振动与波习题测试
大学物理振动与波练习题与答案
【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2
《大学物理》期末考试复习题(振动与波)
)
(A) 2 ;
答案:(D)
(B)
m1 m2
2
;
(C)
m2 m1
2
;
(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2
;
(B)
2 2
A 2 ;
(C)
3 2
A 2
;
(D)
3 2
A 2
。
一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.
大学物理 振动与波、波动光学练习题
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
大学物理振动波动例题习题
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
大学物理 振动与波练习题解
振动与波练习题2005一、填空题1.一物体作简谐振动,振动方程为x = A cos (ωt +π/ 4 )。
在t =T / 4 (T 为周期)时刻,物体的加速度为 .2.一质点沿x 轴作简谐振动,振动方程为x = 4×10-2 cos (2πt + π31) (SI) 。
从t = 0 时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 0t =时,03πφ=;t 时刻,20x cm υ=->且43πφ所以=。
433t ππωπ∆=-=由可得0.5()2t s ππωπ∆===3.已知两个简谐振动曲线如图1所示。
x 1的位相比x 2的位相为 B 。
(A) 落后π/2 (B )超前π/2 (C) 落后π (D) 超前π4.一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为2222sin(/4)sin(/4)2cos(/4)cos(/4)/4112,222dx A t A t dt T d a A t A t dt T t T A a A πυωωπωπυπωωπωπυωω=-+=-+=-+=-+====代入得=-解:由旋转矢量图可知6πϕ=∆,所以1226TTt==∆=∆ππωϕ5.一平面简谐波,沿x轴负方向传播。
圆频率为ω,波速为u 。
设t=T/4时刻的波形如图2所示,则该波的表达式为。
由t = 0的旋转矢量图可知:y0=-A,φπ=O点振动方程cos()y A tωπ=+波动方程:cos()xy A tuωπ⎡⎤=++⎢⎥⎣⎦6.当机械波在媒质中传播时,一媒质质元的最大变形量发生在位置处。
平衡位置处7.如图3所示两相干波源S1和S2相距λ/4,(λ为波长)S1的位相比S2的位相超前π/2,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的位相差是.解:P点情况()21211222()2242r r S P S Pπππϕϕλλλπππλ---+=+=+=8.一质点作简谐振动。
1振动波练习题
一、选择题1、一物体作简谐振动,振动方程为)4/cos(πω+=t A x 。
在t=T/4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -(B) 2221ωA (C) 2321ωA - (D) 2321ωA [ ] 2、对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体位于平衡位置且向负方向运动时,速度和加速度为零。
(B) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零。
(C) 物体处在运动负方向的端点时,速度和加速度都达到最大值。
(D) 物体处在正方向的端点时,速度最大,加速度为零。
[ ]3、弹簧振子在光滑水平面上作谐振动时,振动频率为v 。
今将弹簧分割为等长的两半,原物体挂在分割后的一支弹簧上,这一系统作谐振动时,振动频率为(A) v (B) v 2(C) 2v (D) 0.5v [ ] 4、一质点沿x 轴作简谐振动,振动方程为))(316cos(1042SI t x ππ+⨯=-。
从t=0时刻起,到质点位置在x =-2cm 处,且向x 轴正方向运动的最短时间间隔为(A) 1/8s (B) 1/4s (C) 1/2s(D) 1/3s (E) 1/6s [ ]5、一质点作简谐振动,周期为T 。
当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为(A) T/4 (B) T/12(C) T/6 (D) T/8 [ ]6、一弹簧振子在光滑水平面上作谐振动,弹簧的倔强系数为k ,物体的质量为m ,振动的角频率为ω=(k/m )1/2,振幅为A ,当振子的动能和势能相等的瞬时,物体的速度为 (A)A ω2 (B) 2/A ω (C) A ω21 (D) A ω [ ] 7、 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大。
(B) 动能为零,势能为零。
(C) 动能最大,势能最大。
期末测试的题目(振动和波动、热学)
