青海省格尔木市三校2018-2019学年高一上学期期末联考数学试题

合集下载

2018――2019年期末考试题_2018-2019学年高一上学期期末数学试题(解析版)

2018――2019年期末考试题_2018-2019学年高一上学期期末数学试题(解析版)

《2018――2019年期末考试题_2018-2019学年高一上学期期末数学试题(解析版)》摘要:、单选题.已知集合则(). B...【答案,). B...【答案,.已知函数若函数有三零则取值围(). B...【答案0809学年市高上学期期末数学试题、单选题.已知集合则(). B...【答案】【析】直接利用交集定义可得【详】;.故选.【睛】题主要考了交集定义属基础题.直线斜率(). B...【答案】B 【析】将直线化斜截式可直接得斜率【详】由得.直线斜率.故选.【睛】题主要考了斜率概念属基础题 3.下列函数既是偶函数又区上单调递增是(). B...【答案】【析】直接由析式判断函数单调性和奇偶性即可得【详】.函数定义域函数非奇非偶函数故错误.函数偶函数当函数减函数不满足条件.故错误.函数奇函数上减函数不满足条件.故错误.函数是偶函数当是增函数满足条件.故正确故选.【睛】题主要考了函数奇偶性和单调性判断属基础题.仓库里堆积着正方体货箱若干要搬运这些箱子很困难可是仓库管理员要清下箱子数量是就想出办法将这堆货物三视图画了出你能根据三视图他清下箱子数量吗?这些正方体货箱数().6 B.7 .8 .9 【答案】【析】结合三视图分析每层正方体数即可得【详】由俯视图可得所有正方体共6摞每摞正方体数如下图所示故这些正方体货箱数8 故选.【睛】题主要考了识别几何体三视图考了空想象力属基础题 5.设则关系正确是(). B...【答案】【析】利用指数和对数函数单调性比较三数和0,关系即可得【详】;.故选.【睛】题主要考了指数、对数比较考了函数单调性属基础题 6.当下列选项函数和致图象正确是(). B...【答案】【析】结合判断两函数单调性即可得【详】当则是减函数是原增函数故选.【睛】题主要考了对数函数和次函数单调性属基础题 7.将直角边长等腰直角三角形绕其条直角边旋周所形成几何体体积(). B...【答案】【析】直接由圆锥体积公式即可【详】旋成几何体是圆锥其底面半径高如图所示;则圆锥体积.故选.【睛】题主要考了圆锥体积计算属基础题 8.已知函数区上单调递增则取值围(). B...【答案】【析】直接根据二次函数性质由对称轴和区位置关系即可得【详】依题对称轴得故选.【睛】题主要考了二次函数单调性属基础题 9.且两坐标轴上截距相等直线方程().或B.或.或.【答案】B 【析】分直线原与不原两种情况不原只斜率即可【详】直线且两坐标轴上截距相等当截距0直线方程;当直线不原斜率直线方程.直线方程或.故选.【睛】题主要考了直线截距概念容易忽略原情况属易错题 0.已知是两条不直线是三不平面则下列命题正确是().若则 B.若则.若则.若则【答案】【析】通分析线面和面面位置关系通反例可知,B,不正确由线面垂直判断得【详】由是两条不直线是三不平面知若则与相交、平行或异面故错误;若则与相交或平行故错误;若则由面面垂直判定定理得故正确;若则与相交、平行或故错误.故选.【睛】题主要考了线面和面面位置关系考了空想象力属基础题.已知函数是定义上偶函数且区上单调递减若实数满足()则取值围(). B...【答案】【析】由奇偶性和单调性可得从而得【详】函数是定义上偶函数且区上单调递减()等价()即.即得即实数取值围是故选.【睛】题主要考了函数奇偶性和单调性属基础题.已知函数若函数有三零则取值围(). B...【答案】B 【析】作出图象如图令问题化函数有两零结合二次抛物线图象根据根分布列不等式即可【详】作出图象如图设则由图象知当有两根当只有根若函数有三零等价函数有两零其或当另根满足题;当则满足得得综上故选.【睛】题主要考了复合型方程根数问题进行合理等价化是题关键属档题二、填空题 3.__.【答案】【析】直接利用对数运算法则即可【详】原式.故答案.【睛】题主要考了对数运算属基础题.已知直线与相平行则两直线与距离__.【答案】【析】由平行得再利用平行线距离公式可得【详】直线与相平行两直线与距离.故答案.【睛】题主要考了直线平行参数及平行线距离公式属基础题 5.已知函数常数)若则__.【答案】【析】设可得函数奇函数从而可得即得代入条件即可得【详】根据题设有则函数奇函数则即变形可得则有则;故答案5 【睛】题主要考了奇偶性应用题关键是设从而与奇偶性建立系进而得属基础题 6.已知直三棱柱六顶都球上底面是直角三角形且侧棱则球体积__.【答案】【析】利用直三棱柱几何特征结合底面直角三角形可到球心从而得半径即可得【详】如图分别易知即外接球球心计算可得故答案.【睛】题主要考了三棱柱外接球问题属基础题三、答题 7.已知函数.()直角坐标系作出与图象;()请写出函数性质并给予证明;(3)请写出不等式集.【答案】()图像见析()是偶函数证明见析(3)【析】()利用分段函数析式和次函数图象可作图;()由图像可得函数偶函数进而利用定义证明即可;(3)结合图象即可不等式【详】()则对应图象()函数是偶函数是偶函数.(3)当由得当由得由图象知若则即不等式集【睛】题主要考了分段函数图象及图象应用属基础题 8.已知三顶坐标分别.()边所直线方程;()若边上线所直线方程面积.【答案】()()【析】()先直线斜率结合斜式即可得;()先将代入直线可得再由坐标满足直线可得;利用到直线距离可高从而得面积【详】()边所直线方程即;()把代入得.线方程坐标即.到直线距离...【睛】题主要考了直线方程涉及斜式坐标及到直线距离属基础题 9.用水清洗堆蔬菜上残留农药对用定量水清洗次效作如下假定用单位量水可洗蔬菜上残留农药量用水越多洗农药量也越多但总还有农药残留蔬菜上.设用单位量水清洗次以蔬菜上残留农药量与次清洗前残留农药量比函数.()试规定值并释其实际义;()试根据假定写出函数应该满足条件和具有性质;(3)设.现有单位量水可以清洗次也可以把水平分成份清洗两次试问用哪种方案清洗蔬菜上残留农药量比较省?说明理由.【答案】()表示没有用水洗蔬菜上残留农药量将保持原样()函数应该满足条件和具有性质是上单调递减且(3)答案不唯具体见析【析】()由表示清洗思从而得;()结合题干信息可得和及围;(3)分别计算两种方式农药残留量进而作差比较即可【详】()表示没有用水洗蔬菜上残留农药量将保持原样.()函数应该满足条件和具有性质是上单调递减且.(3)设仅清洗次残留农药量清洗两次残留农药量则;是当清洗两次残留农药量较少;当两种清洗方法具有相效;当次清洗残留农药量较少.【睛】题主要考了函数实际应用问题题关键是分析题干信息提取代数式属基础题 0.如图四棱锥平面底面是菱形.()证;()到面距离.【答案】()证明见析()【析】()由和即可证得;()由可得进而可得【详】证明()底面是菱形平面平面是平面两条直交线平面又平面.()底面是菱形又平面设到平面距离且平面即是等边三角形得到面距离.【睛】题主要考了线面垂直证明及性质考了等体积法面距属基础题.已知二次函数.()若函数偶函数值;()若函数区上值值.【答案】()0;()【析】()得对称轴方程由偶函数图象可得值;()得对称轴方程推理对称轴和区关系结合单调性可得析式再由单调性可得值.【详】()二次函数对称轴由偶函数可得;()对称轴当即递增可得且值;当即递减可得且值3;当即值当取得值综上可得值【睛】题考二次函数对称性和单调性运用值考分类讨论思想方法和化简运算能力、推理能力属档题..已知函数区上有且仅有零取值围.【答案】【析】分别讨论和结合△和△分析当△分和讨论即可【详】()若则令由得不题()当△ 由题可知△可得①若则△函数零不满足题;②若函数零是满足题;下面讨论△函数区上有且仅有零情况由零判断定理有即得而△()只要讨论另零是否区.由可得.所以另零是满足题.故实数取值围.【睛】题主要考了二次方程根分布涉及分类讨论情况较多属难题。

2018-2019学年度上学期期末质量检测高一年级数学(解析版)

2018-2019学年度上学期期末质量检测高一年级数学(解析版)

