沿之后进行。I/O时钟序列的最后一个下降沿也将EOC降低并开始转换。转换器的操作转换器的操作被组织成 两个不同的周期的序列:1)I/O周期和2)实际的转换周期。I/O周期I/O周期由外部提供的I/O时钟定义,持续8、12或16个时钟周期,取决于 所选输出数据的长度。在I/O周期中,同时执行以下两个操作。一个由地址和控制信息组成的8位数据流被提供给数据输入。这些数据被 转移到前八个I/O时钟上升边缘的设备中。在12或16个时钟的I/O传输过程中,第一个时钟后的数据输入将被忽略。数据输出(长度为 8、12或16位)是在数据输出时串行提供的。当CS值较低时,第一个输出数据位出现在EOC上升沿。当CS在两次转换之间被否定时,第 一个outputdata位出现在CS的下降边缘。该数据是前一个转换周期的结果,在第一个输出数据位之后,每个后续的位都被锁定在每个后 续I/O时钟的下降边缘。转换周期转换周期对用户是透明的,它由一个内部时钟同步toI/O时钟控制。在转换期间,该装置对模拟输入电 压进行逐次近似转换。EOC输出在转换周期开始时较低,在转换完成并锁定输出数据寄存器时较高。转换周期只有在I/Ocycle完成后才 开始,这样可以将外部数字噪声对转换精度的影响降到最低。

