14统计《应用多元统计分析》第04章_判别分析gxs
统计学中的判别分析
统计学中的判别分析判别分析是统计学中一种常见的分析方法,旨在通过将样本数据归类到一个或多个已知的类别中,来识别和描述不同类别之间的差异。
它在很多领域中都有广泛的应用,例如医学、市场调研、金融等。
本文将介绍判别分析的基本原理、常见的判别分析方法以及其在实际应用中的一些例子。
一、判别分析的原理判别分析的目标是构建一个判别函数,通过输入变量的值来判别或预测样本所属的类别。
它的核心思想是通过最大化类别间的差异和最小化类别内部的差异,来建立一个有效的分类模型。
判别分析的基本原理可以用以下步骤来描述:1. 收集样本数据,包括已知类别的样本和它们的属性值。
2. 对每个样本计算各个属性的平均值和方差。
3. 计算类别内部散布矩阵和类别间散布矩阵。
4. 根据散布矩阵计算特征值和特征向量。
5. 选择最具判别能力的特征值和特征向量作为判别函数的基础。
二、判别分析的方法判别分析有多种方法可以选择,常见的包括线性判别分析(Linear Discriminant Analysis,简称LDA)和二次判别分析(Quadratic Discriminant Analysis,简称QDA)。
1. 线性判别分析(LDA)线性判别分析假设每个类别的样本数据满足多元正态分布,并且各个类别的协方差矩阵相等。
它通过计算最佳投影方向,将多维属性值降低到一维或两维来实现分类。
LDA在分类问题中被广泛应用,并且在特征选择和降维方面也有一定的效果。
2. 二次判别分析(QDA)二次判别分析不同于LDA,它允许每个类别具有不同的协方差矩阵。
QDA通常适用于样本数据的协方差矩阵不相等或不满足多元正态分布的情况。
与LDA相比,QDA在处理非线性问题时可能更有优势。
三、判别分析的应用实例判别分析在多个领域中都有广泛的应用,下面列举了一些实际的例子。
1. 医学领域在医学中,判别分析可以帮助诊断疾病或判断病情。
例如,可以利用病人的临床数据(如血压、血糖等指标)进行判别分析,来预测是否患有某种疾病,或者判断疾病的严重程度。
应用多元统计分析课后习题答案高惠璇第四章部分习题解答
4
第四章 回归分析
令
L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y
统计学中的判别分析方法
统计学中的判别分析方法统计学是一门研究数据收集、分析和解释的学科,可以帮助我们更好地理解和利用数据。
判别分析是统计学中一种重要的方法,它可以用于解决分类问题和区分不同的群组。
本文将介绍判别分析的基本概念、应用场景以及常见的判别分析方法。
一、判别分析的基本概念判别分析(Discriminant Analysis)是一种用于确定某个变量(被称为判别变量)对于将不同个体或样本分组的有效性的方法。
在判别分析中,我们希望通过已有的数据集,找到一种线性或非线性的方式将不同类别的样本区分开来。
判别分析通常用于以下几个方面:1. 分类问题:当我们面对一个具有多个类别的问题时,判别分析可以帮助我们将样本分到不同的类别中。
2. 数据降维:判别分析可以将高维度的数据降低到较低维度,从而使数据更加易于理解和处理。
3. 特征选择:通过判别分析,我们可以确定哪些特征(自变量)对于区分不同类别的样本最具有判别性。
二、判别分析的应用场景判别分析在实际生活和各个领域中都有广泛的应用,下面列举几个常见的应用场景。
1. 医学诊断:判别分析可以通过分析病人的生理指标(如血压、心率等)来帮助确定病人是否患有某种疾病。
2. 金融风险评估:通过判别分析,可以将客户分为高风险和低风险群体,从而帮助金融机构评估和管理风险。
3. 文本分类:在自然语言处理领域,判别分析可以通过分析文本的特征来将文本分为不同类别,如情感分类、垃圾邮件分类等。
4. 面部识别:判别分析可以通过分析不同人脸特征的差异性来进行人脸识别,应用广泛于安防领域和人工智能领域。
三、常见的判别分析方法在统计学中,有多种判别分析方法可供选择,下面介绍两种常见的方法。
1. 线性判别分析(Linear Discriminant Analysis,简称LDA):线性判别分析是一种常见且广泛使用的判别分析方法。
它通过将样本投影到低维空间来最大化类间的离散度,并最小化类内的离散度。
LDA假设不同类别的样本具有相同的协方差矩阵。
《多元统计分析》PPT课件
gi (Y ) 2y1i i1i
将上式中提-2,得
gi
(Y )
2(y
1 i
0.5i1i)
令 fi (Y ) (y1i 0.5i1i)
则距离判别法的判别函数为:
§2 距离判别
(一)马氏距离
距离判别的最直观的想法是计算样品到第i类 总体的平均数的距离,哪个距离最小就将它判 归哪个总体,所以,我们首先考虑的是是否能 够构造一个恰当的距离函数,通过样本与某类 别之间距离的大小,判别其所属类别。
设 x (x1, x2,, xm )和 y ( y1, y2,, ym ) 是从
样本,来检验方法是否稳定的问题。
判类
原类
G1 G2 Gk
G1
G2
合计
Gk
m11
m12
m1k
n1
m21
m22
m2k
n2
mk1
mk 2
mkk
nk
简单错判率:p
1 n
k i 1
k
mij
j 1
ji
加权错判率:
设qi是第i类的先验概率, pi是第i类的错判 概率,则加权错判率为
1 1
1
1 1
)
2y1(1 2 ) (1 2 )1(1 2 )
2[y
(1
2
2
)]1 (1
2
)
令 1 2
2
1(1 2 ) (a1, a2,, ap )
多元统计分析第4章作业题选讲
多元统计分析
解:由已知可得,
1 (1) 1 6 2 4 (2) x x 2 2 2 1 0.5
^
4 3 1 9 3 1 =S p 27 3 4 3 9 ^ ^ ^ ^ 1 9 3 4 1 1 a 1 2 27 3 4 3 0 x1 4 ^ ^ x 1 1 x 4 记x , 则W ( x) a x 1 1 x 0 x 2 2 2 6 6 当x , 则W ( x) 6 4=2 0 ,所以,x 属于总体G1. 0 0
i
1 令 W x a x μ ,其中 μ 2 μ1 μ2
i
i
a Σ 1 μ1 μ2 ,则上述判别规则可简化为:
x G1 , 若W x 0 x G2 , 若W x 0 待判, 若W x =0
由s≤min(k−1,p)知,组数k=2时只有一个判别式,k=3时最
多只有两个判别式,判别式的个数不可能超过原始变量的个 数p。
多元统计分析
第三步 写出判别式 第一判别式:y1=t1′x; 第二判别式:y2=t2′x;
一般地,第i判别式:yi=ti′x,i=1,2,⋯,s。
多元统计分析