大 学 物 理 期 末 测 试 题专业________________班级______________学号____________姓名________________一、选择题(一)振动和波动部分1. 一弹簧振子,当把它水平放置时,它作简谐振动。
若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。
提示:两种情况都作简谐振动,平衡位置会变化。
2. 两个简谐振动的振动曲线如图所示,则有 ( A )(A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。
3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( B )(A )T /4; (B )T /12; (C )T /6; (D )T /8。
4. 分振动方程分别为)25.050cos(31ππ+=t x 和)75.050cos(42ππ+=t x (SI 制)则它们的合振动表达式为: ( D )(A ))25.050cos(2ππ+=t x ; (B ))50cos(5t x π=; (C ))71250cos(51-++=tg t x ππ; (D )()15cos 507x t tg π-=-。
5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ∆和2l ∆,且1l ∆=22l ∆,两弹簧振子的周期之比T 1:T 2为 ( B )(A )2; (B )2; (C )21; (D )2/1。
6. 一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。
x =0处,质点振动曲线如图所示,则该波的表式为 ( B )(A ))2202cos(2πππ++=x t y m ; (B ))2202cos(2πππ-+=x t y m ;(C ))2202sin(2πππ++=x t y m ; (D ))2202sin(2πππ-+=x t y m 。
振动与波习题
出质点由初始状态运动到 x=-0.12m, v<0的状
态所经过的最短时间。 t
t=0
解:
3
t
t 2 (s) 3
a
1 3
-0.12 O 0.24
18
8. 一质点同时参与两个同方向的简谐振动,其 振动方程分别为:
1
x51 0 2co4s t ( )(SI)
1
3
x310 2sin 4t (1)(SI)
答案: y2A co s t2 (l x 4 l L )
10、S 1 和 S 2 是波长均为l的两个相干波源,相距 3l / 4
,S 1 的位相比S 2 超前 / 2。若两波单独传播时,强度
均为 I 0 ,则在 S 1、S 2连线上 S 1 外侧和 S 2外侧各点
,合成波的强度分别是
(A)4 I 0 ,4 I 0 ; (C)0,4 I 0 ;
四、谐振动的合成 同方向、同频率的谐振动的合成:
A A12 A22 2A1A2cos(2 1
tg A1sin1 A2 sin2
A1cos1 A2ca os2
8
例1:一质点作简谐振动,=4 rad/s ,振幅A=2cm. 当t=0时,质点位于x=1cm处,并且向x轴正方向运动,求振
动表达式.
解:用矢量图法求解
1、周期和频率(由波源决定,与介质无关)
2、波长
3、波速 4、波速u与l、T的关系:u
l T
二、平面简谐波波动方程
坐标原点振动方程:yAcots()
a
28
波沿x轴正向传播:
y A co (t su x ) [ ] A co 2 (T s t [ l x ) ]
波沿x轴负向传播:
振动和波动要点习题
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
振动与波习题
λ = 5500 A
0
有一光栅,每厘米有500条刻痕,缝宽a=4×10-4cm, 光栅距屏幕1m,用波长为6300A的平行单色光垂直照射 在光栅上,试问 (1)哪些主极大缺级? (2)在单缝中央明纹宽度内可以看见多少条干涉条纹 (3)第一、二级干涉主极大之间的距离为多少?
一衍射双缝,缝距d=0.1mm,缝宽a=0.02mm,用波长 为4000A的平行单色光垂直入射双缝,双缝后置一焦距 为50cm的透镜,试问 (1)透镜焦平面上单缝衍射中央明纹的半角宽度和线 宽度。 (2)透镜焦平面上单缝衍射中央明纹包迹内有多少条 干涉条纹。
π ,若A,B相隔30m,波速为400
ms -1 ,求AB连线上二者之间因干涉而静止的各点位 置。
设平面横波1沿BP方向传播,它在B点的振动方程为:
y1 = 0.2 cos 2πt
平面横波2沿CP方向传播,它在C点的振动方程 为
y2 = 0.2 cos(2πt + π )
,如图BP= P
0.4m,CP=0.5m, 波速为0.2 ms -1 , 求 (1)两列波在P点的相位差; (2)在P点的合振动。 C
0
A
做杨氏双缝干涉实验,在
光屏P处产生第五级亮纹,今若用折射率n1=1.50的 玻璃片覆盖双缝之一,此时P处变成中央亮纹的位置, 则此玻璃片的厚度是多少? 在杨氏双缝干涉实验中,今若用折射率n1=1.50,厚 度为e1的透明薄膜覆盖双缝之一,干涉条纹将发生 移动,今若在另一缝上用折射率为n2=1.30,厚度为 e2的透明薄膜覆盖,恰好可以使干涉条纹移回原位, 求e1 / e2。
S1 S2 R
S1外侧R点,其合成的振幅如何?