TLC2543QDWREP;TLC2543MDBREP;中文规格书,Datasheet资料

TLC2543QDWREP;TLC2543MDBREP;中文规格书,Datasheet资料

FEATURES(TOP VIEW)DW PACKAGE DESCRIPTION/ORDERING INFORMATION•Controlled Baseline•Programmable Power Down–One Assembly/Test Site,One Fabrication •Programmable Output Data Length Site•CMOS Technology•Extended Temperature Performance of –40°C •Application Report Available (2)to 125°C (TLC2543Q)and –55°C to 125°C (TLC2543M)•Enhanced Diminishing Manufacturing Sources (DMS)Support•Enhanced Product Change Notification •Qualification Pedigree (1)•12-Bit-Resolution Analog-to-Digital Converter (ADC)•10-µs Conversion Time Over Operating Temperature•11Analog Input Channels•Three Built-In Self-Test Modes•Inherent Sample-and-Hold Function •Linearity Error ...±1LSB Max •On-Chip System Clock•End-of-Conversion (EOC)Output•Unipolar or Bipolar Output Operation (Signed Binary With Respect to 1/2the Applied Voltage Reference)•Programmable Most Significant Bit (MSB)or Least Significant Bit (LSB)First(1)Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over anextended temperature range.This includes,but is not limited to,Highly Accelerated Stress Test (HAST)or biased 85/85,temperature cycle,autoclave or unbiased HAST,electromigration,bond intermetallic life,and mold compound life.Such qualification testing should not be viewed as justifying use of this component beyond specified (2)Microcontroller Based Data Acquisition Using the TLC2543performance and environmental limits.12-bit Serial-Out ADC (SLAA012)The TLC2543is a 12-bit,switched-capacitor,successive-approximation,analog-to-digital converter (ADC).This device,with three control inputs [chip select (CS),input-output clock (I/O CLOCK),and address input (DATA INPUT)],is designed for communication with the serial port of a host processor or peripheral through a serial 3-state output.The device allows high-speed data transfers from the host.In addition to the high-speed converter and versatile control capability,the device has an on-chip 14-channel multiplexer that can select any 1of 11inputs or any 1of 3internal self-test voltages.The sample-and-hold function is automatic.At the end of conversion,the end-of-conversion (EOC)output goes high to indicate that conversion is complete.The converter incorporated in the device features differential high-impedance reference inputs that facilitate ratiometric conversion,scaling,and isolation of analog circuitry from logic and supply noise.A switched-capacitor design allows low-error conversion over the full operating temperature range.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright ©2002–2006,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.DATA OUTDATA INPUT CSEOCAIN0AIN1AIN2AIN3AIN4AIN5AIN6AIN7AIN8AIN9AIN10SGLS125A–JULY 2002–REVISED NOVEMBER 2006ORDERING INFORMATIONT APACKAGE (1)ORDERABLE PART NUMBER TOP-SIDE MARKING –40°C to 125°C SOP –DW Tape and reel TLC2543QDWREP TLC2543QEP -55°C to 125°C SSOP -DBTape and ReelTLC2543MDBREPTLC2543MEP(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at /sc/package.FUNCTIONAL BLOCK DIAGRAM2Submit Documentation FeedbackTERMINAL FUNCTIONSTERMINALI/O DESCRIPTIONNAME NO.AIN01AIN12AIN23AIN34AIN45Analog input.These11analog-signal inputs are internally multiplexed.The driving sourceAIN56I impedance should be less than or equal to50Ωfor4.1-MHz I/O CLOCK operation,and be capable AIN67of slewing the analog input voltage into a capacitance of60pF.AIN78AIN89AIN911AIN1012Chip select.A high-to-low transition on CS resets the internal counters and controls and enablesCS15I DATA OUT,DATA INPUT,and I/O CLOCK.A low-to-high transition disables DATA INPUT and I/OCLOCK within a setup time.Serial-data input.A4-bit serial address selects the desired analog input or test voltage to beconverted next.The serial data is presented with the most significant bit(MSB)first and is shifted in DATA INPUT17Ion the first four rising edges of I/O CLOCK.After the four address bits are read into the addressregister,I/O CLOCK clocks the remaining bits in order.The3-state serial output for the A/D conversion result.DATA OUT is in the high-impedance statewhen CS is high and active when CS is low.With a valid CS,DATA OUT is removed from thehigh-impedance state and is driven to the logic level corresponding to the most significant bit/least DATA OUT16Osignificant bit(MSB/LSB)value of the previous conversion result.The next falling edge of I/OCLOCK drives DATA OUT to the logic level corresponding to the next MSB/LSB,and the remainingbits are shifted out in order.End of conversion.EOC goes from a high to a low logic level after the falling edge of the last I/O EOC19OCLOCK and remains low until the conversion is complete and the data is ready for transfer.Ground.GND is the ground return terminal for the internal circuitry.Unless otherwise noted,allGND10voltage measurements are with respect to GND.Input/output clock.I/O CLOCK receives the serial input and performs the following four functions:•It clocks the eight input data bits into the input data register on the first eight rising edges of I/OCLOCK with the multiplexer address available after the fourth rising edge.•On the fourth falling edge of I/O CLOCK,the analog input voltage on the selected multiplexer inputbegins charging the capacitor array and continues to do so until the last falling edge of the I/OI/O CLOCK18ICLOCK.•It shifts the11remaining bits of the previous conversion data out on DATA OUT.Data changes onthe falling edge of I/O CLOCK.