(2)判别规则 选取前r(≤s)个判别式y1,y2,⋯,yr,使累计贡献率:
k
k
使ECM达到最小的判别规则:
k
l 1 l i
x l , 若 q j f j x C l | j min q j f j x C i | j
应用多元分析第四章优秀课件
❖ 例4.2.1 对某地区农村的6名2周岁男婴的身高、胸围、上半 臂围进行测量,得样本数据如表4.2.1所示。根据以往资料, 该地区城市2周岁男婴的这三个指标的均值μ0=(90,58,16)′, 现欲在多元正态性假定下检验该地区农村男婴是否与城市男
婴有相同的均值。这是假设检验问题:
H0:μ=μ0,H1:μ≠μ0
拒绝规则为:
若T02 2p,则拒绝H0
❖ 2. Σ未知
检验统计量为
T 2 n xμ 0S 1xμ 0
称之为霍特林(Hotelling)T2 统计量。当 H0
为真时
n
p
n
p 1
T
2
服从F(p,n−p)
,对给定的显著性水
平α,拒绝规则为:
若 T 2 T2,则拒绝H0
其中 T2pnnp1Fp,np。
查表得F0.01(3,3)=29.5,于是
T02 .013 35F 0.013,3147.5
故在显著性水平α=0.01下,拒绝原假设H0,即认为农村与城 市的2周岁男婴上述三个指标的均值有显著差异(p=0.002)。
二、置信区域
T 2 n x μ S 1 x μ
n
p
np 1T来自2F p,n p
S
8.040 0.500
3.1 7 2 1.3 10
1.3 10 1.9 0 0
4.3107 14.6210 8.9464
S
1
23.13848 1
1 4.6 2 10 8.9464
59.7900 37.3760
37.3760 35.5936
T 2 n x μ0 S 1 x μ0 6 70.0741 420.445
H0:μ1/6=μ2/4=μ3,H1:μ1/6, μ2/4, μ3至少有两个不等 令
应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件
0
2
)
3 2
(ˆ
2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ
2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0
,ˆ
2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
《应用多元统计分析》第04章-判别分析
04
判别分析的实例与演示
数据来源与预处理
数据来源
判别分析所使用的数据通常来源于实际研究或调查,这些数据可能涉及到多个 变量和观测样本。
数据预处理
在应用判别分析之前,需要对数据进行预处理,包括数据清洗、缺失值处理、 异常值检测与处理、数据标准化等步骤,以确保数据的质量和可靠性。
2. 建立判别模型
选择合适的变量,并进行数据清理和预处 理,包括缺失值处理、异常值检测与处理 等。
选择合适的判别分析方法,如线性判别分析 (LDA)或二次判别分析(QDA),并利用 已知分类的数据来估计判别函数。
3. 模型评估
4. 应用模型
使用诸如混淆矩阵、准确率、召回率等指 标来评估模型的性能,并可能进行交叉验 证。
目的
通过建立判别函数,使得不同类别之 间的差异尽可能大,而同一类别内的 差异尽可能小。
判别分析与聚类分析的区别
01
判别分析基于已知分类数据, 目标是建立预测分类的规则; 而聚类分析则是将未知分类的 数据进行归类。
02
判别分析要求对各变量之间的 相关性进行建模,而聚类分析 则更注重数据之间的距离或相 似性。
总结词
两总体判别分析是一种基本的判别分析方法,用于根据已知分类的数据集构建判别函数,从而对新数据进行分类。
详细描述
两总体判别分析通常用于解决二分类问题,其基本思想是通过选择一组特征变量,使得不同类别的样本在这组变 量上的均值差异最大,同时使同类样本之间的离散度最小。判别函数通常采用线性或非线性形式,通过最小化分 类错误率来构建。
对特征选择敏感
判别分析的特征选择可能对结果 影响较大,如果选择不合适的特 征,可能会导致分类效果不佳。
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件
第四章部分习题解答
第1页
1
第四章 回归分析
4-1
设
y1 y2
a 2a
1,
b
2
,
y3 a 2b 3,
1
2 3
~
N 3 (0,
2I3 ),
(1) 试求参数a,b
解:用矩阵表示以上模型:
则
Y
y1 y2 y3
1
2 1
201
a b
1 2 3
def
X
ˆ
aˆ bˆ
3
exp
1
2 2
[( y1 a0 )2
( y2
a0 )2
( y3
3a0 )2 ]
第4页
4
第四章 回归分析
令
L(a0 ,
a0
2)
L(a0 ,
2
)
2
2
2
[(
y1
a0
)
(
y2
a0 )
3(
y3
3a0
)
0
可得 令
ln
aˆ0
1 11
L(aˆ0 , 2 )
2
( y1
y2 3y3 )
3
2
2
令
ln L
2
3
2
2
1
2( 2 )2
[( y1
aˆ)2
]
0
可得
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ
2bˆ)2
似然比统计量分母为
L(aˆ, bˆ,ˆ
2
)
(2
《多元统计分析讲义》第四章判别分析
**
**
目录 上页 下页 返回 结束
§4.6 判别分析方法步骤及框 图 研究者首先应该关注被解释变量。被解释变量的组数可以是
两个或更多,但这些组必须具有相互排斥性和完全性。被解 释变量有时确实是定性的变量。然而也有一些情况,即使被 解释变量不是真的定性变量,判别分析也是适用的。我们可 能有一个被解释变量是顺序或者间隔尺度的变量,而要作为 定性变量使用。这种情况下我们可以创建一个定性变量。
*
*
目录 上页 下页 返回 结束
§4.1 判别分析的基本理
论
判别分析的假设之一,是每一个判别变量(解释变量)不 能是其他判别变量的线性组合。即不存在多重共线性问题。 判别分析的假设之二,是各组变量的协方差矩阵相等。判 别分析最简单和最常用的形式是采用线性判别函数,它们 是判别变量的简单线性组合。在各组协方差矩阵相等的假 设条件下,可以使用很简单的公式来计算判别函数和进行 显著性检验。 判别分析的假设之三,是各判别变量之间具有多元正态分 布,即每个变量对于所有其他变量的固定值有正态分布。 在这种条件下可以精确计算显著性检验值和分组归属的概 率。当违背该假设时,计算的概率将非常不准确。
**
目录 上页 下页 返回 结束
§4.3 Bayes判别
**
XXX
