第5章钢的热处理
钢的热处理及表面处理技术
• M体转变特点:
• ①无扩散型转变 • ②降温形成:连续冷却完成 • ③瞬时性 • ④转变的不完全性
Fe-1.8CF,e-1冷.8至C,-10冷0℃至-60℃
M形成时体积↑,造成很大 内应力。
• 冷处理:P42
1)无扩散 Fe 和 C 原子都不进展扩散,M是C过饱 和的体心立方的F体,固溶强化显著。
↓ • 总结:A体晶粒越粗大,那么晶界越少,
形核几率越小,那么A体越稳定,C曲线 右移。淬透性越好
• 三、钢的淬透性
• 〔三〕淬透性的测 定
四、钢的回火〔P127〕
1.概念(Conception)
将淬火后的钢加热到Ac1以下某一温度, 保温后冷却下来的一种热处理工艺。
2.目的(purpose) 〔1〕稳定工件组织、性能和尺寸 〔2〕减小或消除剩余应力,防止工件的 变形和开裂 〔3〕降低工件的强度、硬度,提高其塑 性和韧性,以满足不同工件的性能要求
C %↑→ M 硬度↑, 片状M 硬度高,塑韧性差。板条M 强度高,塑韧性较好
二、共析钢过冷奥氏体的连续冷却转变
共
析
碳
钢
连
续
冷
却
水淬
无
M+AR
B
体
转变终止线
P 退火
T
S 正火
T+ 油淬 M
亚共析钢连续冷却转变 过共析钢连续冷却转变
炉冷→ F + P 空冷→ F(少量) + S 油冷→ T + M+AR 水冷→ M +AR
(三〕淬透性的测定
〔一〕钢的淬透性与淬硬性的概念
• 淬透性:钢在淬火时能够获得M体的能力,它是 钢材本身固有的属性,主要取决于M体的临界冷 却速度
(完整版)碳钢的热处理
前言
一、热处理的概念
通过对材料进行加热、保温、冷却的操作 方法使钢的组织结构发生变化,以获得所需性 能的一种工艺。
二、ห้องสมุดไป่ตู้处理的分类
普通热处理:退火、正火、淬火、回火
热处理
表面热处理
表面淬火:火焰加热、
感应加热、电接触加热、 激光加热、等离子体加热
对于亚共析钢(过共析钢),当缓慢 加热到A1以上时,除珠光体全部转化为奥 氏体外,还有少量先共析铁素体转变为奥 氏体 ( 过共析钢二次渗碳体溶解 ),随着 温度升高,先共析铁素体不断向奥氏体转 变,当温度高于A3时,组织为单相奥氏体。
二、奥氏体形成的热力学条件
钢加热时组织转变的动力是奥氏体与旧相之 间的体积自由能之差ΔFv,而相变进行的条件是 系统总的自由能降低。根据相变理论,奥氏体形 成晶核时,系统总自由能变化ΔF为:
铁碳合金缓慢加热时奥氏体的形成可以 从Fe-Fe3C相图中反映出来,珠光体向奥氏体 的转变属于扩散型相变。以共析钢为例,珠 光体组织在A1(727℃)以下,组织保持不变 (α相中碳的溶解度及Fe3C的形状稍有变化); 当加热到A1点以上时,珠光体全部转 变为奥 氏体。
奥氏体的形成过程可以分为四个步骤: ①奥氏体晶核的形成 ②奥氏体晶粒长大 ③残余渗碳体溶解 ④奥氏体成分均匀化
称为过冷奥氏体。
不同的过冷度,奥氏体发生转变的过程不同:
①转变开始与转变终了的时间不同 ②转变后产物的组织与性能不同
一、珠光体型转变——高温转变(A1~550℃)
1、转变过程及特点
过冷奥氏体在A1~550℃温度范围内,将 分解为珠光体类组织。
当奥氏体被过冷至A1以下温度时,在奥氏体晶界 处(含碳量高)优先产生渗碳体的核心,然后依靠奥 氏体不断供应碳原子(随着冷却,奥氏体溶解碳的能 力下降,碳从奥氏体内向晶界扩散),渗碳体沿一定 方向逐渐长大,而随着渗碳体的长大,又使其周围的 奥氏体碳浓度下降,这就促使贫碳的奥氏体局部区域 转变成铁素体(即渗碳体两侧出现铁素体晶核),在 渗碳体长大的同时,铁素体也不断长大,而随着铁素 体的长大,必然将多余的碳排挤出去,这就有利于形 成新的渗碳体晶核。最终形成了相互交替的层片状渗 碳体和铁素体——珠光体。
钢的热处理
由于加热冷却速度直接影响转变温度 ,因此一般手册中的数据是以3050℃/h 的速度加热或冷却时测得的.