•It transfers control of the conversion to the internal state controller on the falling edge of the lastI/O CLOCK.Positive reference voltage.The upper reference voltage value(nominally V CC)is applied to REF+. REF+14I The maximum input voltage range is determined by the difference between the voltage applied tothis terminal and the voltage applied to the REF–terminal.Negative reference voltage.The lower reference voltage value(nominally ground)is applied toREF–13IREF–.V CC20Positive supply voltage3Submit Documentation FeedbackAbsolute Maximum Ratings (1)Recommended Operating ConditionsSGLS125A–JULY 2002–REVISED NOVEMBER 2006over operating free-air temperature range (unless otherwise noted)MINMAX UNIT V CC Supply voltage range (2)–0.5 6.5V V CC +V I Input voltage range (any input)–0.3V 0.3V CC +V O Output voltage range –0.3V 0.3V CC +V ref+Positive reference voltage V 0.1V ref–Negative reference voltage –0.1V I I Peak input current (any input)±20mA I I Peak total input current (all inputs)±30mA TLC2543Q –40125T A Operating free-air temperature range °C TLC2543M-55125T stg Storage temperature range–65150°C Lead temperature 1,6mm (1/16in)from the case for 10s260°C(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values are with respect to the GND terminal with REF–and GND wired together (unless otherwise noted).(1)Analog input voltages greater than that applied to REF+convert as all ones (111111111111),while input voltages less than that applied to REF–convert as all zeros (000000000000).(2)To minimize errors caused by noise at the CS input,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.No attempt should be made to clock in an address until the minimum CS setup time has elapsed.(3)This is the time required for the clock input signal to fall from V IH min to V IL max or to rise from V IL max to V IH min.In the vicinity of normal room temperature,the devices function with input clock transition time as slow as 1µs for remote data acquisition applications where the sensor and the ADC are placed several feet away from the controlling microprocessor.4Submit Documentation FeedbackElectrical Characteristicsover recommended operating free-air temperature range,VCC =Vref+=4.5V to5.5V,f(I/O CLOCK)=4.1MHz(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP(1)MAX UNITV CC=4.5V,I OH=–1.6mA 2.4V OH High-level output voltage VV CC=4.5V to5.5V,I OH=–20µA V CC–0.1V CC=4.5V,I OL=1.6mA0.4V OL Low-level output voltage VV CC=4.5V to5.5V,I OL=20µA0.1V O=V CC,CS at V CC1 2.5 High-impedance off-stateI OZµAoutput current VO=0,CS at V CC1–2.5I IH High-level input current V I=V CC110µAI IL Low-level input current V I=01–10µAI CC Operating supply current CS at0V1 2.5mAFor all digital inputs,I CC(PD)Power-down current425µA0≤V I≤0.5V or V I≥V CC–0.5VSelected channel at V CC,Unselected channel at0V10 Selected channelµA leakage current Selected channel at0V,Unselected channel at VCC–10Maximum static analogV ref+=V CC,V ref–=GND1 2.5µA reference current into REF+Analog inputs3060 InputC i pFcapacitance Control inputs515(1)All typical values are at V CC=5V,T A=25°C.5Submit Documentation FeedbackOperating CharacteristicsSGLS125A–JULY2002–REVISED NOVEMBER2006over recommended operating free-air temperature range,VCC =Vref+=4.5V to5.5V,f(I/O CLOCK)=4.1MHz(1)All typical values are at T A=25°C.(2)Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.(3)Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specified gainpoint after the offset error has been adjusted to zero.Offset error is the difference between the actual midstep value and the nominal midstep value at the offset point.(4)Analog input voltages greater than that applied to REF+convert as all ones(111111111111),while input voltages less than that appliedto REF–convert as all zeros(000000000000).(5)Total unadjusted error comprises linearity,zero-scale,and full-scale errors.(6)Both the input address and the output codes are expressed in positive logic.(7)I/O CLOCK period=1/(I/O CLOCK frequency)(see Figure7)(8)Any transitions of CS are recognized as valid only is maintained for a setup time.CS must be taken low at≤5µs of thetenth I/O CLOCK falling edge to ensure a conversion is aborted.Between5µs and10µs,the result is uncertain as to whether the conversion is aborted or the conversion results are valid.6Submit Documentation FeedbackPARAMETER MEASUREMENT INFORMATIONC110 µF−15 VVC110 µFLOCATIONU1C1C2C3DESCRIPTIONOP2710-µF 35-V tantalum capacitor0.1-µF ceramic NPO SMD capacitor470-pF porcelain Hi-Q SMD capacitorPART NUMBER——AVX 12105C104KA105 or equivalentJohanson 201S420471JG4L or equivalentEOCC LVR L = 2.18 kΩC LVR L = 2.18 kΩCSDATAOUTtI/O CLOCKFigure1.Analog Input Buffer to Analog Inputs AIN0–AIN10Figure2.Load CircuitsFigure3.DATA OUT to Hi-Z Voltage Waveforms Figure4.DATA INPUT and I/O CLOCKVoltage Waveforms7Submit Documentation FeedbackCSI/O CLOCKI/O CLOCKDATA OUTt t EOCDATA OUTSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To ensure full conversion accuracy,it is recommended that no input signal change occurs while a conversion is ongoing.Figure 5.CS and I/O CLOCK Voltage WaveformsFigure 6.I/O CLOCK and DATA OUT Voltage WaveformsFigure 7.I/O CLOCK and EOC Voltage WaveformsFigure 8.EOC and DATA OUT Voltage Waveforms8Submit Documentation FeedbackA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 9.Timing for 12-Clock Transfer Using CS With MSB FirstA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 10.Timing for 12-Clock Transfer Not Using CS With MSB First9Submit Documentation FeedbackI/O CLOCKDATA OUT DATA INPUTCSEOCSGLS125A–JULY 2002–REVISED NOVEMBER 2006A.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 11.Timing for 8-Clock Transfer Using CS With MSB FirstA.To minimize errors caused by noise at CS,the internal circuitry waits for a setup time after CS ↓before responding to control input signals.Therefore,no attempt should be made to clock in an address until the minimum CS setup time has elapsed.Figure 12.Timing for 8-Clock Transfer Not Using CS With MSB First10Submit Documentation Feedback分销商库存信息:TITLC2543QDWREP TLC2543MDBREP。