2018-2019学年度上学期期末质量检测高一年级数学(解析版)三、解答题(本大题共6小题,共70.0分)1.设全集为R,集合,集合.求;若,,求实数a的取值范围.【答案】解:集合,集合,;由,且,,由题意知,,解得,实数a的取值范围是.【解析】化简集合B,根据并集的定义写出;根据知,由题意列不等式求出a的取值范围.本题考查了集合的化简与运算问题,是基础题.2.已知函数.用定义证明在上是增函数;若在区间上取得的最大值为5,求实数a的值.【答案】解:证明:设,则:;;,;;;在上是增函数;由知,在上是增函数;在区间上的最大值为;.【解析】根据增函数的定义,设任意的,然后作差,通分,得出,只需证明即可;根据可知,在区间上是增函数,从而得出在上的最大值为,从而可求出a的值.考查增函数的定义,根据增函数的定义证明一个函数是增函数的方法和过程,根据增函数的定义求函数在闭区间上最值的方法.3.如图,长方体中,,点P为的中点.求证:直线平面PAC;求证:平面平面.【答案】证明:设AC和BD交于点O,连PO,由P,O分别是,BD的中点,故,因为平面PAC,平面PAC,所以直线平面PAC长方体中,,底面ABCD是正方形,则又面ABCD,则,所以面,则平面平面.【解析】设AC和BD交于点O,连PO,则,由此能证明直线平面PAC.推导出,,由此能证明平面平面.本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.4.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低元,根据市场调查,销售商一次订购量不会超过600件.设一次订购x件,服装的实际出厂单价为p元,写出函数的表达式;当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?【答案】解:当时,;当时,.设利润为y元,则当时,;当时,.当时,是单调增函数,当时,y最大,此时000;当时, 050,当时,y最大,此时 050.显然.所以当一次订购550件时,利润最大,最大利润为6050元.【解析】根据题意,函数为分段函数,当时,;当时,.设利润为y元,则当时,;当时,,分别求出各段上的最大值,比较即可得到结论.本题考查分段函数,考查函数的最值,解题的关键是正确写出分段函数的解析式,属于中档题.5.已知函数且是定义在R上的奇函数.Ⅰ求a的值;Ⅱ求函数的值域;Ⅲ当时,恒成立,求实数m的取值范围.【答案】解:Ⅰ函数且是定义在R上的奇函数,可得,即,解得,即有,由,可得为R上的奇函数,故;Ⅱ,在R上递增,由,可得,即有的值域为:Ⅲ当时,恒成立,即为,由,可得,由在递增,可得y的最大值为,可得.【解析】Ⅰ由奇函数的性质可得,解方程可得a的值,结合奇函数的定义,可得所求值;Ⅱ结合指数函数的值域和不等式的性质,可得所求值域;Ⅲ由题意可得,由,可得恒成立,运用换元法和函数的单调性,求得不等式右边函数的最大值,即可得到所求范围.本题考查函数的奇偶性和单调性的运用,注意运用指数函数的单调性和换元法,考查化简运算能力和推理能力,属于中档题.。

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

18.已知向量 =( x,﹣ 1), =( x﹣2 ,3), =( 1﹣ 2x, 6). ( 1)若 ⊥( 2 + ),求 | | ; ( 2)若 ? < 0,求 x 的取值范围.
2
19.已知函数 f( x)=Asinx+cosx, A> 0. ( 1)若 A=1,求 f ( x)的单调递增区间;

22. 解: Ⅰ)若 a=1,则 f( x)=

函数 f ( x)的图象如下图所示:

(Ⅱ)若 f( x) ≥2﹣ x 对任意 x∈[1,2] 恒成立, 即 x2﹣ 4ax+3a2≥2﹣ x 对任意 x∈[1 ,2] 恒成立, 即 x2+( 1﹣4 a) x+(3a2﹣ 2) ≥0对任意 x∈[1 , 2]恒成立,
( 2)函数 f( x)在 x=x0 处取得最大值
,求 cosx0 的值.
20.已知 f ( x)是定义在 R上的偶函数,当 x ≥0时, f( x) =xa( a∈R),函数 f( x)的图象经过点( ( 1)求函数 f ( x)的解析式; ( 2)解不等式 f ( x2)﹣ f(﹣ x2+x﹣ 1)> 0.
4, 2).
3
21.已知向量 =( sinx ,﹣ 1), =( cosx , m),m∈ R.
( 1)若 m= ,且 ∥ ,求
的值;
( 2)已知函数 f ( x) =2( + ) ? ﹣2m2﹣ 1,若函数 f( x)在 [ 0, ] 上有零点,求 m 的取值范围.
22. 设函数 f ( x) =
由 y=x2+( 1﹣ 4a) x+( 3a2﹣ 2)的图象是开口朝上,且以直线 x=
为对称轴的抛物线,

2018-2019学年高一上学期期末考试数学试题

2018-2019学年高一上学期期末考试数学试题

2018-2019学年高一上学期期末考试数学试题考试范围:必修4(时间:120分钟 满分:150分)一、选择题(本大题共12 小题,每小题5分,共60分)1.sin(-2 055°)等于( )A.6-242+64C. D.2+642-642.若sin α>0且tan α<0,则的终边在( )α2A.第一象限B.第二象限C.第一象限或第三象限D.第三象限或第四象限3.若sin(π-α)=-,且α∈(π,),则sin(+α)等于( )533π2π2A.- B.5353C.- D.23234.已知D 是△ABC 所在平面内一点,=+,则( )→AD 713→AB 613→AC A.= B.=→BD 713→BC →BD 613→BC C.= D.=→BD 137→BC →BD 136→BC5.已知a 与b 的夹角为,a=(1,1),|b|=1,则b 在a 方向上的投影为( )π3A B..2262C. D.12326.函数f(x)=cos(x+)-cos(x-)是( )π4π4A.周期为π的偶函数B.周期为2π的偶函数C.周期为π的奇函数D.周期为2π的奇函数7.已知a,b 均为单位向量,它们的夹角为60°,那么|a+3b|等于( )A. B. 710C. D.4138.若tan(π-α)=,α是第二象限角,则等于( )341sin π+α2·sin π-α2A. B.5910C. D.101099.已知α是锐角,a=(,sin α),b=(cos α,),且a∥b,则α为( )3413A.15° B.45°C.75°D.15°或75°10.已知函数y=sin (2x+)在x=处取得最大值,则函数y=cos(2x+)的图象( )ϕπ6ϕA.关于点(,0)对称π6B.关于点(,0)对称π3C.关于直线x=对称π6D.关于直线x=对称π311.函数f(x)=2sin(ωx+)(ω>0,-<<)的部分图象如图所示,则ω,的值ϕπ2ϕπ2ϕ分别是( )A.2,-B.2,-π3π6C.4,-D.4,π6π312.将函数f(x)=2cos 2x-2sin xcos x-的图象向左平移t(t>0)个单位,所33得图象对应的函数为奇函数,则t 的最小值为( )A. B.2π3π3C. D. π2π6二、填空题(本大题共4小题,每小题5分,共20分)13.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈(,π),则cos α=π214.已知向量a=(-2,3),b=(4,m),若(a+2b)∥(a-b),则实数m= . 15.若函数f(x)=sin(ωx+)(ω>0)图象的两条相邻的对称轴之间的距离为,π6π2且该函数图象关于点(x 0,0)成中心对称,x 0∈,则x 0= . [0,π2]16.如图,在矩形ABCD 中,AB=,BC=2,点E 为BC 的中点,点F 在边CD 上,2若·=,则·的值是 .→AB →AF 2→AE →BF三、解答题(本大题共6小题,共70分)17.(本小题满分10分)(1)设tan α=-,求的值;121sin 2α-sinαcosα-2cos 2α(2)已知cos(75°+α)=,且-180°<α<-90°,求cos(15°-α)的值.1318.(本小题满分10分)已知=(4,0),=(2,2),=(1-λ)+λ(λ2≠λ).→OA →OB 3→OC →OA →OB (1)求·,在上的投影;→OA →OB →OA →OB (2)证明A,B,C 三点共线,并在=时,求λ的值;→AB →BC (3)求||的最小值.→OC 19.(本小题满分12分)已知函数f(x)=cos(2x-)+sin 2x-cos 2x+.π32(1)求函数f(x)的最小正周期和单调递增区间;(2)若存在t∈[,]满足[f(t)]2-2f(t)-m>0,求实数m 的取值范围.π12π3220.(本小题满分12分)已知向量a=(3sin α,cos α),b=(2sin α,5sin α-4cos α),α∈(,2π),3π2且a⊥b.(1)求tan α的值;(2)求cos(+)的值.α2π321.(本小题满分12分)已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<)在一个周期内的图象如图所示.ϕϕπ2(1)求函数的解析式;(2)设0<x<π,且方程f(x)=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.22.(本小题满分14分)已知向量a=(-sin ,1),b=(1,cos +2),函数f(x)=a·b.3x 2x 232(1)求函数f(x)在x∈[-π,]的单调减区间;5π3(2)当x∈[,π]时,若f(x)=2,求cos 的值.π3x 2。

2018-2019学年高一上期末数学试卷(答案+解析)