第二节 钢在加热时的转变
加热是热处理的第一道工序。加热分两种:一种是在A1以下加热,不发生相变; 另一种是在临界点以上加热,目的是获得均匀的奥氏体组织,称奥氏体化。
20CrMnTi钢不同热处理工艺的显微组织
根据加热、冷却方式及钢组织性能变化特点不同,将热处理工 艺分类如下:
、火焰加热、
热处理
表面热处理
电接触加热等 化学热处理—渗碳、氮化、碳氮
共渗、渗其他元素等
控制气氛热处理
其他热处理
真空热处理 形变热处理
激光热处理
上贝氏体转变过程
上贝氏体转变过程观察
当转变温度较低(350- 230℃) 时,铁素体在晶界或晶内某些晶面上长成 针状,由于碳原子扩散能力低,其迁移不能逾越铁素体片的范围,碳在铁 素体的一定晶面上以断续碳化物小片的形式析出。
贝氏体转变属半扩散型转变,即只有碳原子扩散而铁原子不扩散,晶格类 型改变是通过切变实现的。
使切变部分的形状和体积发生变化,引起相 邻奥氏体随之变形,在预先抛光的表面上产 生浮凸现象。
马氏体转变 切变示意图
马氏体转变产生的表面浮凸
⑶ 降温形成 马氏体转变开始的温度称上马氏
体点,用Ms 表示.
马氏体转变终了温度称下马氏体 点,用Mf 表示.
只要温度达到Ms以下即发生马氏 体转变。
在Ms以下,随温度下降,转变量 增加,冷却中断,转变停止。
核率越高, 晶粒越细. ⑶合金元素:
钢的热处理原理和工艺
A1—Ac1—Ar1
Acm —Accm —Arcm
钢在加热和冷却时的临界温度
2.奥氏体的形成(以共析钢为例)
(1)奥氏体晶核的形成; (2)奥氏体晶核的长大;
(基本过程)
(3)残余渗碳体的溶解;
(4)奥氏体成分的均匀化。
共析钢中奥氏体形成过程示意图
a)形核;b)长大;c)残余渗碳体溶解;d)奥氏体均匀化
铁素体+渗碳体
组织特征:
铁素体 ——长成针片状,互不平行,有一定角度,形成分枝; 渗碳体 ——呈粒状或细小短条状分布在铁素体片内。
a)形成温度范围
350℃ ~ Ms
b)组织——下贝氏体(B下)
形态呈黑色针叶状
C)性能
硬度可达45 ~ 55HRC 具有较高的强度及
下贝氏体组织 630 ×
良好的塑性和韧性。
奥
4秒
氏
体
6秒
形
成
示
8秒
意
图
15秒
对于亚共析钢、过共析钢的奥氏体ห้องสมุดไป่ตู้过程: 1.亚共析钢:
F+P→F+A→A 2.过共析钢:
Fe3C + P → Fe3C + A → A
3.奥氏体晶粒的长大 晶粒的长大主要是依靠较大晶粒吞并较小
晶粒和晶界迁移的方式进行的。
晶粒的吞并与长大过程 为了防止晶粒长的粗大,严格控制加热温度和保温时间。
一、表面淬火 1.定义
是将钢件的表面层淬透到一定的深度,而心部仍 保持未淬火前状态的一种局部淬火方法。 2.方法(快速加热)
火焰加热、感应加热、电接触加热、激光加热等 表面淬火方法。 目前生产上最常用是:
钢的热处理作业题答案
解: 下料
正火
机加工 (粗)
调质
机加工 (精)
第五章 作业题答案-11
⑶:用20CrMnTi钢制作某汽车传动齿轮,要求表面
高硬度高耐磨性,表面HRC58~63 ,硬化层深
0.8mm。
解 下料
锻造
正火
机加工 (粗)
铣齿
渗碳
淬火+低温回火
去碳机械加工
磨齿 或
淬火+低温回火
第五章 作业题答案-11
解
下料 或选用锻4造0Cr:热正处火理工艺方机法加如工下 (粗)
机加工 (精)
高频表面淬火+低温回火
磨齿
拉花键孔
解
第五章 作业题答案-11
⑷ :用38CrMoTiAl钢制作某高精度镗床镗杆,要 求表面高硬度大于800HV。
下料
锻造
退火
机加工(粗) 调质
机加工(半精)
低温退火
精车
低温退火
磨削
磁力探伤
氮化
磁力 探伤
半精 磨
油煮定性(140~ 160℃、18 ~20h)
第五章 作业题答案-5
解:
热处理 名称
含义
淬火
将钢加热到Ac3 (亚共析钢)或A c1 (过共析钢) 以上一定温度,保温后快速冷却,以获得马氏
体或下贝氏体的一种热处理工艺方法。
如共析钢过冷奥氏体连续转变曲线-3 图:曲线1
回火
将淬火钢加热A c1 以下一定温度,保温后以适 当方式冷却的一种热处理工艺方法。
第五章 作业题答案-4
解: ⑶:板条状马氏体M板与片状马氏体M片。
组织
板条状马氏体马氏体呈板条状,板条内 存在高密度位错,片状马氏体马氏体呈片状, 片内存大量孪晶。
电子课件-《机械加工基础》-A02-25849 第五章 工程材料及金属热处理
第五章 工程材料及金属热处理