如图所示,两列平面简谐波为相干波,在两种不同的 媒质中传播,在两媒质分界面P点相遇,波的频 率ν 相位比S2的相位超前 π / 2 ,波在媒质1中的波速u1= ,振幅A1=A2 =1.00×10-3 m ,S1的 = 100 Hz
物体的振动和波动练习题
物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。
当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。
2. 波长和_________成反比。
3. 波的频率和振动的_________有关。
4. 当光束从水中垂直射入空气时,光的_________发生折射。
5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。
三、简答题1. 请简要说明机械波和电磁波的区别。
2. 请解释频率和周期的概念,并写出它们的单位。
3. 什么是衰减? 请说明衰减对波传播的影响。
4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。
四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。
振动、波动练习题及答案
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。
A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
大学物理习题册---振动与波
一 选择题 (共60分)1. (本题 3分)(0327) 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max/x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ ]2. (本题 3分)(3255) 如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . [ ]3. (本题 3分)(3256) 图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为(A) 2∶1∶21. (B) 1∶2∶4 .(C) 2∶2∶1 . (D) 1∶1∶2 .[ ](a)(b)4. (本题 3分)(5507) 图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的?(A) 曲线3,1,2分别表示x ,v ,a 曲线;(B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , at O123已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π−π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π−π=t x .(E) )4134cos(2π−π=t x . [ ]6. (本题 3分)(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ]7. (本题 3分)(3023) 一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动. (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C) 两种情况都可作简谐振动.(D) 两种情况都不能作简谐振动. [ ]放在光滑斜面上8. (本题 3分)(5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]9. (本题 3分)(3560) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B) 221kA .(C) (1/4)kA 2. (D) 0. [ ]10. (本题 3分)(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为:(A) 0. (B) π21(C) π (D) π23(或π−21) [ ]xyOu12. (本题 3分)(3151) 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ ]13. (本题 3分)(3072) 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+−−=u l x t A y . (B) })]/([cos{0φω+−=u x t A y .(C) )/(cos u x t A y −=ω.(D) }]/)([cos{0φω+−+=u l x t A y . [ ]14. (本题 3分)(3071) 一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) 2)(cos[π+′−=t t b u a y . (B) ]2)(2cos[π−′−π=t t b u a y . (C) ]2)(cos[π+′+π=t tb u a y .(D) 2)(cos[π−′−π=t t b u a y . [ ]15. (本题 3分)(3286) 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .[ ]17. (本题 3分)(3289) 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D)各点的波的能量密度都不随时间变化. [ ]18. (本题 3分)(3090) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]19. (本题 3分)(5321) S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ ]20. (本题 3分)(3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]二 填空题 (共81分)21. (本题 4分)(3010) 有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.22. (本题 3分)(3041) 一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为__________________.23. (本题 5分)(3398) 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相φ =_________________.24. (本题 5分)(3400) 试在下图中画出简谐振子的动能,振动势能和机械能随时间t 而变的三条曲线(设t = 0时物体经过平衡位置).EtTT/2T 为简谐振动的周期25. (本题 3分)(3569) 