2018-2019学年高一上期末数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)设全集U={1,2,3,4,5,6},A={1,3,5},B={2,3},则(∁U A)∪B=()A.{2,3,4,6} B.{2,3} C.{1,2,3,5} D.{2,4,6}2.(5分)一个半径为2的扇形的面积的数值是4,则这个扇形的中心角的弧度数为()A.1 B.C.2 D.43.(5分)若函数y=f(x)的定义域为{x|﹣3≤x≤8,x≠5,值域为{y|﹣1≤y≤2,y≠0},则y= f(x)的图象可能是()A.B.C.D.4.(5分)设f(x)=,则f(f())=()A.B.ln C.D.﹣5.(5分)已知角α的终边是射线y=﹣x(x≥0),则sinα的值等于()A.±B.C.±D.﹣6.(5分)为了求函数f(x)=2x+3x﹣7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示:则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.37.(5分)对于任意a>0且a≠1,函数f(x)=log a(x﹣1)+3的图象必经过点()A.(4,2)B.(2,4)C.(3,2)D.(2,3)8.(5分)函数y=2sin x(x∈[,])的值域是()A.[,] B.[1,] C.[1,2] D.[,1]9.(5分)设<()b<()a<1,那么()A.1<b<a B.1<a<b C.0<a<b<1 D.0<b<a<110.(5分)已知函数f(x)=﹣tan(2x﹣),则()A.f(x)在(+,+)(k∈Z)上单调递减B.f(x)在(+,+)(k∈Z)上单调递增C.f(x)在(kπ+,kπ+)(k∈Z)上单调递减D.f(x)在[kπ+,kπ+](k∈Z)上单调递增11.(5分)已知函数y=3sin(x+)的图象C.为了得到函数y=3sin(2x﹣)的图象,只要把C上所有的点()A.先向右平行移动个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变B.先横坐标缩短到原来的倍,纵坐标不变,然后向左平行移动个单位长度C.先向右平行移动个单位长度,然后横坐标缩短到原来的倍,纵坐标不变D.先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动个单位长度12.(5分)给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(xy)= f(x)f(y),下列选项中,函数在其定义域内不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=x2+x C.f(x)=log2x D.f(x)=二、填空题13.(5分)sin210°=.14.(5分)()﹣lg=.15.(5分)若a sinθ+cosθ=1,2b sinθ﹣cosθ=1,则ab的值为.16.(5分)已知f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有<0,记a=,b=,c=,则a、b、c的大小关系是.三、解答题17.(10分)已知全集U=R,集合A={x|﹣2≤x<4},集合B={x|x≥3},集合C={x∈R|x<a}.(1)求A∪B,A∩(∁U B);(2)若(B∩C)⊆A,求实数a的取值范围.18.(12分)设a为实数,函数f(x)=x2﹣ax.(1)若函数f(x)在[2,4]上具有单调性,求实数a的取值范围;(2)设h(a)为f(x)在[2,4]上的最小值,求h(a).19.(12分)已知f(α)=.(1)利用诱导公式化简f(α);(2)设f(α)=﹣2,计算:①;②sinαcosα.20.(12分)已知函数f(x)=ln.(1)判断函数f(x)的奇偶性,并说明理由;(2)判断函数f(x)在其定义域上的单调性,并用单调性定义证明你的结论.21.(12分)海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)若用函数f(t)=A sin(ωt+φ)+h(A>0,ω>0,|φ|<)来近似描述这个港口的水深和时间之间的对应关系,根据表中数据确定函数表达式;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定要有2.25米的安全间隙(船底与洋底的距离),该船何时能进入港口?22.(12分)已知函数F(x)=e x(e=2.71828…)满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数.(1)求g(x),h(x)的表达式;(2)若任意x∈[1,2]使得不等式a e x﹣2h(x)≥1恒成立,求实数a的取值范围;(3)探究h(2x)与2h(x)•g(x)的大小关系,并求(n∈N*)的值.【参考答案】一、选择题1.A【解析】∵U={1,2,3,4,5,6},A={1,3,5},∴∁U A={2,4,6},又B={2,3},∴(∁U A)∪B={2,3,4,6}.故选A.2.C【解析】设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4,解得:α=2.故选C.3.B【解析】A.当x=8时,y=0,∴A错误.B.函数的定义域和值域都满足条件,∴B正确.C.由函数的图象可知,在图象中出现了有2个函数值y和x对应的图象,∴C错误.D.函数值域中有两个值不存在,∴函数的值域不满足条件,∴D错误.故选B.4.C【解析】∵f(x)=,∴f()=,f(f())=f(ln)==.故选C.5.D【解析】由题意角α在第四象限,设终边上任一点P(x,﹣x),则OP=x,∴sinα=,故选D.6.C【解析】由图表可知,函数f(x)=2x+3x﹣7的零点介于1.375到1.4375之间,故方程2x+3x=7的近似解也介于1.375到1.4375之间,由于精确到0.1,结合选项可知1.4符合题意,故选C.7.D【解析】对数函数恒过定点(1,0),则令x﹣1=1,可得:x=2,此时f(2)=0+3=3,即函数f(x)=log a(x﹣1)+3的图象必经过点(2,3).故选D.8.C【解析】函数y=2sin x,当x∈[,],∴sin x∈[,1],∴2sin x∈[1,2],∴y∈[1,2],∴函数y的值域为[1,2].故选C.9.C【解析】由<()b<()a<1,可得<()b<()a<,根据指数函数的单调性,底数为,是减函数,∴0<a<b<1.故选C.10.A【解析】函数f(x)=﹣tan(2x﹣),令kπ﹣<2x﹣<kπ+,k∈Z,解得kπ+<2x<kπ+,k∈Z,即+<x<+,k∈Z;∴f(x)在(+,+)(k∈Z)上单调递减.故选A.11.C【解析】根据三角函数图象变化规律,只要把C上所有的点先向右平行移动个单位长度,可得函数y=3sin(x﹣+)=3sin(x﹣)的图象,∴再把y=3sin(x﹣)的图象所有点横坐标缩短到原来的倍,纵坐标不变.得到函数y=3sin(2x﹣)的图象,故选C.12.B【解析】A中f(x)=3x,显然满足f(x+y)=f(x)f(y),D中f(x)=显然满足f(xy)=f(x)f(y),C中f(x)=log2x,显然满足f(xy)=f(x)+f(y),B选项都不满足上述性质.故选B.二、填空题13.﹣【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故答案为﹣14.3【解析】原式=﹣lg103=﹣=3,故答案为3.15.【解析】∵a sinθ+cosθ=1,b sinθ﹣cosθ=1,∴a=,b=,∴ab=•===,故答案为.16.b<c<a【解析】f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,不妨假设0<x1 <x2,都有<0,即﹣=<0,即<,∴函数在(0,+∞)上是增函数.∵<logπ3<20.2,而a=,b==,c=,∴b<c<a,故答案为b<c<a.三、解答题17.解:全集U=R,集合A={x|﹣2≤x<4},集合B={x|x≥3},则∁U B={x|x<3},(1)∴A∪B={x|﹣2≤x<4}∪{x|x≥3},∴A∪B={x|﹣2≤x}.∴(∁U B)∩A={x|﹣2≤x<3}(2)∵集合B={x|x≥3},集合C={x∈R|x<a}.当a≤3时,B∩C=∅,(B∩C)⊆A满足题意,当a>3时,B∩C═{x|a>x≥3},∵(B∩C)⊆A满足a≤4.综上可得实数a的取值范围是(﹣∞,4].18.解:(1)函数f(x)=x2﹣ax,f′(x)=2x﹣a∵函数f(x)在[2,4]上具有单调性,∴f′(2)≥0,或f′(4)≤0.∴4﹣a≥0,或8﹣a≤0,解得a≤4,或a≥8.∴实数a的取值范围是(﹣∞,4]∪[8,+∞).(2)函数f(x)=x2﹣ax=﹣.①≥4,即a≥8时,函数f(x)在[2,4]上单调递减,∴f(x)min=f(4)=16﹣4a.②,即4<a<8时,函数f(x)在[2,)上单调递减,在(,4]上单调递增,∴f(x)min=f()=﹣=﹣.③≥2,即a≤4时,函数f(x)在[2,4]上单调递增,∴f(x)min=f(2)=4﹣2a.综上可得:h(a)=.19.解:(1)f(α)===﹣tanα.(2)f(α)=﹣2,可得tanα=2①==4;②sinαcosα==.20.解:(1)函数有意义,则:,求解关于实数x的不等式可得﹣1<x<1,所以函数的定义域是(﹣1,1),函数的定义域关于原点对称,且,故函数是奇函数;(2)此函数在定义域上是减函数,证明如下:任取x1,x2∈(﹣1,1)且x1<x2,则:,由于x1,x2∈(﹣1,1)且x1<x2,∴1﹣x1>1﹣x2>0,1+x2>1+x1>0,可得,所以,即有f(x1)﹣f(x2)>0,即f(x1)>f(x2),故函数在定义域是减函数.21.解:(1)水深和时间之间的对应关系,周期T=12.∴ω=,可知A=,h=.∴f(t)=sin(ωt+φ)+5.当t=3时f(3)=7.5.即sin(3×+φ)=1.∵|φ|<,∴φ=0.∴函数表达式为∴f(t)=sin t+5.(0<t≤24)(2)船底与水面的距离为4米,船底与洋底的距离2.25米,∴y≥6.25,即sin t+5≥6.25可得sin t.∴+2kπ≥+2kπ,k∈Z.解得:1≤t≤5或13≤t≤17.故得该船1≤t≤5或13≤t≤17.能进入港口满足安全要求.22.解:(1)由题意结合函数的奇偶性可得:,解方程可得:.(2)结合(1)的结论可得所给不等式即:,整理可得:,x∈[1,2],则,则函数的最大值为:,即实数a的取值范围是.(3)结合(1)的结论可得:,,故h(2x)=2h(x)g(x).结合函数的解析式计算可得:g(2k)⋅g(2n﹣k)=2h(2n)(k=1,2,3,…,n﹣1),则:===1.。

2018-2019学年高一数学上学期期末考试校际联考试题(含解析)

2018-2019学年高一数学上学期期末考试校际联考试题(含解析)