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
目录 上页 下页 返回 结束
§4.4 Fisher判别
**
**
应用多元统计分析之判别分析
励志人生 好好学习
第二节 距离判别法
一 马氏距离的概念 二 距离判别的思想及方法
三 判别分析的实质
励志人生 好好学习
一、马氏距离的概念
励志人生 好好学习
图4.1
励志人生 好好学习
励志人生 好好学习
为此,我们引入一种由印度著名统计学家马哈拉诺比斯( Mahalanobis, 1936)提出的“马氏距离”的概念。
判别函数就有几个判别得分变量; Probabilities of group membership:存放样品属于各组的
Bayes后验概率值。
将对话框中的三个复选框均选中,单击Continue按钮返回。
励志人生 好好学习
图4.5 Save子对话框 6. 返回判别分析主界面,单击OK按钮,运行判别分析过程 。
励志人生 好好学习
励志人生 好好学习
第五节 实例分析与计算机实现
这一节我们利用SPSS对Fisher判别法和Bayes判别法进行计 算机实现。
为研究某地区人口死亡状况,已按某种方法将15个已知地区 样品分为3类,指标含义及原始数据如下。试建立判别函数 ,并判定另外4个待判地区属于哪类?
图4.4 Classify…子对话框
励志人生 好好学习
5. 单击Save按钮,指定在数据文件中生成代表判别分组结果 和判别得分的新变量,生成的新变量的含义分别为:
Predicted group membership:存放判别样品所属组别的值; Discriminant scores:存放Fisher判别得分的值,有几个典型
法就是为了解决这些问题而提出的一种判别方法。
励志人生 好好学习
一、Bayes判别的基本思想
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间;在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权;其中最典型的就是0-1标准化和Z 标准化;2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离;在二维和三维空间中的欧氏距离的就是两点之间的距离;缺点:就大部分统计问题而言,欧氏距离是不能令人满意的;每个坐标对欧氏距离的贡献是同等的;当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离;当各个分量为不同性质的量时,“距离”的大小与指标的单位有关;它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求;没有考虑到总体变异对距离远近的影响;马氏距离表示数据的协方差距离;为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离;优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据计算出的二点之间的马氏距离相同;马氏距离还可以排除变量之间的相关性的干扰;缺点:夸大了变化微小的变量的作用;受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出;3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关;如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离;4、如果正态随机向量12(,,)p X X X X '=的协方差阵为对角阵,证明X 的分量是相互独立的随机变量;解: 因为12(,,)p X X X X '=的密度函数为 又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x则其分量是相互独立;5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N ;(a )求21y 的分布;(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布; (c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布;解:a 由于1y ~)1,0(N ,所以1y ~)1(2χ; b 由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义;3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ n=9 p=5检验统计量/n-1)()(0102μμ-'-=-X S X n T 服从P,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以nn-1,这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {n-p/n-1p}2T >,()p n p F α-1/102T >F5,45μ0= 2972 ’样本均值 ’样本均值-μ0’=协方差矩阵降维——因子分析——抽取Inter-Item Covariance Matrix人均GDP元三产比重%人均消费元人口增长%文盲半文盲%人均GDP元三产比重%人均消费元人口增长%文盲半文盲%协方差的逆矩阵计算:2T=9s^-1 ’F统计量=> 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显着差异;4、略第3章聚类分析1.