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.21−一质点同时参与了三个简谐振动,它们的振动方程分别为)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.27. (本题 4分)(5315) 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 − φ2为____________.28. (本题 5分)(3075) 一平面简谐波的表达式为 )37.0125cos(025.0x t y −= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.29. (本题 4分)(3862) 一横波的表达式是 )30/01.0/(2sin 2x t y −π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .30. (本题 5分)(3074) 一平面简谐波的表达式为 )/(cos u x t A y −=ω)/cos(u x t A ωω−= 其中x / u 表示_____________________________;ωx / u 表示________________________;y 表示______________________________.31. (本题 5分)(3863) 已知平面简谐波的表达式为 )cos(Cx Bt A y −=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.33. (本题 5分)(3063) 一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.34. (本题 5分)(3133) 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.OP 1P 235. (本题 3分)(3301) 如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ,则P 点的振幅A = _________________________________________________________.1236. (本题 4分)(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S 2的初位相应为_______________________.37. (本题 3分)(3595) 一驻波的表达式为 )2cos()/2cos(2t x A y νλππ=.两个相邻波腹之间的距离是___________________.一驻波表达式为t x A y ωλcos )/2cos(2π=,则λ21−=x 处质点的振动方程是___________________________________________;该质点的振动速度表达式是______________________________________.39. (本题 5分)(3107) 如果入射波的表达式是)(2cos 1λxT t A y +π=,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 =___________________________________________; 在x = 2λ /3处质点合振动的振幅等于______________________.40. (本题 3分)(3462) 在真空中一平面电磁波的电场强度波的表达式为:103(102cos[100.6882×−×π×=−xt E y (SI)则该平面电磁波的波长是____________________.三 计算题 (共74分)41. (本题10分)(3022) 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.42. (本题 5分)(3045) 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .43. (本题 5分)(3085) 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π−π−=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+−π=x t A y (SI),求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.OP45. (本题 5分)(3332) 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π−π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式;(2) 在图上画出t = 0时刻的波形曲线.46. (本题 8分)(5516) 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.47. (本题 8分)(3078) 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程;(2) 该波的表达式.xu O t =t ′y48. (本题 8分)(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.49. (本题10分)(3146) 如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q 处质点的振动曲线,然后写出相应的振动方程.如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π×=−2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π×=−t y (SI); 令=BP 0.45 m ,=CP 0.30m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.51. (本题 5分)(3336) 如图所示,两列波长均为λ 的相干简谐波分别通过图中的O 1和O 2点,通过O 1点的简谐波在M 1 M 2平面反射后,与通过O 2点的简谐波在P 点相遇.假定波在M 1 M 2平面反射时有相位突变π.O 1和O 2两点的振动方程为 y 10 =A cos(πt ) 和y 20 = A cos(πt ),且 λ81=+mP m O , λ32=P O (λ 为波长),求:(1) 两列波分别在P 点引起的振动的方程;(2) P 点的合振动方程.(假定两列波在传播或反射过程中均不衰减)2。
大学物理-习题-简谐振动和波-学生版