2018-2019学年高一数学上学期期末考试校际联考试题(含解析)注意事项:1.本试题共4页,满分150分,时间120分钟;2.答卷前,务必将答题卡上密封线内的各项目填写清楚;3.第Ⅰ卷选择题必须使用2B铅笔填涂,第Ⅱ卷非选择题必须使用0.5毫米黑色墨水签字笔书写,涂写要工整、清晰;4.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直角三角形绕着它的一条直角边旋转而成的几何体是()A. 圆锥B. 圆柱C. 圆台D. 球【答案】A【解析】依题意可知,该几何体是圆锥,故选.2.若直线与直线垂直,则实数()A. B. -2 C. 2 D.【答案】D【解析】【分析】直接根据直线垂直计算得到答案.【详解】直线与直线垂直,则.故选:.【点睛】本题考查了根据直线垂直求参数,属于简单题.3.已知圆的圆心为,且圆过点,则圆的标准方程为()A. B.C. D.【答案】C【解析】【分析】设圆方程为,代入点解得答案.【详解】设圆方程为,代入点解得.故圆标准方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.4.函数的零点所在的区间是()A. B. C. D.【答案】C【解析】【分析】确定函数单调递增,计算,,得到答案.【详解】函数单调递增,且,.故函数在上有唯一零点.故选:.【点睛】本题考查了确定零点的区间,意在考查学生对于零点存在定理的应用.5.下列函数中,定义域是且为增函数的是()A. B. C. D.【答案】A【解析】【分析】依次判断每个选项定义域和单调性得到答案.【详解】A. 函数定义域为,函数单调递增,满足;B. 函数定义域为,函数单调递减,排除;C. 函数定义域为,排除;D. 函数定义域为,排除;故选:.【点睛】本题考查了函数的定义域和单调性,意在考查学生对于函数知识的综合应用.6.平行直线:与:之间的距离等于()A. B. C. D.【答案】A【解析】【分析】直接利用平行直线之间的距离公式计算得到答案.【详解】平行直线:与:之间的距离等于.故选:.【点睛】本题考查了平行直线之间的距离,意在考查学生的计算能力.7.函数的图像大致是()A. B. C.D.【答案】B【解析】【分析】根据函数经过排除,根据函数单调性排除得到答案.【详解】是偶函数,当时,,排除.当时,单调递减,排除.故选:.【点睛】本题考查了函数图像的识别,意在考查学生对于函数性质的灵活运用.8.已知函数的图像与的图像关于直线对称,则下列结论正确的是()A. B.C. D.【答案】A【解析】【分析】确定函数,再依次验证每个选项得到答案.【详解】的图像与的图像关于直线对称,则,,正确;,错误;,错误;,错误;故选:.【点睛】本题考查了对数函数和指数函数的关系,对数运算法则,意在考查学生对于函数知识的综合应用.9.已知某几何体的三视图如图所示,则该几何体的侧面积是()A. B.C. D.【答案】C【解析】【分析】还原几何体,再计算侧面积得到答案.【详解】如图所示,几何体为圆柱,底面半径为,高为,则侧面积为.故选:.【点睛】本题考查了三视图和侧面积,意在考查学生的空间想象能力和计算能力.10.设,,,则实数,,之间的大小关系为()A. B.C. D.【答案】D【解析】【分析】计算得到,,,得到大小关系.【详解】;;,即.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.11.已知函数,,则函数的图像与图像的交点个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】画出函数图像,根据函数图像得到答案.【详解】如图所示:画出函数图像,根据函数图像知有个交点.故选:.【点睛】本题考查了函数的交点个数,画出函数图像是解题的关键.12.已知,是两条不同的直线,,是两个不同的平面,则下列说法中正确的是()A. 若,,则B. 若,,则C. 若,,,则D. 若,,,则【答案】D【解析】【分析】根据直线和直线,直线和平面,平面和平面的性质依次判断每个选项得到答案.【详解】A. 若,,则或异面,故错误;B. 若,,则或相交,故错误;C. 若,,,则或相交,故错误;D. 若,,,则,正确.故选:.【点睛】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合,,则______.【答案】【解析】【分析】计算得到,再计算得到答案.【详解】,.故答案为:.【点睛】本题考查了集合的交集运算,属于简单题.14.设为定义在上的奇函数,当时,(为常数),则______.【答案】【解析】【分析】根据函数为奇函数得到,代入数据计算得到答案.【详解】为定义在上的奇函数,则,..故答案为:.【点睛】本题考查了利用函数的奇偶性求函数值,意在考查学生对于函数性质的灵活运用.15.若一个棱长为2的正方体的八个顶点在同一个球面上,则该球的体积为__________.【答案】【解析】棱长为的正方体的八个顶点在同一个球面上,则球的直径等于正方体的对角线长,即,则该球的体积16.已知圆:与圆:内切,且圆的半径小于6,点是圆上的一个动点,则点到直线:距离的最大值为______.【答案】【解析】分析】根据圆和圆的位置关系得到,再计算圆心到直线的距离加上半径得到答案.【详解】圆:,圆:内切.故圆心距,故.点到直线:距离的最大值为圆心到直线的距离加上半径,即.故答案为:.【点睛】本题考查了圆和圆,圆和直线的位置关系,意在考查学生的计算能力和转化能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)直接代入数据计算得到答案.(2)确定函数单调递增,根据函数的单调性得到答案.【详解】(1)(且)的图像经过点,即,故,故.(2)函数单调递增,,故,故【点睛】本题考查了函数的解析式,根据函数单调性解不等式,意在考查学生对于函数知识的综合应用.18.已知直线经过直线与直线的交点.(1)求过坐标原点与点直线的斜率;(2)若直线与经过点,的直线平行,求直线的方程.【答案】(1);(2)【解析】【分析】(1)联立方程解得,再计算斜率得到答案.(2)计算,再根据平行得到直线方程.详解】(1)联立方程,解得,故,.(2),故直线方程为:,即.【点睛】本题考查了直线的方程和斜率,意在考查学生的计算能力.19.如图,在四棱锥中,底面为正方形,平面平面,,,为的中点.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)证明见解析;(2)【解析】【分析】(1)根据等腰三角形证明,得到答案.(2)计算得到,,再利用体积公式计算得到答案.【详解】(1),为的中点,故,平面平面,平面平面,故平面.(2),,故,.故.【点睛】本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力.20.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.【答案】(1)详见解析(2) 详见解析【解析】【分析】(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21.已知函数,.(1)若函数在区间上不具有单调性,求实数的取值范围;(2)若,设,,当时,试比较,的大小.【答案】(1);(2)【解析】【分析】(1)根据二次函数的单调性得到答案.(2)计算得到,再计算,,得到答案.【详解】(1)函数的对称轴为,函数在区间上不具有单调性,故,即.(2),即,故.当时,;.故【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综合应用.22.已知圆:被轴截得的弦长为,为坐标原点.(1)求圆的标准方程;(2)过直线:上一点作圆的切线,为切点,当切线长最短时,求点的坐标.【答案】(1);(2)【解析】【分析】(1)圆心为到轴的距离为,则,得到答案.(2),故当最小时,最短,根据直线垂直计算得到答案.【详解】(1)圆:,圆心为到轴的距离为,故,故,故.(2),故当最小时,最短,当直线与直线垂直时,最小,此时直线,联立方程,解得,即.【点睛】本题考查了圆的标准方程,切线长,转化为的最小值是解题的关键.2018-2019学年高一数学上学期期末考试校际联考试题(含解析)注意事项:1.本试题共4页,满分150分,时间120分钟;2.答卷前,务必将答题卡上密封线内的各项目填写清楚;3.第Ⅰ卷选择题必须使用2B铅笔填涂,第Ⅱ卷非选择题必须使用0.5毫米黑色墨水签字笔书写,涂写要工整、清晰;4.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直角三角形绕着它的一条直角边旋转而成的几何体是()A. 圆锥B. 圆柱C. 圆台D. 球依题意可知,该几何体是圆锥,故选.2.若直线与直线垂直,则实数()A. B. -2 C. 2 D.【答案】D【解析】【分析】直接根据直线垂直计算得到答案.【详解】直线与直线垂直,则.故选:.【点睛】本题考查了根据直线垂直求参数,属于简单题.3.已知圆的圆心为,且圆过点,则圆的标准方程为()A. B.C. D.【答案】C【解析】【分析】设圆方程为,代入点解得答案.【详解】设圆方程为,代入点解得.故圆标准方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.4.函数的零点所在的区间是()A. B. C. D.【分析】确定函数单调递增,计算,,得到答案.【详解】函数单调递增,且,.故函数在上有唯一零点.故选:.【点睛】本题考查了确定零点的区间,意在考查学生对于零点存在定理的应用.5.下列函数中,定义域是且为增函数的是()A. B. C. D.【答案】A【解析】【分析】依次判断每个选项定义域和单调性得到答案.【详解】A. 函数定义域为,函数单调递增,满足;B. 函数定义域为,函数单调递减,排除;C. 函数定义域为,排除;D. 函数定义域为,排除;故选:.【点睛】本题考查了函数的定义域和单调性,意在考查学生对于函数知识的综合应用.6.平行直线:与:之间的距离等于()A. B. C. D.【答案】A【解析】【分析】直接利用平行直线之间的距离公式计算得到答案.【详解】平行直线:与:之间的距离等于.故选:.【点睛】本题考查了平行直线之间的距离,意在考查学生的计算能力.7.函数的图像大致是()A. B. C.D.【答案】B【解析】【分析】根据函数经过排除,根据函数单调性排除得到答案.【详解】是偶函数,当时,,排除.当时,单调递减,排除.故选:.【点睛】本题考查了函数图像的识别,意在考查学生对于函数性质的灵活运用.8.已知函数的图像与的图像关于直线对称,则下列结论正确的是()A. B.C. D.【答案】A【解析】【分析】确定函数,再依次验证每个选项得到答案.【详解】的图像与的图像关于直线对称,则,,正确;,错误;,错误;,错误;故选:.【点睛】本题考查了对数函数和指数函数的关系,对数运算法则,意在考查学生对于函数知识的综合应用.9.已知某几何体的三视图如图所示,则该几何体的侧面积是()A. B.C. D.【答案】C【解析】【分析】还原几何体,再计算侧面积得到答案.【详解】如图所示,几何体为圆柱,底面半径为,高为,则侧面积为.故选:.【点睛】本题考查了三视图和侧面积,意在考查学生的空间想象能力和计算能力.10.设,,,则实数,,之间的大小关系为()A. B.C. D.【答案】D【解析】【分析】计算得到,,,得到大小关系.【详解】;;,即.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.11.已知函数,,则函数的图像与图像的交点个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】画出函数图像,根据函数图像得到答案.【详解】如图所示:画出函数图像,根据函数图像知有个交点.故选:.【点睛】本题考查了函数的交点个数,画出函数图像是解题的关键.12.已知,是两条不同的直线,,是两个不同的平面,则下列说法中正确的是()A. 若,,则B. 若,,则C. 若,,,则D. 若,,,则【答案】D【解析】【分析】根据直线和直线,直线和平面,平面和平面的性质依次判断每个选项得到答案.【详解】A. 若,,则或异面,故错误;B. 若,,则或相交,故错误;C. 若,,,则或相交,故错误;D. 若,,,则,正确.故选:.【点睛】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合,,则______.【答案】【解析】【分析】计算得到,再计算得到答案.【详解】,.故答案为:.【点睛】本题考查了集合的交集运算,属于简单题.14.设为定义在上的奇函数,当时,(为常数),则______.【答案】【解析】【分析】根据函数为奇函数得到,代入数据计算得到答案.【详解】为定义在上的奇函数,则,..故答案为:.【点睛】本题考查了利用函数的奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 15.若一个棱长为2的正方体的八个顶点在同一个球面上,则该球的体积为__________.【答案】【解析】棱长为的正方体的八个顶点在同一个球面上,则球的直径等于正方体的对角线长,即,则该球的体积16.已知圆:与圆:内切,且圆的半径小于6,点是圆上的一个动点,则点到直线:距离的最大值为______.【答案】【解析】分析】根据圆和圆的位置关系得到,再计算圆心到直线的距离加上半径得到答案.【详解】圆:,圆:内切.故圆心距,故.点到直线:距离的最大值为圆心到直线的距离加上半径,即.故答案为:.【点睛】本题考查了圆和圆,圆和直线的位置关系,意在考查学生的计算能力和转化能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)直接代入数据计算得到答案.(2)确定函数单调递增,根据函数的单调性得到答案.【详解】(1)(且)的图像经过点,即,故,故.(2)函数单调递增,,故,故【点睛】本题考查了函数的解析式,根据函数单调性解不等式,意在考查学生对于函数知识的综合应用.18.已知直线经过直线与直线的交点.(1)求过坐标原点与点直线的斜率;(2)若直线与经过点,的直线平行,求直线的方程.【答案】(1);(2)【解析】【分析】(1)联立方程解得,再计算斜率得到答案.(2)计算,再根据平行得到直线方程.详解】(1)联立方程,解得,故,.(2),故直线方程为:,即.【点睛】本题考查了直线的方程和斜率,意在考查学生的计算能力.19.如图,在四棱锥中,底面为正方形,平面平面,,,为的中点.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)证明见解析;(2)【解析】【分析】(1)根据等腰三角形证明,得到答案.(2)计算得到,,再利用体积公式计算得到答案.【详解】(1),为的中点,故,平面平面,平面平面,故平面.(2),,故,.故.【点睛】本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 20.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.【答案】(1)详见解析(2) 详见解析【解析】【分析】(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21.已知函数,.(1)若函数在区间上不具有单调性,求实数的取值范围;(2)若,设,,当时,试比较,的大小.【答案】(1);(2)【解析】【分析】(1)根据二次函数的单调性得到答案.(2)计算得到,再计算,,得到答案.【详解】(1)函数的对称轴为,函数在区间上不具有单调性,故,即.(2),即,故.当时,;.故【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综合应用.22.已知圆:被轴截得的弦长为,为坐标原点.(1)求圆的标准方程;(2)过直线:上一点作圆的切线,为切点,当切线长最短时,求点的坐标.【答案】(1);(2)【解析】【分析】(1)圆心为到轴的距离为,则,得到答案.(2),故当最小时,最短,根据直线垂直计算得到答案.【详解】(1)圆:,圆心为到轴的距离为,故,故,故.(2),故当最小时,最短,当直线与直线垂直时,最小,此时直线,联立方程,解得,即.【点睛】本题考查了圆的标准方程,切线长,转化为的最小值是解题的关键.。