TLC2543中文数据手册

TLC2543中文数据手册

TLC2543使用手册一、简要说明:TLC2543是一款8位、10位、12位为一体的可选输出位数的11通道串行转换芯片。

每一路转换时间为10us。

外部输入信号为:DATA input ;_CS;AD_IO_CLK;Analog input;四种信号;输出为:EOC转换结束信号,DATA output信号。

工作原理为:_CS由高变为低时候,允许DATA input;AD_IO_CLK;Analog input信号输入,DATA out 信号输出;由低到高禁止DATA input;AD_IO_CLK;信号输入。

当忽略ADC转换启动的CS时候,数据的输出是在CS的下降沿,既是将片选的时候,而考虑到CS时候,第一个输出数据发生在EOC变为高的时候的上升沿。

注意:初始化时候,必须将CS由高拉低才能进行数据输出或者是数据输入。

也就是说,当一次转换完成后,进行下一次或者是下一个通道的转换,需要将CS由低拉高,为下一次转换做好准备,当进行下一个转换时候,进行CS 拉低,DATA input输入或者DATA out输出(忽略CS转换作用时候)。

信号解释:DATA input:4位串行地址输入,用来选择模拟输入通道功能或者测试引脚;高位在前,在每一个AD_IO_CLK的上升沿输入ADC的寄存器。

由八位组成:前四位:D7:D4用作选择模拟输入通道,D3:D2用作选择数据长度,D1是选择输出高低位顺序的,D0选择是选择输出极性(单双极性)。

DA TA INPUT的表含义DATA OUT:当_CS为高时DATA out输出为高阻抗,当CS有效时,驱动转换结果,并在AD_IO_CLK的下降沿按位顺序输出。

EOC:ADC的EOC在DATA input输入的最后一个AD_IO_CLK时,由高变为低,并保持到转换结束和数据准备输出结束时候变为高。

AD_IO_CLK:输入和输出时钟,主要完成以下功能:A、在IO_CLK的前八个时钟的上升沿将DATA input的八位数据输入数据寄存器中。

12位TLC2543模数转换总结

12位TLC2543模数转换总结
Lcd_wcd(1,0x30+bai);
Lcd_wcd(1,0x2e);
Lcd_wcd(1,0x30+shi);
Lcd_wcd(1,0x30+ge);
Lcd_wcd(1,0x30+xiao);
/*for(i=0;i<SUM;i++)
{
temp1+=redad(0x01);//选择通道1,并读取AD转换的数
GND
地。GND是内部电路的地回路端。除另有说明外,所有电压测量都相对GND而言
18
I/O CLOCK
I
输入/输出时钟端。I/OCLOCK接收串行输入信号并完成以下四个功能:(1)在I/O CLOCK的前8个上升沿,8位输入数据存入输入数据寄存器。(2)在I/OCLOCK的第4个下降沿,被选通的模拟输入电压开始向电容器充电,直到I/OCLOCK的最后一个下降沿为止。(3)将前一次转换数据的其余11位输出到DATA OUT端,在I/OCLOCK的下降沿时数据开始变化。(4)I/OCLOCK的最后一个下降沿,将转换的控制信号传送到内部状态控制位
//uchar code dis1[]={"采集电压:000 v"};
/*************延时**************/
void delay(uint z)
{//一毫秒
uint y;
for(;z>0;z--)
for(y=110;y>0;y--) ;
}
void delay_us(uchar n)//微秒
shi=x/1000%10;
ge=x/100%10;
xiao=x/10%10;
}
/****************主函数****************/

AD590和tlc2543总结

AD590和tlc2543总结

AD590介绍温度传感器AD590规格,管脚及应用电路AD590温度传感器是一种已经IC化的温度感测器,它会将温度转换为电流,其规格如下:1、度每增加1℃,它会增加1μA输出电流2、可测量范围-55℃至150℃3、供电电压范围+4V至+30VAD590的管脚图及元件符号如下图所示:AD590的输出电流值说明如下:其输出电流是以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其输出电流Iout=(273+25)=298μA。

AD590基本应用电路:注意事项:1、Vo的值为Io乘上10K,以室温25℃而言,输出值为10K×298μA=2.98V2、测量Vo时,不可分出任何电流,否则测量值会不准。