2. 铸铁 铸铁的含碳量一般在 2.5% ~ 4.0% 之间。 (1) 铸铁的分类 1) 白口铸铁。 2) 灰铸铁。 3) 可锻铸铁。 4) 球墨铸铁。 5) 合金铸铁。
第五章 工程材料及金属热处理
(2) 灰铸铁 1) 灰铸铁的优点。 ①优良的铸造性。 ②良好的切削加工性。 ③优良的减摩性。 ④良好的消振性。 ⑤较低的缺口敏感性。 2) 灰铸铁的牌号。 灰铸铁的牌号由 “ HT” + 数字表示。
(2) 合金钢的分类 1) 按用途不同,合金钢可分为合金结构钢、 合金工具钢和特殊性能 钢。 2) 按合金元素总含量不同,合金钢可分为低合金钢、 中合金钢和高 合金钢。 (3) 合金钢的牌号 1) 合金结构钢。 其采用两位数字 ( 含碳量) + 元素 ( 或汉字) + 数字表 示。 2) 合金工具钢。 其采用一位数字 + 元素符号 + 数字表示。 3) 特殊性能钢。 其特殊性能钢的牌号与合金工具钢的表示方法相同。
第五章 工程材料及金属热处理
3. 碳素钢的牌号及用途 (1) 碳素结构钢的表示方法 碳素结构钢的牌号由字母 “ Q” 、 屈服强度数值、 质量等级符号、 脱氧方法符号四部分组成。 (2) 优质碳素结构钢 优质碳素结构钢的牌号用该钢平均含碳量的万分数来表示,如果钢中 的含锰量较高(wMn = 0.7% ~ 1.2% ) ,要在牌号后面标出元素符号 “ Mn” 。 (3) 碳素工具钢 碳素工具钢的牌号以汉字 “ 碳” 的汉语拼音字母 “ T” 及后面含碳 量的千分数表示。
第五章 工程材料及金属热处理
3. 常用硬质合金 (1) 钨钴类硬质合金 主要成分为碳化钨及钴。 其代号用 “ YG” + 钴含量的百分数表示。 (2) 钨钴钛类硬质合金 它的主要成分为碳化钨、 碳化钛及钴。 其代号用 “ YT” + 碳化钛的 百分数表示。 (3) 通用硬质合金 以碳化钽或碳化铌取代 YT 类硬质合金中的一部分碳化钛制成。 万能硬质合金代号用 “YW” + 顺序号表示。
工程材料 第2版课件PDF 版05
钛 合 金 中 的 魏 氏 组 织
亚
素 体 魏 氏 组 织
共 析 碳 钢 中 片 状
铁
5.4 钢的普通热处理
5.4.1 退火与正火
2 完全退火
将亚共析钢加热到Ac3以上30~50℃, 保 温 后 随 炉 缓 冷 到 600℃ 出 炉 空 冷 。 组 织为α+P 。
目的
利用相变细化晶粒; 利用高温扩散消除组织缺陷; 利用缓冷去除应力; 降低硬度,改善加工性能。
均匀、且未过分长大。
组 织
工程材料学——第5章 钢的热处理
5.4 钢的普通热处理
AC3 AC1
5.4.2 淬火
淬火介质
理想的淬火介质应具有在中温区 冷却快,低温区冷却慢的特性。
温度
Ms
水
油
时间(对数)
工程材料学——第5章 钢的热处理
淬火介质
成分
特点
过饱和硝酸 盐水溶液
Na2CO3、 NaOH、KNO3
5.3 钢在冷却时的组织转变 5.3.2 过冷A连续冷却转变曲线
温度
Ps Pf
K' K
水冷
vk 油冷
vk′
临界点A1
炉冷
空冷
Ms
Mf
时间
工程材料学——第5章 钢的热处理
注意
KK′线为P转变终止线 Pf线为P转变终了线
共析碳钢连续冷却 时没有贝氏体形成(无 贝氏体转变区) 。
5.3 钢在冷却时的组织转变 5.3.3 过冷奥氏体转变
分级 淬火
在Ms点附近的热 减小了应力,防止变形、开
态介质中保温, 裂。适用于尺寸较小而形状
取出空冷或油冷。
复杂的高碳工具钢。
等温 淬火
第5章 模具钢料的热处理-模具表面处理技术
第二节模具表面处理工艺概述模具是现代工业之母。
随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。
如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。
这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。
这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。
从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。
在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。
◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。