2018-2019学年高一上学期期末考试数学试卷(带答案)

2018-2019学年高一上学期期末考试数学试卷(带答案)

2018-2019学年高一上学期期末考试数学试题一、选择题1.已知集合{}1,2a A =,{},B a b =,若12A B ⎧⎫=⎨⎬⎩⎭,则A B =() 1A.,12b (,){1B.1,2⎫-⎬⎭}1.,12C ⎧⎨⎩{1D.1,,12⎫-⎬⎭ 2.已知向量,a b 满足=323a b =,,且()a a b ⊥+,则a 与b 的夹角为() πA.22πB.33πC.45πD.6 3.已知A 是ABC ∆的内角且sin 2cos 1A A +=-,则tan A =() 3A.4-4B.-33C.44D.34.若当x ∈R 时,函数()x f x a =始终满足0()1f x <≤,则函数1log ||a y x=的图象大致为()5.将函数)0()4sin()(>+=ωπωx x f 的图象向左平移π8个单位,所得到的函数图象关于y 轴对称,则函数)(x f 的最小正周期不可能是()πA.9πB.5C.πD.2π 6.已知⎩⎨⎧<+≥+=0),sin(0),cos()(x x x x x f βα是奇函数,则βα,的可能值为() πA.π,2αβ== πB.0,2αβ== πC.,π2αβ== πD.,02αβ== 7.设函数21()x f x x-=,则使得()(21)f x f x >-成立的x 的取值范围是() 1A.(,1)31B.(-,)(1,+)3∞∞111C.(,)(,1)3221D.(-,0)(0,)(1,+)3∞∞8.已知1260OA OB AOB OP OA OB λμ==∠==+,,,,22λμ+=,则OA 在OP 上的投影()A.既有最大值,又有最小值B.有最大值,没有最小值C.有最小值,没有最大值D.既无最大值,又无最小值9.在边长为1的正ABC ∆中,,,0,0BD xBA CE yCA x y ==>>且1x y +=,则CD BE ⋅的最大值为() 5A.-83B.-43C.-83D.-210.定义在R 上的偶函数)(x f 满足)2()(x f x f -=,当]1,0[∈x 时2()f x x =,则函数()|sin 2|()g x x f x π=-()在区间]25,21[-上的所有零点的和为() A.6B.7C.8D.10二、填空题函数)1(log )(2-=x x f 的定义域是. 12.计算:21log 32-+=;若632==b a R),∈b a (,则11a b +=. 13.已知(2,3),(1,)AB AC k ==-.若AB AC =,则k =;若,AB AC 的夹角为钝角,则k 的范围为.14.已知函数π()cos(2)3f x x =-,则3π()4f =; 若31)2(=x f ,ππ[,]22x ∈-,则πsin()3x -=.15.向量a 与b 的夹角为π3,若对任意的t ∈R ,a tb -的最小值为a =. 16.已知函数5,2,()22, 2.x x x f x a a x -+≤⎧=⎨++>⎩,其中0a >且1a ≠,若12a =时方程()f xb =有两个不同的实根,则实数b 的取值范围是;若()f x 的值域为[3,)+∞,则实数a 的取值范围是.17.若对任意的实数1a ≤-,恒有230b a b a ⋅--≥成立,则实数b 的取值范围为.三、解答题18.已知(cos ,sin ),(1,0),(4,4)a x x b c ===.(Ⅰ)若//()a c b -,求tan x ;(Ⅱ)求a b +的最大值,并求出对应的x 的值.19.已知函数π()sin()4f x A x =+,若(0)f =(Ⅰ)求A 的值;(Ⅱ)将函数()f x 的图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图像.(i)写出()g x 的解析式和它的对称中心;(ii)若α为锐角,求使得不等式π()8g α-<成立的α的取值范围.20.已知函数π()2sin()(0,||)2f x x ωφωφ=+><,角ϕ的终边经过点)3,1(-P .若))(,()),(,(2211x f x B x f x A 是)(x f 的图象上任意两点,且当4|)()(|21=-x f x f 时,||21x x -的最小值为π3.(Ⅰ)求的值和ϕω;(Ⅱ)求函数)(x f 在[0,π]x ∈上的单调递减区间;(Ⅲ)当π[,]18x m ∈时,不等式02)()(2≤--x f x f 恒成立,求m 的最大值.21.已知函数mx x f x ++=)12(log )(24的图像经过点233(,+log 3)24P -. (Ⅰ)求m 值并判断()f x 的奇偶性;(Ⅱ)设)2(log )(4a x x g x ++=,若关于x 的方程)()(x g x f =在]2,2[-∈x 上有且只有一个解,求a 的取值范围.22.定义在R 上的函数x ax x f +=2)(.(Ⅰ)当0>a 时, 求证:对任意的12,x x ∈R 都有[])2()()(212121x x f x f x f +≥+成立; (Ⅱ)当[]2,0∈x 时,1)(≤x f 恒成立,求实数a 的取值范围;(Ⅲ)若14a =, 点2(,,)P m n m n ∈∈Z Z )(是函数()y f x =图象上的点,求,m n .【参考答案】一、选择题1.D2.D3.A4.B5.D6.C7.C8.B9.C 10.D二、填空题11.[)∞+,2 12.2,23 13.2332k k ±<≠-且 14.232,23-- 15.2 16.133,4() ,),1()1,21[+∞⋃ 17.1b ≤ 三、解答题 18.解:(Ⅰ)()4,3=-b c ,由()b c a -//得0sin 3cos 4=-x x ,34tan =∴x ; (II )()x x x b a cos 22sin 1cos 22+=++=+ , 当()2πx k k =∈Z 时,b a +的最大值为2.19.解:(Ⅰ)π(0)sin 42f A ==,3=A ;(II )(i)()π24g x x ⎛⎫=+ ⎪⎝⎭, 对称中心()ππ,082k k ⎛⎫-+∈ ⎪⎝⎭Z ,(ii)π282g αα⎛⎫-=< ⎪⎝⎭,即212sin <α α 为锐角,π5ππ012122αα∴<<<<或. 20.解:(Ⅰ)π2π2π, 3.33T φωω=-===, (II )π()2sin(3)3f x x =-.)(x f 的减区间是5π2π11π2π[,],183183k k k ++∈Z , [0,π]x ∈,取1,0=k 得减区间是5π11π17π[,][,π]181818和; (Ⅲ)ππππ[,],3[,3],18363x m x m ∈-∈--则又,2)(1≤≤-x f 得ππ7πππ3,,636182m m -<-≤<≤解得所以m 的最大值为π2. 21.解:(Ⅰ))(x f 的图象过点233(,+log 3)24-, 得到m 23)12(log 433log 342++=-,.21-=m 所以x x f x 21)12(log )(24-+=,且定义域为R , )(21)14log 21414log 21)12(log )(4424x f x x x x f x x x x =-+=++=++=--(, 则)(x f 是偶函数.(II )因为x x x x xx 214log 2log )14(log 21)14(log 4444+=-+=-+, 则方程化为x x xa x 214log )2(log 44+=++,得02142>+=++x x x a x , 化为x a x -=)21(,且在]2,2[-∈x 上单调递减, 所以使方程有唯一解时a 的范围是647≤≤-a . 22.解:(Ⅰ)[]2121212)1()()0224x x a x x f x f x f +-⎛⎫+-=≥ ⎪⎝⎭(, (II )112≤+≤-x ax 对(]2,0∈x 恒成立;2211xx a x x -≤≤--, ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≤≤⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-x x a x x 111122对(]2,0∈x 恒成立. 3144a ∴-≤≤-; (Ⅲ)22221,(2)44,4m m n m n +=+-=,22)(22)4m n m n +-++=( (22)(22)24m n m n m +-+++=+为偶数, 2222m n m n ∴+-++,同奇同偶,222222222222m n m n m n m n +-=+-=-⎧⎧∴⎨⎨+-=+-=-⎩⎩或得0400m mn n==-⎧⎧⎨⎨==⎩⎩或.。