、聚类分析的基本思想和功能是什么聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来;功能是把相似的研究对象归类;2、试述系统聚类法的原理和具体步骤;系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止; 具体步骤:1、对数据进行变换处理;不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果;3、试述K-均值聚类的方法原理;K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心均值类中,它是把样品聚集成K个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组;步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中通常采用标准化数据或非标准化数据计算欧氏距离重新计算接受新样品的类和失去样品的类的形心;重复这一步直到各类无元素进出;4、试述模糊聚类的思想方法;模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别;简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的;模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面;它有两种基本方法:系统聚类法和逐步聚类法;该方法多用于定性变量的分类;5、略第4章判别分析1、应用判别分析应该具备什么样的条件答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差;对于判别分析有三个假设:1每一个判别变量不能是其他判别变量的线性组合;有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性;2各组变量的协方差矩阵相等;判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显着性检验;3各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显着性检验值和分组归属的概率;2、试述贝叶斯判别法的思路;答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识先验概率分布,得到后验概率分布,各种统计推断都通过后验概率分布来进行;将贝叶斯判别方法用于判别分析,就得到贝叶斯判别;3、试述费歇判别法的基本思想;答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向;因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题;为了有利于判别,我们选择投影方向a应使投影后的k个一元总体能尽量分开同一总体中的样品的投影值尽量靠近;k要做到这一点,只要投影后的k个一元总体均值有显着差异,即可利用方差分析的方法使组间平方和尽可能的大;则选取投影方向a使Δa达极大即可;4、什么是逐步判别分析答:具有筛选变量能力的判别方法称为逐步判别分析法;逐步判别分析法就是先从所有因子中挑选一个具有最显着判别能力的因子,然后再挑选第二个因子,这因子是在第一因子的基础上具有最显着判别能力的因子,即第一个和第二个因子联合起来有显着判别能力的因子;接着挑选第三个因子,这因子是在第一、第二因子的基础上具有最显着判别能力的因子;由于因子之间的相互关系,当引进了新的因子之后,会使原来已引入的因子失去显着判别能力;因此,在引入第三个因子之后就要先检验已经引入的因子是否还具有显着判别能力,如果有就要剔除这个不显着的因子;接着再继续引入,直到再没有显着能力的因子可剔除为止,最后利用已选中的变量建立判别函数;5、简要叙述判别分析的步骤及流程答:1研究问题:选择对象,评估一个多元问题各组的差异,将观测个体归类,确定组与组之间的判别函数;2设计要点:选择解释变量,样本量的考虑,建立分析样本的保留样本;3假定:解释变量的正态性,线性关系,解释变量间不存在多重共线性,协方差阵相等;4估计判别函数:联立估计或逐步估计,判别函数的显着性;5使用分类矩阵评估预测的精度:确定最优临界得分,确定准则来评估判对比率,预测精确的统计显着性;6判别函数的解释:需要多少个函数;评价单个函数主要从判别权重、判别载荷、偏F值几个方面;评价两个以上的判别函数,分为评价判别的函数和评价合并的函数;7判别结果的验证:分开样本或交叉验证,刻画组间的差异;6、略第5章主成分分析1、主成分的基本思想是什么在对某一事物进行实证研究时,为更全面、准确地反映事物的特征及其发展规律,往往考虑与其有关的多个指标,在多元统计中也称为变量;一方避免遗漏重要信息而考虑尽可能多的指标看,另一方面考虑指标的增多,又难以避免信息重叠;希望涉及的变量少,而得到的信息量有较多;主成分的基本思想是研究如何通过原来的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法;研究某一问题涉及的众多变量之间有一定的相关性,必然存在着支配作用的公共因素;通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个无关的综合指标主成分来代替原来的指标;通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标;最经典的做法就是用F1选取的第一个线性组合,即第一个综合指标的方差来表达,即VarF1越大,表示F1包含的信息越多;因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分,如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求CovF1,F2=0则称F2为第二主成分,依此类推可以构造出第三、第四······,第P个主成分;2、主成分在应用中的主要作用是什么作用:利用原始变量的线性组合形成几个综合指标主成分,在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾;通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量数据进行定量分析,解释变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入;主成分分析能降低所研究的数据空间的维数,有时可通过因子载荷aij的结论,弄清X变量间的某些关系,多维数据的一种图形表示方法,用主成分分析筛选变量,可以用较少的计算量来选择,获得选择最佳变量子集合的效果;3.