AD590实际应用电路:电路分析:1、AD590的输出电流I=(273+T)μA(T为摄氏温度),因此测量的电压V0为(273+T)μA×10K=(2.73+T/100)V。

为了将电压测量出来又务须使输出电流I不分流出来,我们使用电压跟随器其输出电压V1等于输入电压V0。

2、利用可变电阻分压,其输出电压V2需调整至2.73V3、接下来我们使用差动放大器其输出V3为(100K/10K)×(V1-V2)=T/10,如果现在为摄氏28℃,输出电压为2.8V,输出电压接AD转换器,那么AD转换输出的数字量就和摄氏温度成线形比例关系。

它输出的电压可以直接通过atmega16单片机的ADC的一个通道转换成数字量,不过该ADC是十位的,精度不够高,所以可以用12位精度的tlc2543ADC 来进行采集电压值。

TLC2543介绍TLC2543引脚、功能及时序一、模块采用TI公司的TLC2543 12位串行A/D转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O 资源,且价格适中。

其特点有:(1)12位分辨率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差+1LSB(max)(7)有转换结束(EOC)输出;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程的输出数据长度。

串行A_D转换器TLC2543原理及应用

串行A_D转换器TLC2543原理及应用

则转换数据的第一位即出现在 =>?> :@?A@? 管 脚上, 如图 ! 所示。
!(!
掉电方式
在掉电方式时, 芯片内部处于低电流待机状态。 当一个 “+++*” 二进制通道选择地址数在前四个 9 B : 就选择了掉 ;C:;D 周期内置入输入数据寄存器时, 电方式, 在第四个 9 B : ;C:;D 下降沿时被激活。这
:<?K 3B% :LA! ;读入 : ; < 通道和输出数据格式选择参数 3B% H#L: ;在 H# 中存储该参数 ?>H A+(!
;选通芯片
PN :??(+L>EN ; 3EN 或 >EN 导前判断
高位数据读取程序段 3ENK 3B% H@LM*"J ;
(王亚东
! "# !
编发)
>BBA+K3B% ?LA+($
、 输入数据端 (#!$! 120X$) 、 输 (#!$! WX$0X$)
%/6 导前和极性进行选择。 @ !456789 性能特点 (+) +’ 位分辨率。 (’) ++ 个模拟输入通道。 (*) 线性误差[+%/6 U!\。 () ) 输出数据单极性或双极性、 数据长短、 U/6 或 %/6 前导可编程。 正常温度范围内 +-!J 转换时间。 (() (.) 自动采样与保持。 (3) 片内系统时钟。 (R) 三种内置自测试方式。
>BBA$K 3B% ?LA+($ H>? : 3B% A+(+L? E,=N A+(* ?>H A+(* <P)Q H@L>BBA$ 3B% H!L: 3B% :LH# PN :??(+L3EN H,=DH)K H,=

TLC2543中文资料

TLC2543中文资料

串行A D转换器T L C2543中文资料T L C2543是T I公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。

由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。

2T L C2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66k b p s;(6)线性误差±1L S B m a x;(7)有转换结束输出E O C;(8)具有单、双极性输出;(9)可编程的M S B或L S B前导;(10)可编程输出数据长度。