2018-2019学年高一上学期期末考试数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知tan60°=m,则cos120゜的值是()A.B.C.D.﹣2.(5分)用二分法研究函数f(x)=x3﹣2x﹣1的理念时,若零点所在的初始区间为(1,2),则下一个有解区间为()A.(1,2)B.(1.75,2)C.(1.5,2)D.(1,1.5)3.(5分)已知x0是函数f(x)=ln x﹣6+2x的零点,则下列四个数中最小的是()A.ln x 0B.C.ln(ln x0)D.4.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.25.(5分)集合{α|kπ+≤α≤kπ+,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.6.(5分)函数,若f[f(﹣1)]=1,则a的值是()A.2 B.﹣2 C.D.7.(5分)若sinα>0且tanα<0,则的终边在()A.第一象限B.第二象限C.第一象限或第三象限D.第三象限或第四象限8.(5分)若函数y=a x﹣x﹣a有两个零点,则a的取值范围是()A.(1,+∞)B.(0,1)C.(0,+∞)D.∅9.(5分)若,化简=()A.sinθ﹣cosθB.sinθ+cosθC.cosθ+sinθD.cosθ﹣sinθ10.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A. B.C.D.11.(5分)已知奇函数f(x)在[﹣1,0]上为单调减函数,又α,β为锐角三角形内角,则()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(sinα)>f(cosβ)12.(5分)已知函数f(x)=,若存在实数b,使函数g(x)=f(x)﹣b 有两个零点,则实数a的取值范围是()A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)二、填空题13.(5分)工艺扇面是中国书画一种常见的表现形式.高一某班级想用布料制作一面如图所示的扇面参加元旦晚会.已知此扇面的中心角为60°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为cm2.14.(5分)已知函数f(x)与g(x)的图象在R上连续不断,由下表知方程f(x)=g(x)有实数解的区间是.15.(5分)=.16.(5分)f(x)=有零点,则实数m的取值范围是.三、解答题17.(10分)计算:sin+tan().18.(12分)已知α为第三象限角,且f(α)=.(1)化简f(α);(2)若f(α)=,求tan(3π﹣α)的值.19.(12分)计算:已知角α终边上的一点P(7m,﹣3m)(m≠0).(Ⅰ)求的值;(Ⅱ)求2+sinαcosα﹣cos2α的值.20.(12分)共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.(1)试将自行车厂的利润y元表示为月产量x的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?21.(12分)已知函数f(x)=ax2+2x﹣2﹣a(a≤0).(1)若a=﹣1,求函数的零点;(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.22.(12分)已知函数为奇函数.(1)求常数k的值;(2)设,证明函数y=h(x)在(2,+∞)上是减函数;(3)若函数g(x)=f(x)+2x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.【参考答案】一、选择题1.B【解析】∵tan60°=m,则cos120゜====,故选:B.2.C【解析】设函数f(x)=x3﹣2x﹣1,∵f(1)=﹣2<0,f(2)=3>0,f(1.5)=﹣<0,∴下一个有根区间是(1.5,2),故选:C.3.C【解析】f(x)的定义域为(0,+∞),∵f′(x)=>0,∴f(x)在(0,+∞)上是增函数,∴x0是f(x)的唯一零点,∵f(2)=ln2﹣2<0,f(e)=﹣5+2e>0,∴2<x0<e.∴ln x 0>ln>ln=ln2>0,∵ln x0<lne=1,∴ln(ln x0)<0,又(ln x0)2>0,∴ln(ln x0)最小.故选:C.4.B【解析】∵函数的零点为1,即解得a=﹣,故选B.5.C【解析】当k取偶数时,比如k=0时,+≤α≤+,故角的终边在第一象限.当k取奇数时,比如k=1时,+≤α≤+,故角的终边在第三象限.综上,角的终边在第一、或第三象限,故选C.6.B【解析】∵函数,∴f(﹣1)=2,∴f[f(﹣1)]===1,解得:a=﹣2,故选:B.7.C【解答】解;∵sinα>0且tanα<0,∴α位于第二象限.∴+2kπ<α<2kπ+π,k∈Z,则+kπ<<kπ+k∈Z,当k为奇数时它是第三象限,当k为偶数时它是第一象限的角∴角的终边在第一象限或第三象限,故选:C.8.A【解析】①当0<a<1时,易知函数y=a x﹣x﹣a是减函数,故最多有一个零点,故不成立;②当a>1时,y′=ln a•a x﹣1,故当a x<时,y′<0;当a x>时,y′>0;故y=a x﹣x﹣a在R上先减后增,且当x→﹣∞时,y→+∞,当x→+∞时,y→+∞,且当x=0时,y=1﹣0﹣a<0;故函数y=a x﹣x﹣a有两个零点;故成立;故选A.9.D【解析】∵,∴sinθ<cosθ.∴== =cosθ﹣sinθ.故选:D.10.D【解析】f(x)=x2•sin(x﹣π)=﹣x2•sin x,∴f(﹣x)=﹣(﹣x)2•sin(﹣x)=x2•sin x=﹣f(x),∴f(x)奇函数,∵当x=时,f()=﹣<0,故选:D.11.C【解析】∵奇函数y=f(x)在[﹣1,0]上为单调递减函数,∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴α>﹣β,∴sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ).故选C.12.C【解析】∵g(x)=f(x)﹣b有两个零点∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由于y=x2在[0,a)递增,y=2x在[a,+∞)递增,要使函数f(x)在[0,+∞)不单调,即有a2>2a,由g(a)=a2﹣2a,g(2)=g(4)=0,可得2<a<4.故选C.二、填空题13.450π【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料为××60×60﹣××30×30=450π.故答案为:450π.14.(0,1)【解析】设h(x)=f(x)﹣g(x),则∵h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.532>0,∴h(x)的零点在区间(0,1),故答案为:(0,1).15.﹣1【解析】===﹣1,故答案为:﹣1.16.(﹣1,1)【解析】函数f(x)=有零点,可得函数y==的图象和直线y=m有交点,如图所示:数形结合可得﹣1<m<1,∴实数m的取值范围是(﹣1,1),故答案为:(﹣1,1).三、解答题17.解:sin+tan()==.18.解:(1)f(α)==;(2)由,得,又α为第三象限角,∴,∴.19.解:依题意有;(1)原式==;(2)原式=2+=2+=2﹣=. 20.解:(1)依题设,总成本为20000+100x,则;(2)当0≤x≤400时,,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,∴当月产量x=300件时,自行车厂的利润最大,最大利润为25000元.21.解:(1)若a=﹣1,则f(x)=﹣x2+2x﹣1,由f(x)=﹣x2+2x﹣1=0,得x2﹣2x+1=0,解得x=1,∴当a=﹣1时,函数f(x)的零点是1.(2)已知函数f(x)=ax2+2x﹣2﹣a,且a≤0,①当a=0时,f(x)=2x﹣2,由2x﹣2=0,得x=1,且1∈(0,1],∴当a=0时,函数f(x)在区间(0,1]上恰有一个零点.②当a≠0时,由f(x)=ax2+2x﹣2﹣a=0易得f(1)=0,∴f(x)=0必有一个零点1∈(0,1],设另一个零点为x0,则,即,∵函数f(x)在区间(0,1]上恰有一个零点.从而x0≤0,或x0≥1,,解得a≤﹣2或﹣1≤a<0,综合①②得,a的取值范围是(﹣∞,﹣2]∪[﹣1,0].22.解:(1)∵f(x)为奇函数∴f(﹣x)=﹣f(x),即=﹣,∴4﹣k2x2=4﹣x2,整理得k2=1.∴k=﹣1(k=1使f(x)无意义而舍去).(2)由(1)k=﹣1,故h(x)=,设a>b>2,∴h(a)﹣h(b)=﹣=∵a>b>2时,b﹣a<0,a﹣2>0,b﹣2>0,∴h(a)﹣h(b)<0,∴h(x)在(2,+∞)递减,(3)由(2)知,f(x)在(2,+∞)递增,∴g(x)=f(x)+2x+m在[3,4]递增.∵g(x)在区间[3,4]上没有零点,∴g(3)>0或g(4)<0,∴m>log35+8或m<﹣15.。

2018-2019学年青海省西宁市高一上学期期末数学试题(解析版)

2018-2019学年青海省西宁市高一上学期期末数学试题(解析版)