由协方差阵出发和由相关阵出发求主成分有什么不同1由协方差阵出发设随即向量X=X1,X2,X3,……Xp’的协方差矩阵为Σ,1≥2≥……≥p为Σ的特征值,γ1,γ2,……γp为矩阵A各特征值对应的标准正交特征向量,则第i个主成分为Yi=γ1iX1+γ2iX2+……+γpiXp,i=1,2,……,p此时VARYi=i,COVYi,Yj=0,i≠j我们把X1,X2,X3,……Xp的协方差矩阵Σ的非零特征根1≥2≥……≥p>0向量对应的标准化特征向量γ1,γ2,……γp分别作为系数向量,Y1=γ1’X, Y2=γ2’X,……, Yp=γp’X分别称为随即向量X的第一主成分,第二主成分……第p主成分;Y的分量Y1,Y2,……,Yp依次是X的第一主成分、第二主成分……第p主成分的充分必要条件是:1Y=P’X,即P为p阶正交阵,2Y的分量之间互不相关,即DY=diag1,2,……,p,3Y的p个分量是按方差由大到小排列,即1≥2≥……≥p;2由相关阵出发对原始变量X进行标准化,Z=Σ^1/2^-1X-μ covZ=R原始变量的相关矩阵实际上就是对原始变量标准化后的协方差矩阵,因此,有相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则相一致的;λi,γi 分别表示相关阵R的特征根值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:Yi=γi’Z=γi’Σ^1/2^-1X-μ在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰到好处;有些数据涉及到指标的不同度量尺度使指标方差之间不具有可比性,对于这类数据用协方差矩阵进行主成分分析也有不妥;相关系数矩阵计算主成分其优势效应仅体现在相关性大、相关指标数多的一类指标上;避免单个指标方差对主成分分析产生的负面影响,自然会想到把单个指标的方差从协方差矩阵中剥离,而相关系数矩阵恰好能达到此目的;4、略第6章因子分析1、因子分析与主成分分析有什么本质不同答:1因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成,因此,我们的目的就是要从数据中探查能对变量起解释作用的公共因子和特殊因子,以及公共因子和特殊因子的线性组合;主成分分析则简单一些,它只是从空间生成的角度寻找能解释诸多变量绝大部分变异的几组彼此不相关的新变量2因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合3主成分分析中不需要有一些专门假设,因子分析则需要一些假设,因子分析的假设包括:各个因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关;4在因子分析中,提取主因子的方法不仅有主成分法,还有极大似然法等,基于这些不同算法得到的结果一般也不同;而主成分分析只能用主成分法提取;5主成分分析中,当给定的协方差矩阵或者相关矩阵的特征根唯一时,主成分一般是固定;而因子分析中,因子不是固定的,可以旋转得到不同的因子;6在因子分析中,因子个数需要分析者指定,结果随指定的因子数不同而不同;在主成分分析中,主成分的数量是一定的,一般有几个变量就有几个主成分; 7与主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量新的变量几乎带有原来所有变量的信息来进行后续的分析,则可以使用主成分分析;2、因子载荷ij a 的统计定义是什么它在实际问题的分析中的作用是什么答:1因子载荷ij a 的统计定义:是原始变量i X 与公共因子j F 的协方差,i X 与j F ),...,2,1;,...,2,1(m j p i ==都是均值为0,方差为1的变量,因此ij a 同时也是i X 与j F 的相关系数;(2)记),,...,2,1(...222212m j a a a g pjj j j =+++=则2j g 表示的是公共因子j F 对于X 的每一分量),...,2,1(p i X i =所提供的方差的总和,称为公共因子j F 对原始变量X 的方贡献,它是衡量公共因子相对重要性的指标;2j g 越大,表明公共因子j F 对i X 的贡献越大,或者说对X的影响作用就越大;如果因子载荷矩阵对A 的所有的),...,2,1(2m j g j =都计算出来,并按大小排序,就可以依此提炼出最有影响的公共因子;3、略第7章 对应分析1、试述对应分析的思想方法及特点;思想:对应分析又称为相应分析,也称R —Q 分析;是因子分子基础发展起来的一种多元统计分析方法;它主要通过分析定性变量构成的列联表来揭示变量之间的关系;当我们对同一观测数据施加R 和Q 型因子分析,并分别保留两个公共因子,则是对应分析的初步;对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;特点:对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;2、试述对应分析中总惯量的意义;总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2x 统计量仅相差一个常数,而2x 统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系;对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系;3、略 第8章 典型相关分析1、试述典型相关分析的统计思想及该方法在研究实际问题中的作用;答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法;用于揭示两组变 量之间的内在联系;典型相关分析的目的是识别并量化两组变量之间的联系;将两z |Uz |V 组变量相 关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系;基本思想:1在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;即:X X 1, X 2, , , X p 、XX 1, X 2, , , X q 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量 U i 、Vi,使是原变量的线性组合;U i a 1X 1 a 2 X 2..... a P X P ≡ a ‘XV i b 1Y 1 b 2 Y 2 .... b q Y q ≡ b‘Y 在 D aX D bX 1 的条件下,使得 aX , bX 达到最大;2选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此;其作用为:进行两组变量之间的相关性分析,用典型相关系数衡量两组变量之间的相关性;2、简述典型相关分析中冗余分析的内容及作用;答:典型型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比 例,从而定量测度典型变量所包含的原始信息量;第一组变量样本的总方差为 t r R 11 p ,第二组变量样本的总方差为 t r R 22 q ;*A