大学物理-习题-简谐振动和波-学生版一.选择题《机械振动和机械波》模块习题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?---------------------------------- 【C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一个质点作简谐运动,振幅为 A,在起始时刻质点的位移为- A ,且向 x 轴正方向运动, 2 代表此简谐运动的旋转矢量为---------------------------------------------------------------------【B 】3. 一质点沿 x 轴作简谐振动,振动方程为x = 0.04 cos(2p t +1 p ) (SI),从 t = 0 时刻起, 3 到质点位置在 x = -0.02 m 处,且向 x 轴正方向运动的最短时间间隔为--------- 【D 】 1 1 1 1 (A) s ; (B) s ; (C) s ; (D) s 8 64 2 4 一弹簧振子,振动方程为x=0.1cos(πt-π/3)·m,若振子从 t=0 时刻的位置到达 x=-0.05m处,且向 X 轴负向运动,则所需的最短时间为------------------------【D 】(A)s/3;(B) 5s/3;(C) s/2;(D) 1s。
1 5. 频率为 100 Hz,传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为 p ,则此两点相距 --------------------------------------------------------------【C 】 3 (A) 2.86 m (B) 2.19 m (C) 0.5m (D) 0.25 m T 6. 一平面简谐波,沿 x 轴负方向传播,角频率为ω,波速为 u.设t = 时刻的波形如图(a) 4 所示,则该波的表达式为---------------------------------------------------------------------【】é æ x ö ùé æ x ö p ù (A)y = A cos êw ç t - u ÷ + p ú (B) y= A cos êw ç t - u ÷ + 2 ú ë è ø û ë è ø û é æx ö p ù é æ x ö ù (C)y = A cos êw ç t + u ÷ - 2ú (D)y = A cos êw ç t + u ÷ + p ú ë è ø û ë èø û 7. 在简谐波传播过程中,沿传播方向相距为l/2 ,(l为波长)的两点的振动速度必定:【A 】 (A) 大小相同,而方向相反; (B) 大小和方向均相同; (C) 大小不同,方向相同; (D) 大小不同,而方向相反。
高二物理机械振动机械波测试题
高二物理机械振动机械波测试题(100分)1、关于简谐运动的下列说法中,正确的是【单选题】(8分)A.A.位移减小时,加速度减小,速度增大B.B.位移方向总跟加速度方向相反,跟速度方向相同C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同D.D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反正确答案: A2、对单摆在竖直面内的振动,下面说法中正确的是【单选题】(8分)A.摆球所受向心力处处相同B.摆球的回复力是它所受的合力C.摆球经过平衡位置时所受回复力为零D.摆球经过平衡位置时所受合外力为零正确答案: C3、一列波由一种介质进入另一种介质中继续传播,则【单选题】(8分)A.传播方向一定改变B. B.其频率不变C.如波速增大,频率也会增大D. D.如波长变小,频率也会变小正确答案: B4、一列横波在x轴上传播,ts与t+o.4s在x轴上-3m~3m 的区间内的波形如图中同一条图线所示,由图可知①该波最大速度为10m/s ②质点振动周期的最大值为0.4s ③在t+o.2s时,x=3m的质点位移为零④若波沿x轴正方向传播,各质点刚开始振动时的方向向上上述说法中正确的是【单选题】(8分)A.①②B. B.②③C. C.③④D. D.①④正确答案: B5、关于波长,下列说法正确的是【单选题】(8分)A.波长等于一个周期内振动在介质中传播的距离B.波长等于一个周期内振动质点通过的距离C.两个振动情况完全相同的质点间的距离等于一个波长D.同一时刻两个波峰间的距离等于一个波长正确答案: A6、图甲为一列简谐横波在某一时刻的波形图,图乙为质点P以此时刻为计时起点的振动图象.从该时刻起【多选题】A.经过0.35 s时,质点Q距平衡位置的距离小于质点P距平衡位置的距离B.经过0.25 s时,质点Q的加速度大于质点P的加速度(4分)C.经过0.15 s,波沿x轴的正方向传播了3 mD.经过0.1 s时,质点Q的运动方向沿y轴正方向(4分)正确答案: 每个选项都可自定义分值7、一根张紧的水平弹性长绳上的a、b两点,相距14.0 m,b点在a点的右方,当一列简谐横波沿此长绳向右传播时,若a点的位移达到正极大时,b点的位移恰为零,且向下运动,经过1.00s后,a点的位移为零,且向下运动,而b点的位移达到负极大,则这简谐横波的波速可能等于【多选题】A.A.4.67m/s (4分)B. B.6m/sC. C.10m/s (4分)D. D.14m/s正确答案: 每个选项都可自定义分值8、.一列简谐横波沿直线由a向b传播,相距10.5m的a、b两处的质点振动图象如图中a、b所示,则【多选题】A.A.该波的振幅是10cm(4分)B.B.该波的波长可能是8.4mC.C.该波的波速可能是10.5 m/sD.D.该波由a传播到b可能历时7s(4分)正确答案: 每个选项都可自定义分值9、S摆的周期是2s,如果使这个S摆摆球的质量及振幅都减少一半,它的周期是_________s;如果把它的摆长减小四分之一,它的周期是______________s;如果把它移到月球上去(月球表面的重力加速度为地球表面重力加速度的1/4),摆长是原长,它的周期是______________s。
振动与波动测试题
(A)干涉现象是两列波叠加产生的现象; (B)两列相干波在 P 点相遇,若在某一时刻观察到 P 点的振动位移为零,则 P
点一定不是干涉加强点;
(C)两列相干涉在 P 点相遇,若某时刻观察到 P 点的振动位移既不等于两个分振
动的振幅之和,也不等于两个分振幅之差,则 P 点一定不是干涉加强点,也不是干涉 减弱点。
x ) λ d−x (C) y = A cos 2π (νt + ) λ
(A) y = A cos 2π (νt +
二、填空题
x ) λ 2d − x (D) y = A cos 2π (νt − ) λ
(B) y = A cos 2π (νt −
计2
1 、两列波在一根很长的弦线上传播,其方程为 y1 = 6.0 × 10 − 2 cos π
3、图 a 表示 t =0 时的余弦波的波形图,波沿 x 轴正向传播;图 b 为余弦振动曲线。 则图 a 中所表示的 x =0 处振动的初位相与图 b 所表示的振动的初位相 ( ) (A)均为零; (B)均为π/2 (C)均为-π/2
选2