减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。
◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。
在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。
模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。
下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。
钢的热处理(含答案)
第五章钢的热处理〔含答案〕一、填空题〔在空白处填上正确的内容〕1、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上50℃、空气3 cm2、钢的热处理是通过钢在固态下、和的操作来转变其内部,从而获得所需性能的一种工艺。
答案:加热、保温、冷却、组织3、钢淬火时获得淬硬层深度的力量叫,钢淬火时获得淬硬层硬度的力量叫。
答案:淬透性、淬硬性4、将后的钢加热到以下某一温度,保温肯定时间,然后冷却到室温,这种热处理方法叫回火。
答案:淬火、Ac15、钢在肯定条件下淬火时形成的力量称为钢的淬透性。
淬透层深度通常以工件到的距离来表示。
淬透层越深,表示钢的越好。
答案:马氏体〔M〕、外表、半马氏体区、淬透性6、热处理之所以能使钢的性能发生变化,其根本缘由是由于铁具有转变,从而使钢在加热和冷却过程中,其内部发生变化的结果。
答案:同素异构、组织7、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上30℃~50℃、空气3 cm8、钢的渗碳是将零件置于介质中加热和保温,使活性渗入钢的外表,以提高钢的外表的化学热处理工艺。
答案:渗碳、碳原子、碳含量9、共析钢加热到Ac 以上时,珠光体开头向转变,通常产生于铁素体和1渗碳体的。
答案:奥氏体〔A〕、奥氏体晶核、相界面处10、将工件放在肯定的活性介质中,使某些元素渗入工件外表,以转变化学成分和,从而改善外表性能的热处理工艺叫化学热处理。
答案:加热和保温、组织11、退火是将组织偏离平衡状态的钢加热到适当温度,保温肯定时间,然后冷却,以获得接近组织的热处理工艺。
答案:缓慢〔随炉〕、平衡状态12、将钢加热到温度,保温肯定时间,然后冷却到室温,这一热处理工艺叫退火。
答案:适当、缓慢〔随炉〕13、V 是获得的最小冷却速度,影响临界冷却速度的主要因素是。
临答案:全部马氏体〔全部M〕、钢的化学成分14、钢的热处理是将钢在肯定介质中、和,使它的整体或外表发生变化,从而获得所需性能的一种工艺。
金属材料热处理原理 第五章 马氏体转变
二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。
钢的热处理
上一页
下一页
回主页
返 回
(四) 渗碳体的聚集长大和铁素体再结晶
细粒状渗碳体
>450℃ 聚集长大
粒状渗碳体
500~600℃ 再结晶
回火索氏体 多边形铁素体
板条状或片状铁素体
性能:具有良好的综合机械性能。
上一页
下一页
回主页
返 回
三、回火种类及应用 低温回火
中温回火
高温回火
上一页 下一页 回主页 返 回
频率范围 高频感应加热 200~300kHz 中频感应加热 工频感应加热 1~10kHz 50Hz 淬硬层深度
应 用
举 例
0.5~2mm 2~8mm
在摩擦条件下工作的零件, 如小齿轮、小轴 承受扭矩、压力载荷的零件 , 如曲轴、大齿轮、等
10~15mm 承受扭矩、压力载荷的大 型零件 ,如冷轧辊等
上一页
(三)高温回火(500~650 ℃)
组织: 回火索氏体。 性能:具有强度、硬度、塑性和韧性都较好的综合力 学性能。回火后硬度一般为200~330HBS。 应用:用于汽车、拖拉机、机床等承受较大载荷的结构 零件,如连杆、齿轮、轴类、高强度螺栓等。
上一页
下一页
回主页
返 回
650℃回火2小时 组织:回火索氏体 硬度:187HBS
特点:钢内外温度基本一致,过冷奥氏体在缓冷
条件下转变成马氏体,从而减小变形。 应用:形状中等复杂的高碳钢和尺寸较大的合金 钢工件。
上一页
下一页
回主页
返 回
4. 贝氏体等温淬火 性能:贝氏体的硬度略低于马氏体,但综合力学 性能较好。
应用:一般弹簧、螺栓、小齿轮、轴、丝锥等的
热处理。
上一页
钢的热处理
目录:
什么是热处理? 热处理的四把火 常用热处理方法 其他金属材料
什么是热处理?