ˆz和*B ˆz 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量, Z z z **A ˆU ˆ=,Z z z **B ˆV ˆ=前 r 对典型变量对样本总方差的贡献为则第一组样本方差由前 r 个典型变量解释的比例为:第二组样本方差由前 r 个典型变量解释的比例为:3、典型变量的解释有什么具体方法实际意义是什么答:主要使用三种方法:1典型权重标准相关系数:传统的解释典型函数的方法包括观察每个原始变量在它的典型变量中的典型权重,即标准化相关系数StandardizedCanonical Coefficients 的符号和大小;有较大的典型权重,则说明原始变量对它的典型变量的贡献较大,反之则相反;原始变量的典型权重有相反的符号说明变量之间存在一种反面关系,反之则有正面关系;但是这种解释遭到了很多批评;这些问题说明在解释典型相关的时候应慎用典型权重;(2)典型载荷结构系数:由于典型载荷逐步成为解释典型相关分析结果的基础;典型载荷分析,即典型结构分析Canonical Structure Analyse,是原始变量自变量或者因变量与它的典型变量间的简单线性相关系数;典型载荷反映原始变量与典型变量的共同方差,它的解释类似于因子载荷,就是每个原始变量对典型函数的相对贡献;(3)典型交叉载荷交叉结构系数:它的提出时作为典型载荷的替代,也属于典型结构分析;计算典型交叉载荷包括每个原始因变量与自变量典型变量直接相关,反之亦然;交叉载荷提供了一个更直接地测量因变量组与自变量组之间的关系的指标;实际意义:即使典型相关系数在统计上是显着的,典型根和冗余系数大小也是可接受的,研究者仍需对结果做大量的解释;这些解释包括研究典型函数中原始变量的相对重要性;4.、略。
多元统计分析第四章第一部分
04
使用估计和预测方法对 未知数据进行推断和预 测。
02 多元正态分布及其性质
多元正态分布的定义与性质
多元正态分布的定义
在多维空间中,如果一个随机向量X 的概率密度函数形式为每个维度上的 正态分布,则称X服从多元正态分布 。
多元正态分布的性质
多元正态分布具有旋转对称性、椭球 性、最大似然估计等性质,这些性质 使得多元正态分布在统计分析中具有 广泛的应用。
主成分的求解方法
计算原始变量的相关系数 矩阵。
将特征值从大到小排序, 并选择前k个特征值对应 的特征向量。
计算相关系数矩阵的特征 值和特征向量。
将特征向量单位化,得到 k个主成分。
主成分分析的应用场景
金融领域
用于分析股票、债券等金融产品的收 益率和风险,识别市场趋势和投资机 会。
市场营销领域
用于市场细分和客户群体分析,了解 不同客户群体的消费行为和偏好。
多元线性回归模型的参数估计
总结词
参数估计是多元线性回归模型的核心步骤,通过最小二乘法等统计方法,对模型中的未 知参数进行估计。
详细描述
参数估计的方法有多种,其中最小二乘法是最常用的一种。最小二乘法通过最小化预测 值与实际值之间的残差平方和,求解出最佳的参数值。此外,还有加权最小二乘法、广
义最小二乘法等参数估计方法。
多元统计分析第四章第一部分
目录
• 多元统计分析概述 • 多元正态分布及其性质 • 多元线性回归分析 • 主成分分析 • 因子分析
01 多元统计分析概述
多元统计分析的定义与特点
定义:多元统计分析 是研究多个随机变量 之间相互依赖关系以 及如何用这些变量对 样本进行分类、聚类、 估计和预测的统计方 法。
应用多元统计分析R语言版判别分析
应用多元统计分析第4章判别分析-1-•判别分析是用于判断样品所属类型的一种统计方法。
•判别分析方法处理的问题看起来与聚类分析方法有些类似,似乎都是要将观察值进行分类,但是它们的使用前提是不同的。
•判别分析是根据某些指标的已有数据(或称为训练样本)对所研究的对象建立判别函数,并进行分类的一种多变量分析方法,也称之为“有监督的分类方法”。
•进行判别归类时,由假设前提、判别依据及处理手法的不同可采用不同的判别方法。
如距离判别、贝叶斯(Bayes)判别、费希尔(Fisher)判别等。
l判别分析概念判别分析(Discriminat Analysis)是多元分析中概念和方法用于判别样品所属类型的一种统计分析方法。
l判别分析方法是在已知的分类之下,对新的样品,利用某判别准则,来判定其属于哪个类。
判别分析的目的和意义主要内容几种判别分析方法和性质包括:距离判别法、Bayes判别法、Fisher判别法R语言程序中有关判别分析的算法4所谓判别问题,就是将欧几里德空间划分为k 个互不相交的。
当时,就判断x 属于总区域,即体。
特别是,当k =2时,就是两总体的判别问题。
•定义4.1设是从均值向量为,协方差阵为的总体G 中抽取的两个样品,则与之间的马氏距离定义为•样品与总体G 之间的马氏距离为•两总体的距离判别•设总体和的均值向量分别为和,协方差阵分别为和,x 是一个新样品,现在要判断x 来自哪一个总体。
可计算x 到两个总体的马氏距离的平方和,并按照下列进行判别•当两个总体的方差相等,即时,该判别准则可以进行简化。
• 1. 当时的线性判别•此时是两个总体均值的平均值。
令•其中•,则•其中。
因此判别准则可简化为:其中称为判别函数,由于它是的线性函数,故又称它为线性判别函数。
•在实际中,总体的均值向量和协方差阵一般都是未知的,此时可用样本均值向量和样本协方差阵来代替。
设是来自总体的样品,是来自总体的样品,则样品均值向量和样品离差阵为•的由两个总体样品构成的无偏估计为• 2. 当时的非线性判别•此时判别函数为与之差,即•由于这个是x 的二次函数,故又称它为二次判别函数或非线性判别函数。
多元统计分析课后习题解答_第四章
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。
应用统计学-第四章判别分析
1
误判率P(2/1)=0.3085
∑1≠∑2时,非线性判别函数
d 2 (x, G1 ) (x μ1 ) ' Σ1 1 (x μ1 )
d 2 (x, G 2 ) (x μ 2 ) ' Σ 1 (x μ 2 ) 2 W(x) d 2 (x, G 2 ) d 2 (x, G1 ) (x μ 2 ) Σ (x μ 2 ) (x μ1 ) Σ (x μ1 )
d 2 (x, G1 ) (x μ1 ) ' Σ 1 (x μ1 )
可以证明:
d 2 (x, G 2 ) (x μ 2 ) ' Σ 1 (x μ 2 )
d 2 (x, G2 ) d 2 (x, G1 ) (x μ 2 )' Σ -1 (x - μ 2 ) - (x μ 1 )' Σ -1 (x - μ 1 )
误判问题
– 肝功指标高就一定是肝炎病人吗?