(D)依次分别为π/2 与-π/2 (E)依次分别为-π/2 与π/2 4、在简谐波传播过程中,沿波传播方向相距 λ /2( λ 为波长)的两点的振动速度必 定 ( ) (A)大小相同,方向相反; (B)大小和方向均相同; (C)大小不同,方向相同; (D)大小不同而方向相反 5、平面简谐波在弹性媒质中传播时,在传播方向上媒质元若在负的最大位移处,则 其 ( ) (A)动能为零,势能最大; (B)动能为零,势能为零; (C)动能最大,势能最大; (D)动能最大,势能为零。 6、一弹簧振子作简谐振动,总能量为 E ,如果简谐振动振幅增加为原来的两倍, 重物的质量增加为原来的四倍,则它的总能量 E 变为: ( ) (A) E1 / 4 ; (B) E1 / 2 ; (C) 2 E1 ; (D) 4 E1 二、填空题 1、已知三个谐振动曲线如图所示,则振动方程 x 1= , x 2= , x 3= 。 2、已知质点的振动曲线如图,则其初位相为 ,其角频率为 。 3、一简谐振动用余弦函数表示,其曲线如图所示,则此简谐振动的三个特征量为 A= , ω= , ϕ= 。
2.波动学练习试题
振动与波练习题一、填空题1. 图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x ____0.04cos(wt-____________(SI)2. 双频氦氖激光器发射出频率分别为(ν+ ∆ν )和(ν- ∆ν )的两种光,其中ν =3.620×1014 Hz ,∆ν = 1.6×106 Hz . 经过某种装置处理后,这两种光变为振动方向相同的光而在某处叠加,则该处合成光强度的变化频率为___3.2MHz_______.3. 为测定某音叉C 的频率,选取频率已知且与C 接近的另两个音叉A 和B ,已知A 的频率为800 Hz ,B 的频率是797 Hz ,进行下面试验:第一步,使音叉A 和C 同时振动,测得拍频为每秒2次. 第二步,使音叉B 和C 同时振动,测得拍频为每秒5次. 由此可确定音叉C 的频率为___802___________.4. 一质点同时参与两个互相垂直的同频率的谐振动,其合成运动的轨迹及旋转方向如图所示,旋转周期为2 s .t = 0时质点位于图中x 轴上的B 点.两个分振动的数值表达式分别为x = _______________________(SI) y = _______________________(SI)5. 一钢尺两端固定,中间固定一小电机,电机轴上接有一偏心锤,电机以一定的角速度转动.若系统的固有振动频率为ν0,当偏心锤以角速度ω = ________________转动时,系统发生共振.6. 一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为_503_____________.7. 已知钢的密度ρ = 7.80 g/cm 3,杨氏模量Y = 2.03×1011 N ·m -2.则钢轨中纵波的传播速度为_____________________.8. 一横波在均匀柔软弦上传播,其表达式为y = 0.02cos π (5 x - 200 t ) (SI),若弦的线密度 μ = 50 g/m ,则弦中张力为________________________.9. 图为一种声波干涉仪,声波从入口E 进入仪器,分BC 两路在管中传播至喇叭口A 汇合传出,弯管C 可以移动以改变管路长度,当它渐渐移动时从喇叭口发出的声音周期性地增强或减弱,设C 管每移动10 cm ,声音减弱一次,则该声波的频率为(空气中声速为340 m/s )850________________________.10. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是__5J_________.--C11. (1) 一列波长为λ 的平面简谐波沿x 轴正方向传播.已知在λ21=x 处振动的方程为y = A cos ω t ,则该平面简谐波的表达式为________________________. (2) 如果在上述波的波线上x = L (λ21>L )处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为_______________________ (x ≤L ).12. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u 与该平面的法线0n13. 有A 和B 两个汽笛,其频率均为404 Hz .A 是静止的,B 以3.3 m/s 的速度远离A .在两个汽笛之间有一位静止的观察者,他听到的声音的拍频是(已知空气中的声速为330 m/s )______4______.14. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是_________1__________和___797____________(设空气中声速为340 m/s ). 二、计算题1. 如图所示,质量为m 、长度为L 的均匀细杆,挂在无摩擦的固定轴O 上.杆的中点C 与端点A 分别用劲度系数为k 1和k 2的两个轻弹簧水平地系于固定端的墙上.杆在铅直位置时,两弹簧无变形,求细杆作微小摆动的周期.2. 一长度为l 质量为m 的均匀细杆,可绕过中点O 且垂直于杆的水平固定轴自由转动.杆的一端连一劲度系数为k 的轻弹簧,弹簧另一端固定.杆在水平位置时处于平衡,这时弹簧与杆垂直,如图所示.求此系统作微小振动(绕O 转动)的周期.3. 如图所示,将质量为M 半径为R的均匀圆柱体中心系于一水平的轻弹簧上,使它可以在水平面上无滑动地滚动.弹簧的劲度系数为k = 3 N/m .假设将圆柱体从弹簧原长处拉开x 0 = 0.20 m 后由静止释放.(1) 求圆柱体通过平衡位置时的平动动能和转动动能;(2) 求圆柱体质心的振动周期.4. 一复摆由长为l 、质量为m 的均匀细杆构成,在杆上离中心C 的距离为d 处装一光滑的水平固定轴O ,杆可绕此轴在竖直平面内振动.试求此摆作微振动的周期T .5. 一艘船在25 m 高的桅杆上装有一天线,不断发射某种波长的无线电波,已知波长在2 - 4 m 范围内,在高出海平面 150 m 的悬崖顶上有一接收站能收到这无线电波.但当那艘船驶至离悬崖底部 2 km 时,接收站就收不到无线电波.设海平面完全反射这无线电波,求所用无线电波的波长.6. 频率为 ν = 12.5×103 Hz 的平面余弦纵波沿细长的金属棒传播,棒的杨氏模量为Y = 1.9×1011 N/m 2 ,棒的密度 ρ =7.6×103 kg/m 3 .已知振幅A = 0.1 mm ,把传播方向取为x 轴,且取x = 0处初相φ 0 = 0,写出: (1) 波的表达式(数值式);(2) x = 0.10 m 处的振动方程(数值式).7. 在实验室中做驻波实验时,在一根两端固定长3 m 的弦线上以60 Hz 的频率激起横向简谐波.弦线的质量为60×10-3 kg .如要在这根弦线上产生有四个波腹的很强的驻波,必须对这根弦线施加多大的张力?8. 在作驻波实验时,将一根长2.5 m 的弦线一端系于音叉的一臂的A 点上 (如图).此音叉在垂直于弦线长度的方向上作每秒30次的简谐振动.B 点为固定端.弦线的线密度为η4×10-3 kg/m .在这根弦线上形成的驻波有五个波腹,求对这根弦线应施加多大的拉力?