金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此
温度中保温一定时间后,又以不同速度冷却的一种工艺方法。 热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电 子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。
使钢件得到高韧性和足够强度。调质一般是在粗加工后进行的,它适用于各
种重要结构零件,特别是交变载荷下工作的传动轴、齿轮、丝杠等精密零件的预 先热处理,经过调质后,再进行加工的工艺过程。而调质处理则是精加工前的预
备工序,是对半成品而作的热处理操作。
说明:一般钢铁不会进行单一的热处理工艺,常用钢铁都采用调质处理。
3.4发黑处理
发黑处理是属氧化处理的方法。它的作用是使钢件表面生成一层保护膜,以 增强钢件表面防锈和耐蚀能力,同时可使钢件表面光泽美观,对淬火零件还有消 除淬火应力的作用。 发黑又叫煮黑,是将钢件放在很浓的碱和氧化剂的溶液(苛性钠和过氧化钠) 中加热煮沸,使钢件表面生成一层黑色的Fe3O4薄膜的工艺处理过程。发黑主要 用于碳素结构钢和低合金工具钢,发黑层厚度约为0.6~0.8mm。
磨滑块冷镦模具。 SKD11使用方法(仅供参考) 1.“淬火+回火”状态下使用(适于高精度与尺寸稳定要求) 2.“淬火+回火+氮化处理”状态下使用(适于表面高硬度要求) 3. 深冷处理 :形状复杂和尺寸变化较大的零件,深冷处理有产生开裂的危险。 4. 氮化处理:耐磨工件、表面硬度高。
3.7 45#钢材
8
2.3 淬火
2.3.1淬火(cui)的定义
淬火工艺是将钢加热到临界温度以上某一温度,保持一定时间,然后以适当 速度冷却热处ห้องสมุดไป่ตู้工艺。
钢的热处理
这一章主要给大家介绍一下有关钢的热处理的一些知识。
通过加热、保温和冷却来改变钢的组织,从而改变钢机械性能的工艺,称为热处理。
热处理是强化金属材料,充分发挥金属材料力学性能的工艺,是改善材料加工性能的重要手段。
利用不同的加热温度和冷却方式,可以改变钢的组织。
钢的组织不同,其力学性能就有差异。
按照加热温度和冷却方法的不同,热处理可分为:退火,正火,淬火及回火。
此外,还有通过改变钢表面的化学成分,从而改变其组织和性能的化学热处理。
●热处理的这三个阶段,可以用工艺过程曲线来表示。
第一节钢在加热时的转变一、加热温度的确定●热处理的第一道工序就是加热。
●铁碳合金相图是确定加热温度的理论基础。
●钢的加热程度就是奥氏体的形成过程,这种组织转变可以称为奥氏体化。
●在奥氏体化中,原来的铁素体、珠光体、贝氏体、马氏体、渗碳体等转化为奥氏体组织。
●注意:加热时,钢的组织实际转变温度往往是高于相图中的理论相变温度;冷却时,也往往低于相图中的理论相变温度。
●在热处理工艺中,不加热时的临界点分别用AC1、AC3、ACCm表示;而冷却是的临界点分别用Ar1、Ar3、Arcm表示。
二、奥氏体化过程以共析钢为例珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
奥氏体化大致可分为四个过程,如图所示。
1.奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
2.奥氏体长大奥氏体一旦形成,便通过原子扩散不断长大。
3. 残余渗碳体溶解由于铁素体的晶格类型和含碳量的差别都不大,因而铁素体向奥氏体的转变总是先完成。
当珠光体中的铁素体全部转变为奥氏体后,仍有少量的渗碳体尚未溶解。
随着保温时间的延长,这部分渗碳体不断溶入奥氏体,直至完全消失。
4.奥氏体均匀化刚形成的奥氏体晶粒中,碳浓度是不均匀的。
原先渗碳体的位置,碳浓度较高;原先属于铁素体的位置,碳浓度较低。
热处理
Al、Ti、Zr、V、W、Mo、Cr、Si、Ni、Cu 强 弱
③ ④
原始组织 新工艺
2.影响奥氏体晶粒大小的因素
(1)加热温度和保温时间 加热温度增加,加热时间延长,奥氏体晶粒会自发地长大。
(2)钢的成分 奥氏体中碳含量的增加,晶粒的长大倾向也增加; 锰和磷促进奥氏体晶粒长大 碳以未溶碳化物的形式存在时,则有阻碍晶粒长大的作用。 钢中能形成稳定碳化物、氧化物或氮化物的元素,有利于获得 细晶粒
两种奥氏体晶粒长大倾向的示意图
钢在加热时的转变