误判率Misclassification (1-D case)
两总体单指标的判别分析,假设正态分布,等方差
判别规则 转氨酶 非患者 肝炎 患者
非典?
?
Best - In What Sense?
Minimizes probability of misclassification Maximizes posterior probability of correct classification
判别得分 critical value c2<c1, x∈G1
c3<c1, x∈G2
投资料如下:
x(1) (0.5,0.0)', x( 2) 1.82 0.91 (0.5,0.0)', 0.91 1.45
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB 102 52 125 ; CD 12 102 101
如果我们将长度单位变为 mm,那么,有
AB 102 502 2600 ; CD 12 1002 10001
量纲的变化,将影响欧氏距离计算的结果。
为此,我们引入一种由印度著名统计学家马哈拉诺比斯 (Mahalanobis, 1936)提出的“马氏距离”的概念。
这里 I
Σ 1μ , C
1 2
μ
Σ1μ
,
1,2,, k
。
由( 4.8)式,可以取线性判别函数为
W (X) I X C , 1,2,, k
相应的判别规则为
X Gi 如果 Wi (X) m1axk (I X C )
( 4.9)
针对实际问题,当 μ1, μ 2 ,, μ k 和 Σ 均未知时,可以通过相应的
其中
将上边计算结果代人统计量后可得:
故在 函数有效。
检验水平下,两总体间差异显著,即判别
(6)对待判样品判别归类结果如下表:
2、继续用前面距离判别法例1的人文发展指数的数据作Bayes 判别分析。
这里组数k=2,指标数p=3,n1=n2=5
代人判别函数:
得两组的判别函数分别为:
将原各组样品进行回判结果如下一灯片表: 待判样品判别结果如下:
把这类问题用数学语言来表达,可以叙述如下:设有n个样 本,对每个样本测得p项指标(变量)的数据,已知每个样 本属于k个类别(或总体)G1,G2, …,Gk中的某一类,且 它们的分布函数分别为F1(x),F2(x), …,Fk(x)。我们希望 利用这些数据,找出一种判别函数,使得这一函数具有某种
最优性质,能把属于不同类别的样本点尽可能地区别开来,
对于一个新的样品 X ,要判断它来自哪个总体。
该计X问到算题每新与一样两个个品总总体X体到的的距每距离个离,总判即别体问的题距的离解决,思即想一样。计算新样品
D2 (X, G ) (X μ )Σ1(X μ )
XΣ1X 2μ Σ1X μ Σ1μ XΣ1X 2(I X C )
4.8)
在解决实际问题时,特别是针对多元数据的分析问题,欧氏距离 就显示出了它的薄弱环节。
第一、设有两个正态总体, X ~ N (1, 2 ) 和Y ~ N (2 ,4 2 ) ,
现有一个样品位于如图 4.1 所示的 A 点,距总体 X 的中心 2 远, 距总体 Y 的中心 3 远,那么, A 点处的样品到底离哪一个总体
并对测得同样p项指标(变量)数据的一个新样本,能判定 这个样本归属于哪一类。
判别分析内容很丰富,方法很多。判断分析按判别的总体 数来区分,有两个总体判别分析和多总体判别分析;按区分 不同总体所用的数学模型来分,有线性判别和非线性判别; 按判别时所处理的变量方法不同,有逐步判别和序贯判别等。 判别分析可以从不同角度提出问题,因此有不同的判别准则, 如马氏距离最小准则、Fisher准则、平均损失最小准则、最 小平方准则、最大似然准则、最大概率准则等等,按判别准 则的不同又提出多种判别方法。本章仅介绍常用的几种判别 分析方法:距离判别法、Fisher判别法、Bayes判别法和逐 步判别法。
记 W X X
1 2
1
2
1 1 2
其
中
μ
1 2
(μ1
μ2)
是
两
个
总
体
均
值
的
平
均
值
,
α Σ1 (μ1 μ 2 ) ,记 W (X) α(X μ)
(4.5)
则判别规则(4.4)式可表示为
XXGG12,,
如果 如果
W (X) 0 W (X) 0
(4.6)
这里称W (X) 为两总体距离判别的判别函数,由于它是 X 的线性
第四章 判别分析
第一节 引言 第二节 距离判别法 第三节 贝叶斯(Bayes)判别法 第四节 费歇(Fisher)判别法 第五节 实例分析与计算机实现
第一节 引言
在我们的日常生活和工作实践中,常常会遇到判别分析问题, 即根据历史上划分类别的有关资料和某种最优准则,确定一 种判别方法,判定一个新的样本归属哪一类。例如,某医院 有部分患有肺炎、肝炎、冠心病、糖尿病等病人的资料,记 录了每个患者若干项症状指标数据。现在想利用现有的这些 资料找出一种方法,使得对于一个新的病人,当测得这些症 状指标数据时,能够判定其患有哪种病。又如,在天气预报 中,我们有一段较长时间关于某地区每天气象的记录资料 (晴阴雨、气温、气压、湿度等),现在想建立一种用连续 五天的气象资料来预报第六天是什么天气的方法。这些问题 都可以应用判别分析方法予以解决。