2018-2019学年青海省西宁市高一上学期期末数学试题一、单选题1.设全集U N *=,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{2}B .[]4,6C .{1,3,5}D .{2,4,6}【答案】B【解析】由图象知,阴影部分可表示为{}4,6U B A ⋂=ð,故选B.点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错. 2.若sin cos 0αα⋅>,则角α的终边在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限【答案】B【解析】结合三角函数在四象限对应的正负号判断即可 【详解】sin cos 0αα⋅>Q ,sin ,cos αα∴同号,所以角α的终边在第一、三象限故选:B 【点睛】本题考查根据三角函数正负判断角所在的象限,属于基础题3.下列函数既是奇函数,又在区间(0,+∞)上为增函数的是( ) A .y =x 3 B .y =lnxC .y =|x |D .y =sinx【答案】A【解析】根据函数奇偶性及单调性的定义对选项进行检验即可判断.解:y =lnx 定义域(0,+∞)不关于原点对称,故为非奇非偶函数, y =|x |为偶函数,不符合题意,y =sin x 在(0,+∞)上不单调,不符合题意, 故选:A . 【点睛】本题主要考查了函数的奇偶性及单调性的判断,属于基础试题. 4.在(0,2π)内,使tanx >1成立的x 的取值范围是( )A .(4π,2π)∪(π,54π)B .(4π,π) C .(4π,54π)D .(4π,2π)∪(54π,32π)【答案】D【解析】由条件根据正切函数的图象特征可得 k π4π+<x <k 2π+,k ∈z ,再结合x ∈(0,2π),求得x 的范围. 【详解】解:由tan x >1,可得 k π4π+<x <k 2π+,k ∈z . 再根据x ∈(0,2π),求得x ∈(4π,2π)∪(54π,32π),故选:D . 【点睛】本题主要考查正切函数的图象特征,考查数形结合思想,属于基础题.5.已知函数f (x )=2x 2+kx ﹣1在区间[1,2]上是单调函数,则实数k 的取值范围是( )A .(﹣∞,﹣8]∪[﹣4,+∞)B .[﹣8,﹣4]C .(﹣∞,﹣4]∪[﹣2,+∞)D .[﹣4,﹣2]【答案】A【解析】由在区间上单调,可知对称轴不在区间内可得. 【详解】 解:对称轴x 4k=-, 函数f (x )=2x 2+kx ﹣1在区间[1,2]上是单调函数,则对称轴不在区间内,则14k -≤或者24k-≥; 即k ≤﹣8或k ≥﹣4,【点睛】本题考查二次函数单调性问题,考查分类讨论思想,属于基础题.6.实数a,b,c是图象连续不断的函数y=f(x)定义域中的三个数,且满足a<b<c,f(a)f(b)<0,f(c)f(b)<0,则y=f(x)在区间(a,c)上的零点个数为(). A.2 B.奇数C.偶数D.至少是2【答案】D【解析】由零点的存在性定理:f(a)f(b)<0,则y=f(x)在区间(a,b)上至少有一个零点,同理在(b,c)上至少有一个零点,结果可得.【详解】由根的存在性定理,f(a)f(b)<0,f(c)f(b)<0,则y=f(x)在区间(a,b)上至少有一个零点,在(b,c)上至少有一个零点,而f(b)≠0,所以y=f(x)在区间(a,c)上的零点个数为至少2个.故选:D.【点睛】本题考查零点的存在性定理,正确理解零点的存在性定理的条件和结论是解决本题的关键.7.已知集合A={1,2a},B={a,b},若A∩B={12},则A∪B=()A.{12,1,0} B.{﹣1,12} C.{12,1} D.{﹣1,12,1}【答案】D【解析】根据A∩B={12},求出a,b的值,进而可得答案.【详解】解:∵集合A={1,2a},B={a,b},若A∩B={12},则2a12=,即a=﹣1,且b12 =,故A={1,12},B={12,﹣1},故A∪B={﹣1,12,1},故选:D.8.如图,在△ABC 中,点D 在线段BC 上,BD =2DC ,如果AD x AB y AC =+,那么( )A .x 13=,y 23= B .x 23=,y 13=C .x 23=-,y 13=D .x 13=,y 23=- 【答案】A【解析】利用AB ,AC 将CB 表示出来,再运用平面向量的线性运算即可求解 【详解】解:∵BD =2DC , ∴()1133CD CB CA AB ==+; ∵AD AC CD =+,∴11213333AD AC CA AB AC AB =++=+;∴13x =,23y =.故选:A . 【点睛】本题考查了平面向量的数乘与线性运算,考查学生的分析能力,计算能力;属于基础题. 9.已知函数y =f (x )在定义域(-1,1)上是减函数,且f (2a -1)<f (1-a ),则实数a 的取值范围是( )A .,+∞)B .(0,+∞)C .(0,2)D .,1) 【答案】D 【解析】根据,利用单调性,结合定义域列不等式求解即可.【详解】 函数在定义域上是减函数,且,所以, 解得,故选D .根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成 后再利用单调性和定义域列不等式组.10.已知函数f (x )=163x a -+(a >0且a ≠1)的图象恒过定点P ,若定点P 在幂函数g (x )的图象上,则幂函数g (x )的图象是( )A .B .C .D .【答案】A【解析】根据指数函数的性质求出点P 坐标,得出g (x )的解析式,从而得出g (x )的图象. 【详解】解:f (x )=163x a -+恒过点P (16,4), 设幂函数g (x )=x α,则16α=4, ∴α12=,∴g (x )=故选:A . 【点睛】本题考查了指数函数的性质,幂函数的性质,属于基础题. 11.已知函数()sin 2f x x =向左平移6π个单位后,得到函数()y g x =,下列关于()y g x =的说法正确的是( ).A .图象关于点-,03π⎛⎫⎪⎝⎭中心对称 B .图象关于6x π=-轴对称C .在,ππ⎡⎤-单调递减 D .在区间5,ππ⎡⎤--单调递增【答案】D【解析】函数()sin2f x x =的图象向左平移6π个单位,得到的图象对应的函数为sin 2sin 263y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.对于A ,当3x π=-时,sin 03y π⎛⎫=-≠ ⎪⎝⎭.图象不关于点-,03π⎛⎫⎪⎝⎭中心对称,∴A 不正确;对于B ,当6x π=-时,sin 00y ==,图象不关于6x π=-轴对称,∴B 不正确;对于C ,sin 23y x π⎛⎫=+ ⎪⎝⎭的周期是π.当12x π=时,函数取得最大值,∴在,63ππ⎡⎤-⎢⎥⎣⎦单调递减不正确,∴C 不正确;sin 23y x π⎛⎫=+ ⎪⎝⎭的周期是π.当12x π=时,函数取得最大值,1112x π=-时,函数取得最小值,∵511,,1261212ππππ⎡⎤⎡⎤--⊂-⎢⎥⎢⎥⎣⎦⎣⎦,∴在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增,∴D 正确 点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.12.已知偶函数f (x )在(﹣∞,0]上是增函数.若a =f (log 215),b =f (12log 3),c=f (2﹣0.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b【答案】A【解析】根据函数奇偶性和单调性的性质,以及对数和指数幂的性质进行转化求解即可. 【详解】解:∵偶函数f (x )在(﹣∞,0]上是增函数,a =f (log 215)=f (﹣log 25)=f (log 25), b =f (12log 3)=f (﹣log 23)=f (log 23), ∵0<2﹣0.8<1<log 23<2<log 25, ∴f (2﹣0.8)>f (log 23)>f (log 25), 即c >b >a , 故选:A . 【点睛】本题主要考查函数值的大小比较,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.二、填空题13.函数2()lg(31)f x x =++的定义域是__________. 【答案】1,13⎛⎫- ⎪⎝⎭【解析】根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可. 【详解】要使函数()f x ()2lg 31x +有意义,则10310x x ->⎧⎨+>⎩,解得113x -<<,即函数()f x ()2lg 31x +的定义域为1,13⎛⎫- ⎪⎝⎭. 故答案为1,13⎛⎫- ⎪⎝⎭.【点睛】本题考查了根据函数解析式求定义域的应用问题,是基础题目.14.某扇形的圆心角为2弧度,周长为4cm ,则该扇形面积为_____cm 2. 【答案】1【解析】设该扇形的半径为r ,根据题意,因为扇形的圆心角为2弧度,周长为4,则有422,1r r r =+=,2211=21122S r α=⨯⨯=,故答案为1. 15.已知tan (π+α)=1,则sin 2α﹣2cos 2α=_____.【解析】直接利用三角函数关系式的恒等变换和三角函数的恒等式的应用求出结果. 【详解】 解:已知tan (4π+α)=1,则111tan tan αα+=-,解得tanα=0, 所以sin 2α﹣2cos 2α2222222221sin cos tan sin cos tan αααααα--===-++.故答案为:﹣2 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,三角恒等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.16.设函数f (x )在定义域[﹣5,5]上满足f (x )﹣f (﹣x )=0,且f (3)=0,当x ∈[0,5]时,f (x )的图象如图所示,则不等式xf (x )<0的解集是_____.【答案】(﹣5,﹣3)∪(0,3)【解析】根据题意,结合函数的图象分析可得在(0,3)上,f (x )<0,在(3,5)上,f (x )>0,结合函数的奇偶性可得在(﹣5,﹣3)上,f (x )>0,在(﹣3,0)上,f (x )<0,又由xf (x )<0⇔()00x f x ⎧⎨⎩><或()0x f x ⎧⎨⎩<>,分析可得答案.【详解】根据题意,f (x )为偶函数,且图象可得在(0,3)上,f (x )<0, 在(3,5)上,f (x )>0,则在(﹣5,﹣3)上,f (x )>0,在(﹣3,0)上,f (x )<0,xf (x )<0⇔00x f x ⎧⎨⎩>()<或00x f x ⎧⎨⎩<()>,分析可得:﹣5<x <﹣3或0<x <3, 即不等式的解集为(﹣5,﹣3)∪(0,3); 故答案为:(﹣5,﹣3)∪(0,3). 【点睛】三、解答题17.已知角α的终边上一点(x ,35),且tanα34=-. (1)求x 的值;(2)求cos42α-sin 42α的值. 【答案】(1)x 45=-(2)45-【解析】(1)由三角函数的定义即可算出结果;(2)利用定义可得cosα,化简所求表达式,代入可求出结果. 【详解】(1)由题意可知:335tan 4x α==-,∴x 45=-; (2)又(1)可知角α的终边上一点(45-,35),∴cosα45=-,cos 42α-sin 42α=(cos 22α+sin 22α)(cos 22α-sin 22α)=cos 22α-sin 22α=cosα45=-. 【点睛】本题主要考查了三角函数的定义和同角基本关系式及二倍角余弦公式,是基础题. 18.已知函数f (x )=x mx+,且此函数图象过点(1,2). (1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论.【答案】(1)m =1(2)函数是奇函数,证明见解析(3)函数是单调递减函数,证明见解析【解析】(1)利用函数f (x )=x mx+,且此函数图象过点(1,2),代入计算求实数m 的值;(2)利用函数f (x )的奇偶性的定义,判断与证明; (3)利用定义证明函数f (x )在(0,1)上的单调性. 【详解】(1)∵函数f (x )=x mx+,且此函数图象过点(1,2),(2)f (x )=x 1x +,定义域为:()()00-∞⋃+∞,,, 又f (﹣x )=﹣x 1x+=--f (x ), ∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减, 设0<x 1<x 2<1, 则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-⋅⋅⋅, ∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0, ∴()()()1212121210x x f x f x x x x x --=-⋅>, 即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减. 【点睛】本题考查求函数的解析式,考查函数的单调性、奇偶性,考查学生分析解决问题的能力,属于中档题.19.设函数13,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥(1)若()1f x <,求满足条件实数x 的集合A ;(2)若集合{21}B x a x a =≤≤+,且A B A ⋃=,求a 的取值范围.【答案】(1){21}A x x =-<<;(2)(1,0)(1,)a ∈-⋃+∞. 【解析】试题分析:(1)由01312xx <⎧⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩或01x ≥⎧⎪<解不等式即可;(2)由A B A ⋃=,可知B A ⊆,讨论B =∅和B ≠∅求解即可. 试题解析:(1)由01312xx <⎧⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩或01x ≥⎧⎪<{21}A x x ∴=-<<.(2)A B A ⋃=,所以可知B A ⊆(i )当B =∅时,21a a >+,∴ 1a >满足题意(ii )当B ≠∅时,212211a a a a ≤+⎧⎪>-⎨⎪+<⎩解得:10a -<<综上得:()()1,01,a ∈-⋃+∞.20.已知函数2222x x x f x sin cosπ=-()(). (1)求f (x )的最小正周期;(2)求f (x )在区间[﹣π,0]上的最大值和最小值.【答案】(1)最小正周期为T =2π(2和1-【解析】(1)化函数f (x )为正弦型函数,求出它的最小正周期;(2)根据x 的取值范围,利用正弦函数的图象与性质求出函数f (x )的最大、最小值.【详解】 (1)因为2222x x x f x sin cos π⎛⎫=-+ ⎪⎝⎭()2222x x x sin cos =1222sinx cosx =++3sin x π⎛⎫=+ ⎪⎝⎭ 所以f (x )的最小正周期为T =2π;(2)因为x ∈[﹣π,0],所以2333x πππ⎡⎤+∈-⎢⎥⎣⎦,; 所以当33x ππ+=,即x =0时,函数f (x)取得最大值3sin π+= 当32x ππ+=-,即56x π=-时,函数f (x)取得最小值1-+; 所以f (x )在区间[﹣π,0]和12-+.【点睛】本题考查了三角函数的图象与性质的应用问题,考查三角恒等变换,是基础题. 21.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x . (1)求f (0)及f (f (1))的值;(2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围,【答案】(1)f (0)=0,f (1)=﹣1(2)()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)(﹣1,0)【解析】(1)根据题意,由函数的解析式,将x =0代入函数解析式即可得f (0)的值,同理可得f (1)的值,利用函数的奇偶性分析可得f (f (1))的值;(2)设x <0,则﹣x >0,由函数的解析式分析f (﹣x )的解析式,进而由函数的奇偶性分析可得答案;(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,作出函数f (x )的图象,由数形结合法分析即可得答案.【详解】(1)根据题意,当x ≥0时,f (x )=x 2﹣2x ;则f (0)=0,f (1)=1﹣2=﹣1,又由函数f (x )为偶函数,则f (1)=f (﹣1)=﹣1,则f (f (1))=f (﹣1)=﹣1;(2)设x <0,则﹣x >0,则有f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,又由函数f (x )为偶函数,则f (x )=f (﹣x )=x 2+2x ,则当x <0时,f (x )=x 2+2x ,∴()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,而y =f (x )的图象如图:分析可得﹣1<m <0;故m 的取值范围是(﹣1,0).【点睛】本题考查偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,注意利用数形结合法分析与应用,是中档题.22.设函数()()sin (,,f x A x A ωφωφ=+为常数,且0,0,0)A ωφπ>><<的部分图象如图所示.(1)求函数()f x 的表达式;(2)求函数()f x 的单调减区间;(3)若()4f α=,求cos(2)6πα-的值.【答案】(1)())3f x x π=+(2)7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(3)14【解析】试题分析:(1)由图可以得到A =T π=,故2ω=,而()f x 的图像过(,0)6π-03πφ⎛⎫-= ⎪⎝⎭,结合()0,φπ∈得到3πφ=.(2)利用复合函数的单调性来求所给函数的单调减区间,可令3222232k x k πππππ+≤+≤+,解得函数的减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(3)由()4f α=得1sin(2)34πα+=,而cos(2)sin(2)63ππαα-=+,所以1cos(2)64πα-=.解析:(1)根据图象得A =又37()4126T ππ=--T π⇒=,所以2ω=. 又()f x过点(,0)6π-03πφ⎛⎫-= ⎪⎝⎭,又()0,φπ∈,所以2()06πφ⋅-+=得:3πφ=.(2)由3222232k x k πππππ+≤+≤+得:7,1212k x k k Z ππππ+≤≤+∈.即函数()f x 的单调减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(3)由()f α=)3πα+=,所以1sin(2)34πα+=. 1cos(2)sin (2)sin(2)62634ππππααα⎡⎤-=+-=+=⎢⎥⎣⎦.。