三、奥氏体晶粒的长大及控制
奥氏体晶粒度的概念
①
起始晶粒度
实际晶粒度 本质晶粒度
本质粗晶粒钢
本质细晶粒钢
②
③
1~4
5~8
钢在加热时的转变
影响奥氏体晶粒度的因素
(控制奥氏体晶粒大小的措施)
① ②
TA、tA 成分
C:两方面的影响 Me:除Mn、P,均阻碍A长大
1.珠光体型转变
温度:A1-550℃ 转变过程:
钢在冷却时的转变
一、过冷奥氏体等温转变(共析钢)
珠光体转变(高温转变)
温度范围:A1 ~550(Ar1 ~550℃) 转变特征:扩散型转变 转变过程: (A
珠光体转变
P)
贫碳区
富碳区
钢在冷却时的转变
珠光体转变(高温转变)
转变产物:P(片层状 F 和 Fe3C 的机械混合物)
1 概述
定义:钢的热处理(heat
treatment)是指将钢在固 态下采用适当的方式进行 加热(heating)、保温和冷 却(cooling),通过改变钢 的内部组织结构而获得所 需性能的工艺方法。 三个阶段:钢的热处理工 艺都包括加热、保温和冷 却。 热处理工艺曲线: 温度— —时间曲线
简述钢的普通热处理
钢的普通热处理方法:
1.正火:将钢加热到适当温度,保温一段时间后取出在空气中
冷却。
正火的主要应用范围有:用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理;用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理;用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织;用于铸钢件,可以细化铸态组织,改善切削加工性能;用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向;用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
2.淬火:将钢加热至高温后快速冷却,使其硬化。
淬火的主要
目的是提高钢的硬度、强度和耐磨性。
3.回火:将淬火后的钢加热到一定温度并保温一段时间,然后
冷却。
回火的主要目的是消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。
4.退火:将钢加热至适当温度并保温一段时间后缓慢冷却。
退
火的主要目的是调整硬度以方便切削加工,消除内应力,稳定尺寸,防止加工中变形。
退火还能细化晶粒,改善组织。
5.表面热处理:包括表面淬火和火焰加热表面淬火等。
表面热
处理的主要目的是提高材料表面的硬度和耐磨性。
6.化学热处理:包括渗碳、渗氮、碳氮共渗等。
化学热处理的
主要目的是改变材料表面的化学成分,以提高其耐腐蚀性和耐磨性。
第五章钢的热处理
第五章钢的热处理一、名词解释1.过冷:结晶只有在理论结晶温度以下才能发生,这种现象称为过冷。
2.枝晶偏析:在一个枝晶范围内或一个晶粒范围内不均匀的现象叫做枝晶偏析。
3.二次相:由已有固相析出的新固相称为二次相或次生相。
4.铁素体:碳在α—Fe中的固溶体称为铁素体。
5.奥氏体:碳在γ—Fe中的固溶体称为奥氏体。
6.莱氏体:转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体。
7.珠光体:转变产物为铁素体和渗碳体的机械混合物,称为珠光体。
8.变质处理:又称为孕育处理,是一种有意向液态金属中加入非自发形核物质从而细化晶粒的方法。
9.共晶转变:在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程。
10.包晶转变:在一定温度下,由一定成分的液相包着一定成分的固相,发生反应后生成另一一定成分新固相的反应。
二、填空题1、金属的结晶过程由晶核形成和晶核长大两个基本过程组成。
2、金属结晶过程中,细化结晶晶粒的主要方法有控制过冷度、变质处理和振动、搅拌3、当固溶体合金结晶后出现枝晶偏析时,先结晶出来的枝晶轴含有较多的高熔点组元。
4、在实际生产中,若要进行热锻或热轧时,必须把钢加热到奥氏体相区。
5、在缓慢冷却条件下,含碳0.8%的钢比含碳1.2%的钢硬度低强度低。