(A 点的振幅相对于弦线上驻波的波腹来说很小,所以A 点可以近似看作是波节).9. 一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求: (1) 入射波和反射波的表达式; (2) 驻波的表达式.10. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 cm .波在弦上的速度为 320 m/s .(1) 求此弦线的长度. (2) 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.11. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;(2) P 点的振动方程.12. 一声源S 的振动频率为νS = 1000 Hz ,相对于空气以v S = 30 m/s 的速度向右运动,如图.在其运动方向的前方有一反射面M ,它相对于空气以v = 60 m/s 的速度向左运动.假设声波在空气中的传播速度为u = 330 m/s ,求:(1) 在声源S 右方空气中S 发射的声波的波长; (2) 每秒钟到达反射面的波的数目;(3) 反射波的波长.。
振动和波题目及答案
1一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ] D 2一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A)π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3. [ ]C 3在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计)[ ]C4一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16.(C) 11/16. (D) 15/16 [ ]D5一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1 (C) T 12/(D) T 1 /2 (E) T 1 /4 [ ] D 6已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .v 21(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x . [ ]C 7如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接,在水平光滑导轨上作微小振动,则系统的振动频率为(A)m k k 212+π=ν . (B) mk k 2121+π=ν . (C) 212121k mk k k +π=ν . (D) )(212121k k m k k +π=ν . [ ]B8如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C)π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.[ ]D 9两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) π. (D) π23. [ ] C10机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ] B11如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y . [ ]A12一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ ] C 1在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________. )212cos(π-=T t A x π 2分 )212cos(π+=T t A x π 2分)2cos(π+=TtA x π 1分2一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.])(2cos[212φλν++-π=L L t A y 3分λk L x +-=1 ( k = ± 1,± 2,…) 2分3(c)O P 1P 2两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.2A 3分4图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为 =+=21x x x ________________(SI) )21cos(04.0π-πt (其中振幅1分,角频率1分,初相1分) 3分5有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.k m /22π 2分k m 2/2π 2分 6一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________. 10 cm 1分(π/6) rad/s 1分 π/3 1分 7两个简谐振动曲线如图所示,则两个简谐振动-的频率之比ν1∶ν2=__________________,加速度最大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.2∶1 1分 4∶1 1分 2∶1 1分 8一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A _____________;B _____________ ;C ______________ . 向下 ; 向上 ;向上9两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________.π3分 10一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________.1×10-2 m 2分 π/6 2分一如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分二如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分 (2) 以B 点为坐标原点,则坐标为x 点的振动相位为]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y (SI) 2分三如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差 ]2[]2[1112λφλφx x d π---π-π+=)12(K即 π+=-π--)12(22)(112K x d λφφ ① 2分在x 2点两波引起的振动相位差 ]2[]2[2122λφλφx x d π---π-π+=)32(K 即 π+=-π--)32(22)(212K x d λφφ ② 3分②-①得 π=-π2/)(412λx x6)(212=-=x x λ m 2分由①π+=-π+π+=-)52(22)12(112K x d K λφφ 2分当K = -2、-3时相位差最小π±=-12φφ 1分四ABxu沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121cos(5.0π+π=t y (SI) 3分x (m)y (m)0u 0.512t = 0-1。