函数,故又称为线性判别函数, α 称为判别系数。
在实际应用中,总体的均值和协方差矩阵一般是未知的,可由样
本均值和样本协方差矩阵分别进行估计。设
X(1) 1
,
,
X(1) n1
来自总
体
G1
的样本,
X(2) 1
,
,
X(2) n2
是来自总体
G2
的样本,
μ
1
和
μ
2
的
一个无偏估计分别为
X(1)
1 n1
n1
XΣ1X 2XΣ1μ1 μ1Σ1μ1 (XΣ1X 2XΣ1μ2 μ2Σ1μ2 )
2XΣ1(μ2 μ1) μ1Σ1μ1 μ2Σ1μ2
2XΣ1(μ2 μ1) (μ1 μ2 )Σ1(μ1 μ2 )
2
X
μ1
2
μ2
Σ 1 (μ1
μ2
)
2(X μ)α 2α(X μ)
0} 0}
(4.11)
新的样品 X 落入 R1 推断 X G1 ,落入 R2 推断 X G2 。
判别分析问题实质上以最优的性质对p维空间R p构造一个 “划分”,这个“划分”就构成了一个判别规则。
例 人文发展指数是联合国开发计划署于1990年5月发表的 第一份《人类发展报告》中公布的。该报告建议,目前对人文 发展的衡量应当以人生的三大要素为重点,衡量人生三大要素 的指示分别采用出生时的预期寿命、成人识字率和实际人均 GDP,将以上三个指示指标的数值合成为一个复合指数,即为 人文发展指数。资料来源UNDP《人类发展报告》1995年。
判别规则为
x x
G1 G2
, ,
如果 如果
x x
(2) 当 μ1 μ 2 , Σ1 Σ2 时,我们采用(4.4)式作为判别
规则的形式。选择判别函数为
W *(X) D2 (X, G1) D2 (X, G2 ) (X μ1)Σ11(X μ1) (X μ2 )Σ21(X μ2 )
第二节 距离判别法
一 马氏距离的概念 二 距离判别的思想及方法 三 判别分析的实质
一、马氏距离的概念
设 p 维 欧 氏 空 间 R p 中 的 两 点 X ( X1, X 2 , , X p ) 和
Y (Y1,Y2 , ,Yp ) ,通常我们所说的两点之间的距离,是指欧
氏距离,即 d 2(X, Y) (X1 Y1)2 (X p Yp )2 (4.1)
近呢?若按欧氏距离来量度, A 点离总体 X 要比离总体Y “近
一些”。但是,从概率的角度看, A 点位于 1 右侧的 2 x 处,而 位于 2 左侧1.5 y 处,应该认为 A 点离总体Y“近一些”。显然,
后一种量度更合理些。
图4.1
第二、设有量度重量和长度的两个变量 X 与Y ,以单位分别 为 kg 和 cm 得到样本 A(0,5) ,B(10,0) ,C(1,0) ,D(0,10) 。
X
G1
,
X G2 ,
如果 如果
Wˆ (X) 0 Wˆ (X) 0
(4.7)
注: ( 1 ) 当 p 1 , G1 和 G2 的 分 布 分 别 为 N (1, 2 ) 和 N (2 , 2 ) 时, 1, 2 , 2 均为已知,且 1 2 ,则判别
系数为 1 2 0 ,判别函数为 2 W (x) (x )
它是 X 的二次函数,相应的判别规则为
X
G1,
X G2,
如果 如果
W *(X) 0 W *(X) 0
2、多个总体的距离判别问题
问题:设有 k 个总体 G1, G2 ,,G k ,其均值和协方差矩阵分别是
μ1, μ 2 ,, μ k 和 Σ1, Σ 2 ,, Σ k ,而且 Σ1 Σ2 Σk Σ 。
(2)计算样本协差阵,从而求出
类似地 经计算
(3)求线性判别函数W(X)
解线性方程组
得
(4)对已知类别的样品判别分类
对已知类别的样品(通常称为训练样品)用线性判别函数进行判 别归类,结果如下表,全部判对。
(5)对判别效果作检验 判别分析是假设两组样品取自不同总体,如果两个总体的均值 向量在统计上差异不显著,作判别分析意义就不大:所谓判别效果 的检验就是检验两个正态总体的均值向量是否相等,取检验的统计 量为:
设 X 和 Y 是来自均值向量为 μ ,协方差为 Σ( 0) 的总体 G
中的 p 维样本,则总体 G 内两点 X 与 Y 之间的马氏距离定
义为
D2 (X, Y) (X Y)Σ1(X Y) (4.2)
定义点 X 到总体 G 的马氏距离为
D2 (X,G) (X μ)Σ1(X μ)
(4.3)
这里应该注意到,当 Σ I (单位矩阵)时,即为欧氏距离
的情形。
二、距离判别的思想及方法
1、两个总体的距离判别问题
设有协方差矩阵∑相等的两个总体G1和G2,其均值分别
是1和 2,对于一个新的样品X,要判断它来自哪个总体。
一般的想法是计算新样品X到两个总体的马氏距离
D2(X,G1)和D2(X,G2),并按照如下的判别规则进