三、选择题1.铸造条件下,冷却速度越大,则(A.过冷度越大,晶粒越小)2.金属在结晶时,冷却速度越快,其实际结晶温度(B.越低)3.如果其他条件相同,下列各组铸造条件下,哪种铸锭晶粒细?(A.金属模铸造B.低温铸造A.铸成薄片A.浇注时振动)4.同素异构体转变伴随着体积的变化,其主要原因是(致密度发生变化)5.实际金属结晶时,可通过控制形核N和长大速度G的比值来控制晶粒大小,要获得细晶粒,应采用(A.增大N/G值)6.二元合金在发生共晶转变时,各相组成是(D.三相共存)7.二元合金在发生共析转变时,各相的(B.质量固定,成分发生变化)10.产生枝晶偏析的原因是由于(D.液、固相线间距大,冷却速度也大)11.二元合金中,铸造性能最好的是(B.共晶合金)14.在下列方法中,可使晶粒细化的方法是(D.变质处理)四、判断题1。
钢铁是怎样炼成的第五章批注
钢铁是怎样炼成的第五章批注第五章《钢铁如何炼制》1.钢铁炼制过程:钢铁炼制分为炼铁和轧制两部分。
炼铁是指将铁矿石加热到一定温度,使矿石中的氧化物脱除,并将熔铁充分浸渍碳,以熔铁的方式熔炼成铁的过程,而轧制则是将熔化钢铁冷却到一定温度,用压力或者剪切力,使其变成一定形状的板材或者其他各种造型钢铁产品的过程。
2.炼铁工艺:炼铁工艺主要由炉料破碎、焙烧、连续熔炼、连铸四个步骤组成。
在这四个步骤中,炉料破碎一般采用破碎机、粉碎机和磨机等机械设备破碎;焙烧是指将破碎的矿石加热到一定温度,使矿石中的氧化物熔化;连续熔炼将焙烧生成的橡精混合碳炉料按一定配比进行熔融,保证得到钢水中所含铁含量;连铸就是将熔化的钢铁浇入到铸模中,再加工成标准型号的产品。
3.轧制技术:轧制技术是将熔化钢铁冷却到一定温度,用压力或者剪切力,使其变成一定形状的板材或者其他各种造型钢铁产品的技术。
轧制技术有轧制、锻压、锻造、冷拔等多种,其中,轧制技术是最常用的,它有多种轧制方法,如热轧、冷轧、宽厚轧、弹性轧等,每种轧制技术都可以按照不同的要求获得不同的成品形状。
4.热处理工艺:热处理工艺是指对钢铁进行时效处理或者其他不同处理方法,以改变其组织结构,以达到改善物理性能和机械性能的目的。
热处理一般有正火、回火、淬火几种工艺,正火是在一定温度下,保持原钢的性能并增加屈服强度的处理;回火是将经正火处理的钢经过热处理后变软的处理;淬火则通过将钢火至一定温度,使得钢的抗拉强度提高。
5.钢水分级:钢水是由熔炼的钢铁混合着碳炉料,铁素体+碳化物+几何形状(颗粒),三部分组成,其中碳化物是赋予钢铁强度和韧性的原料,碳化物多添加,钢铁抗弯强度和塑性大,受冷变形小,耐热性强,但不韧性,反之反之。
所以,分级是根据碳化物形状和数量来确定,确定碳酸铁的品级,主要是根据钢水中碳化物的形状和大小,以保证钢筋的品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理概念 钢材在加热时的组织转变 钢材在冷却时的组织转变 退火与正火
回火 表面热处理与化学热处理
第5章钢的热处理
模块一 热处理概念
热处理: 金属或合金在固态下于一定介质中加热到一定温度, 保温一定时间,以一定速度冷却下来的一种综合工艺。
什么是热处理
T
T保温 t保温
V加热
V冷却
t
作用:(1)显著提高材料的使用性能 (2)改善加工性能(切削、热处理)
第5章钢的热处理
上贝氏体的形成示意图
上贝氏体的貌
第5章钢的热处理
下贝氏体的形成示意图
下贝氏体的形貌
第5章钢的热处理
• (5) 性能: • 上贝氏体的硬度高,塑性、韧性差,不用。 • 下贝氏体高强度、硬度、塑性韧性较好。 • 工业中应用于中碳钢和中碳合金钢制造的零件
中。
第5章钢的热处理
3 马氏体转变
第5章钢的热处理
图2-4 过共析钢(1.13%C)过冷奥氏体等温转变图
第5章钢的热处理
四 影响C曲线的主要因素
第5章钢的热处理
二 过冷奥氏体等温转变类型及其产物
1、珠光体转变 (共析转变A → P ) 发生温度: 7270C---5600C
第5章钢的热处理
珠光体的铁素体和渗碳体层片粗细与转变温度有关。温度 越低,珠光体的层片越细。 7270C---6500C:珠光体片层较粗,P(珠光体) 6500C---6000C:珠光体层片较细,S (索氏体) 6000C--5600C: 珠光体层片极细,T (托氏体) 层片变细,强度硬度增加,塑性韧性有所增加。
第5章钢的热处理
模块二 钢材在加热时的组织转变
1、复习“钢在室温下的组织”:亚共析钢,共析钢,过 共析钢的组织组成物。
2、以共析钢为例,了解钢在加热时(727°C以上)组 织的转变。(相图上组织和相的转变是可逆的。)