高中物理练习振动与波(习题含答案)
1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
第4章 振动与波动
一、选择题
1. 在下列所述的各种物体运动中, 可视为简谐振动的是 [ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放 . [ , [ (C) 周期相同, 平衡位置不同 (D) 周期不同, 平衡位置相同
4. 如图4-1-4所示,升降机中有一个作谐振动的单摆, 当升降机静止时, 其振动周期为2 s , 当升降机以加速度上升时, 升降机中的观察者观察到其单摆的振动周期与原来的振动周期相比,将
[ ] (A) 增大 (B) 不变
图4-1-4
(C) 减小 (D) 不能确定
. 5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为
[ ] (A) π (B) π3
2 (C) π3
4 (D) π5
4
6 在简谐振动的速度和加速度表达式中,都有一个负号, 这是意味着 [
π [ [ 时刻
[ ] (A) )21
cos(t A x ω= (B) )cos(2t A x ω=
(C) )3π2sin(--=T t A x π (D) )3
π
2cos(-=T t A x π
10. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为
[ ] (A) ν4 (B) ν2 (C) ν (D)
2
ν 11. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是 [ ] (A)
1
2
A (B)
22A (C) 32A (D) A 12. 一弹簧振子作简谐振动, 当其偏离平衡位置的位移大小为振幅的1/4时, 其动能为振动总能量的 [
T . [ 14. ? [ [ 16 如果两个同方向同频率简谐振动的振动方程分别为π)4
3
3cos(73.11+=t x (cm)和
π)4
1
3cos(2+
=t x (cm),则它们的合振动方程为 [ ] (A) π)433cos(73.0+=t x (cm) (B) π)41
3cos(73.0+=t x (cm)
(C) π)1273cos(2+=t x (cm) (D) π)125
3cos(2+=t x (cm)
17. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A)
2π (B) 3π2 (C) 4
π (D) π 18. 关于振动和波, 下面几句叙述中正确的是 [ ] (A) 有机械振动就一定有机械波
[ [
生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为
[ ] (A) (cos u x t A y -=ω (B) ](cos[ϕω+-=u x t A y
(C) ])5(cos[ϕω++-=u x t A y (D) ]5
(cos[ϕω+--=u
x t A y
22已知一列机械波的波速为u , 频率为ν, 沿着x 轴负方向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B)
)(π221x x u -ν (C) π (D) )(π212x x u
-ν
23. 一波源在XOY 坐标系中(3, 0)处, 其振动方程是)π120cos(t y =(cm),其中 t 以s 计, 波速为50 m ?s -1 .设介质无吸收, 则此波在x <3 cm 的区域内的波动方程为 [
则 [ ,
[ [ [ (B) 它的动能转换成势能
(C) 它从相邻的一段介质元中获得能量, 其能量逐渐增大 (D) 它把自己的能量传给相邻的一介质元, 其能量逐渐减小
28. 已知在某一介质中两列相干的平面简谐波的强度之比是42
1
=I I ,则这两列波的振幅之比
2
1
A A 是 [ ] (A) 4 (B) 2 (C) 16 (D) 8
29. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波
[
[ [ , 相[ ] (A) 0.5 m (B) 1 m (C) ? m (D) 2? m
33
1S 和2S 是波长均为λ的两个相干波的波源,
相距λ43,1S 的相位比2S 超前2
π
.
若两波单独传播时,在过1S 和2S 的直线上各点的强度相同,不随距离变化,且两波的强度都是0I ,则在1S 、2S 连线上1S 外侧和2S 外侧各点,合成波的强度分别是 [ ] (A) 04I ,04I ;
(B) 0,0;
(C) 0,04I ; (D) 04I ,0.
.二、填空题
1. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A . (1) 若t = 0 时质点过x = 0处且向x 轴正方向运动,则振动方程为x = .
(2) 若t = 0时质点在2
A
x =处且向x 轴负方向运动,则质点方程为x =
1x λ
ν
4
1λ4
3
2=
x 两点处介质质点的速度之比是 . 8. 已知一入射波的波动方程为)4
π4πcos(5x
t y +=(SI), 在坐标原点x = 0处发生反射,
反射端为一自由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为 .
9. 已知一平面简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长? = 10 m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最大值.若波源处为原点,则沿波传播方向距离波源为2
λ
处的振动方程为 .当2T t =时,4
λ
=x 处质点的振动速度为 .
10. 图4-2-10表示一平面简谐波在 t = 2 s 时刻的波形图,波的振幅为 0.2 m ,周
P 1P 点处2S 的第4章 振动与波动
2. B 5. D 6. C 7. C 10. B 11. B 14. C 16. C 18. D 20. D 21. B 24. B 26. A 28. C 30. D 31. C 3
3. B 40. B 42. D 4
4. C 48. C 50. B 53. B 54. C 5
5. B 57. C 59. C 60. B 6
6. B 68. B 71. B 74. C 75. D
二、填空题 1. (1) ⎪⎭⎫
⎝⎛-2ππ2cos T
t A ; 4. 1.5 s 7. J 106.34-⨯ 9. 1.25 cm 12. 5 cm 13. 10; 2
π
14. -1 16. 0。