3T L C2543的引脚排列及说明T L C2543有两种封装形式:D B、D W或N封装以及F N封装,这两种封装的引脚排列如图1,引脚说明见表1。

图1T L C2543的封装4接口时序可以用四种传输方法使T L C2543得到全12位分辩率,每次转换和数据传递可以使用12或16个时钟周期。

一个片选()脉冲要插到每次转换的开始处,或是在转换时序的开始处变化一次后保持为低,直到时序结束。

图2显示每次转换和数据传递使用16个时钟周期和在每次传递周期之间插入的时序,图3显示每次转换和数据传递使用16个时钟周期,仅在每次转换序列开始处插入一次时序。

引脚号名称I/O说明1~9,11,12AIN0~AIN10I模拟量输入端。

11路输入信号由内部多路器选通。

对于4.1MHz的I/OCLOCK,驱动源阻抗必须小于或等于50Ω,而且用60pF电容来限制模拟输入电压的斜率15I片选端。

在端由高变低时,内部计数器复位。

由低变高时,在设定时间内禁止DATAINPUT和I/O CLOCK17DATAINPUT I串行数据输入端。

由4位的串行地址输入来选择模拟量输入通道16DATA OUT O A/D转换结果的三态串行输出端。

TLC2543时序图以及程序

TLC2543时序图以及程序

TLC2543引脚说明引脚号名称I/O说明1~9,11,12 AIN0~AIN1I 模拟量输入端。

11路输入信号由内部多路器选通。

对于4.1MHz的I/OCLOCK,驱动源阻抗必须小于或等于50Ω,而且用60pF电容来限制模拟输入电压的斜率15 I 片选端。

在端由高变低时,内部计数器复位。

由低变高时,在设定时间内禁止DATAINPUT和I/O CLOCK17 DATAINPUT I 串行数据输入端。

由4位的串行地址输入来选择模拟量输入通道16 DATA OUT O A/D转换结果的三态串行输出端。

为高时处于高阻抗状态,为低时处于激活状态19 EOC O 转换结束端。

在最后的I/OCLOCK下降沿之后,EOC从高电平变为低电平并保持到转换完成和数据准备传输为止10 GND 地。

GND是内部电路的地回路端。

除另有说明外,所有电压测量都相对GND而言18 I/O CLOCK I 输入/输出时钟端。

I/OCLOCK接收串行输入信号并完成以下四个功能:(1)在I/O CLOCK的前8个上升沿,8位输入数据存入输入数据寄存器。

(2)在I/OCLOCK的第4个下降沿,被选通的模拟输入电压开始向电容器充电,直到I/OCLOCK的最后一个下降沿为止。

(3)将前一次转换数据的其余11位输出到DATAOUT端,在I/OCLOCK的下降沿时数据开始变化。

(4)I/OCLOCK的最后一个下降沿,将转换的控制信号传送到内部状态控制位14 REF+ I 正基准电压端。

基准电压的正端(通常为Vcc)被加到REF+,最大的输入电压范围由加于本端与REF-端的电压差决定13 REF- I 负基准电压端。

基准电压的低端(通常为地)被加到REF-20 Vcc 电源TLC2543接口时序可以用四种传输方法使TLC2543得到全12位分辩率,每次转换和数据传递可以使用12或16个时钟周期。

一个片选()脉冲要插到每次转换的开始处,或是在转换时序的开始处变化一次后保持为低,直到时序结束。

TLC2543引脚、功能及时序

TLC2543引脚、功能及时序

一、模块采纳 TI 企业的 TLC2543 12位串行 A/D 变换器,使用开关电容逐次迫近技术达成 A/D 变换过程。

因为是串行输入构造,可以节俭 51 系列单片机I/O 资源,且价钱适中。

其特色有:( 1)12 位分辨率 A/D 变换器;( 2)在工作温度范围内10μs 变换时间;( 3)11 个模拟输入通道;( 4)3 路内置自测试方式;( 5)采样率为 66kbps;( 6)线性偏差 +1LSB(max)( 7)有变换结束( EOC)输出;( 8)拥有单、双极性输出;( 9)可编程的 MSB 或 LSB前导;( 10)可编程的输出数据xx。

二、 TLC2543的引脚摆列如下图。

1~9、11、12——AIN0~ AIN10 为模拟输入端;15——CS 为片选端;17——DIN 为串行数据输入端;(控制字输入端,用于选择变换及输出数据格式)16——DOUT为 A/D 变换结果的三态串行输出端;( A/D 变换结果的输出端。

) 19——EOC为变换结束端;1 / 418——CLK为 I/O 时钟;(控制输入输出的时钟,由外面输入。

)14——REF+为正基准电压端;13——REF为-负基准电压端;20——VCC为电源;10——GND为地。

三、 TLC2543的使用方法3.1 控制字的格式控制字为从 DATAINPUT端串行输入的 8 位数据,它规定了 TLC2543要变换的模拟量通道、变换后的输出数据长度、输出数据的格式。

高 4 位(D7~D4)决定通道号,关于 0 通道至 10 通道,该 4 位分别为 00~10H,当为 1011~1101 时,用于对 TLC2543的自检,分别测试 (VREF++ VREF-)/2、VREF-、VREF+的值,当为 1110 时, TLC2543进入休眠状态。

低 4 位决定输出数据xx 及格式,D3、D2 决定输出数据长度, 01 表示输出数据长度为 8 位, 11 表示输出数据长度为 16 位,其余为 12 位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright © 1998, Texas Instruments Incorporated。

相关文档
最新文档