3、影响奥氏体晶粒大小的因素。
第5章钢的热处理
一 钢在加热时组织的转变(以共析钢为例)
第5章钢的热处理
模块三 钢材在冷却时的组织转变
冷却过程——热处理 工艺的关键部分,对 控制热处理以后的组 织与性能起着极大作 用,不同的冷却速度 获不同的组织与性能。
第5章钢的热处理
过冷奥氏体等温转变图
一、过冷奥氏体等温转变图的建立 将奥氏体迅速冷至临界温度以下的一定温度,并在
此温度下进行等温,在等温过程中所发生的相变称为过 冷奥氏体等温转变。
第五章 钢的热处理
第5章钢的热处理
本章主要任务
• 任务:热处理对于金属材料的改性
• 任务描述:
• 目的:改变钢的内部组织结构,改善钢的性能
•
1、热处理强化金属材料、充分挖掘材
料潜能;
•
2、消除铸、锻、焊热加工工艺缺陷,
均匀组织和性能;
•
3、改善加工工艺性能;
•
4、保证抗磨损、耐腐蚀等特殊性能。
第5章钢的热处理
第5章钢的热处理
(1)转变温度: Ms(230°C)-Mf (2)产物:马氏体 (3)马氏体:碳在a--Fe中形成的过饱和铁素体,具有体心正 方结构。 (4)形貌:
低碳马氏体:呈板条状 高碳马氏体:呈透镜状,片状,中间有脊线。
第5章钢的热处理
(5)性能特点:硬而脆,且随Wc的增加而增加。
(6)应用
• 钢的加热与冷却组织转变规律为制定正确的热 处理工艺提供了理论依据,热处理参数的确定 必须使具体工件满足组织转变规律性
• 能掌握普通热处理和表面热处理工艺,并能解 决具体的情景问题,理解和应用于热处理工程 领域。
第5章钢的热处理
• 模块一 • 模块二 • 模块三 • 模块四 • 模块五 • 模块六 • 模块七
任务分解
• 主要模块一:热处理加热和冷却组织转变:
• 1、结合铁碳相图,掌握材料的奥氏体化过程, 以及加热之后的组织状态对于冷却最终组织的 影响。
• 2、掌握C曲线和CCT曲线冷却转变中的作用, 能据此判定冷却之后的组织状态;并能理解不 同材料的热处理工艺参数。
第5章钢的热处理
• 主要模块二:热处理工艺:
必须经过回火才能使用。
高碳马氏体用于高硬度高耐磨性的零件,如车刀、铣刀等。
低碳马氏体用于综合性能好的零件,如发动机连杆螺栓、缸 盖螺栓,石油钻井的吊环、吊钳等。
第5章钢的热处理
高碳马氏体 球墨铸铁淬火 G球+M+Aˊ
低碳马氏体 15钢淬火组织 M低
第5章钢的热处理
图2-3 亚共析钢(0.54%C)过冷奥氏体等温转变图
共析钢加热到727°C(A1)以上,珠光体转变成奥氏 体。(四个阶段)
奥氏 体形 核
奥氏 体核 长大
残余渗 碳体溶 解
奥氏体 成分均 匀化
(a)
(b)
(c)
(d)
第5章钢的热处理
一、奥氏体的形成
第5章钢的热处理
二、奥氏体晶体的长大
第5章钢的热处理
三、残留碳化物的溶解 四、奥氏体成分均匀化
图1-4 珠光体向奥氏体等温转变过程示意图 五、亚(或过)共析钢中奥氏体的形成
测定过冷奥氏体等温转变图的方法有金相-硬度法、 膨胀法、磁性法、热分析法等。
第5章钢的热处理
图2-1 过冷奥氏体等温转变图作法示意图
第5章钢的热处理
图2-2 共析碳钢的C曲线
第5章钢的热处理
由图2-2可以看出: 1. 在各不同温度下过冷奥氏体等温分解需要一段准备 时间,称为孕育期。 2. 通常把此处称为C曲线的鼻部或拐点 3. 对于碳钢,在其C曲线鼻部以上为过冷奥氏体高温 转变区,生成珠光体;在鼻部以下至Ms点之间为中温转变 区,生成贝氏体;在Ms点以下为低温转变区,生成马氏体。
第5章钢的热处理
二 奥氏体晶粒长大及其控制
一、奥氏体晶粒度 晶粒度是表示晶粒大小的一种尺度,在研究奥氏体
晶粒时,首先要区分三种晶粒度的概念。 1. 初始晶粒度 2. 实际晶粒度 3. 本质晶粒度
第5章钢的热处理
本质粗晶粒钢与本质细晶粒钢 奥氏体晶粒长大过程示意图 奥氏体晶粒长大示意图
第5章钢的热处理
第5章钢的热处理
珠光体形貌
T8 钢退火组织 P
第5章钢的热处理
2、贝氏体转变
(1)转变温度: 560—Ms(2300C)
第5章钢的热处理
(2)产物:贝氏体 (3)贝氏体:由过饱和铁素体和渗碳体组成的混合物。 (4)贝氏体的形状和性能:(与等温温度有关)
560--3500C: 贝氏体呈羽毛状,称为上贝氏体,记为B上 350-- Ms(2300C):贝氏体呈针叶状,称之为下贝氏体,记为 B下。