2018-2019学年高一上期末数学试卷(答案+解析)2

2018-2019学年高一上期末数学试卷(答案+解析)2

2018-2019学年高一上学期期末考试数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)满足条件{0,1}∪A={0,1}的所有集合A的个数是()A.1个B.2个C.3个D.4个2.(5分)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|3.(5分)下列函数中,与函数y=有相同定义域的是()A.f(x)=ln x B.C.f(x)=|x| D.f(x)=e x4.(5分)若tanα=3,则的值等于()A.2 B.3 C.4 D.65.(5分)将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=ae nt,假设过5分钟后甲桶和乙桶的水量相等,若再过m分钟甲桶中的水只有升,则m的值为()A.7 B.8 C.9 D.106.(5分)函数y=cos2x+8cos x﹣1的最小值是()A.0 B.﹣1 C.﹣8 D.﹣107.(5分)函数y=f(x)与y=g(x)的图象如图,则函数y=f(x)•g(x)的图象为()A.B.C.D.8.(5分)将函数y=sin x的图象向左平移φ(0≤φ<2π)个单位后,得到函数y=sin(x﹣)的图象,则φ等于()A.B. C. D.9.(5分)定义在R上的函数f(x)满足f(x)=,则f(2009)的值为()A.﹣1 B.0 C.1 D.210.(5分)已知cos(α﹣)+sinα=,则sin(α+)的值是()A.B.C.D.11.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B. C.4 D.1212.(5分)设a,b,c均为正数,且2a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c二、填空题(共4小题,每小题5分,满分20分)13.(5分)求值sin60°•cos160°(tan340°+)=.14.(5分)若函数y=x2﹣8x在区间(a,10)上为单调函数,则a的取值范围为.15.(5分)已知点A(0,0),B(6,﹣4),N是线段AB上的一点,且3AN=2AB,则N点的坐标是.16.(5分)函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题:①函数f(x)=x2(x∈R)是单函数;②函数f(x)=2x(x∈R)是单函数,③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④在定义域上具有单调性的函数一定是单函数其中的真命题是(写出所有真命题的编号)三、解答题(共6小题,满分70分)17.(12分)如图,=(6,1),=(x,y),=(﹣2,3),(1)若∥,试求x与y之间的表达式;(2)若⊥,且,求x,y的值.18.(12分)函数f1(x)=lg(﹣x﹣1)的定义域与函数f2(x)=lg(x﹣3)的定义域的并集为集合A,函数g(x)=2x﹣a(x≤2,a∈R)的值域为集合B.(1)求集合A,B(2)若集合A,B满足A∩B=B,求实数a的取值范围.19.(12分)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,).(1)求sin2α﹣tanα的值;(2)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数y=f(﹣2x)﹣2f2(x)在区间[0,]上的取值范围.20.(12分)设f(x)=mx2+3(m﹣4)x﹣9(m∈R),(1)试判断函数f(x)零点的个数;(2)若满足f(1﹣x)=f(1+x),求m的值;(3)若m=1时,存在x∈[0,2]使得f(x)﹣a>0(a∈R)成立,求a的取值范围.21.(12分)已知O为坐标原点,=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m(m∈R),(1)若f(x)的定义域为[﹣,π],求y=f(x)的单调递增区间;(2)若f(x)的定义域为[,π],值域为[2,5],求m的值.22.(10分)(1)计算:log2.56.25+lg+ln+2(2)已知x+x﹣1=3,求x2﹣x﹣2.【参考答案】一、选择题(共12小题,每小题5分,满分60分)1.D【解析】由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D.2.B【解析】逐一考查所给的选项:A.y=x3是奇函数,在区间(0,+∞)上单调递增,不合题意;B.y=|x|+1是偶函数,在区间(0,+∞)上单调递增;C.y=﹣x2+1是偶函数,在区间(0,+∞)上单调递减,不合题意;D.y=2﹣|x|是偶函数,在区间(0,+∞)上单调递减,不合题意.故选B.3.A【解析】函数的定义域是{x|x>0},对于A:定义域是{x|x>0},对于B:定义域是{x|x≠0},对于C:定义域是R,对于A:定义域是R,故选A.4.D【解析】==2tanα=6,故选D.5.D【解析】令a=a e nt,即=e nt,∵=e5n,∴=e15n,比较知t=15,m=15﹣5=10.故选D.6.C【解析】函数y=cos2x+8cos x﹣1=2cos2x+8cos x﹣2=2(cos x+2)2﹣10,因为cos x∈[﹣1,1],所以cos x=﹣1时,函数取得最小值:﹣8.故选C.7.A【解析】由图象可知,y=f(x)为偶函数,其定义域为R,y=g(x)为奇函数,其定义域为{x|x≠0}∴f(﹣x)•g(x)=﹣f(x)•g(x),∴y=f(x)•g(x)为奇函数,且定义域为{x|x≠0}∴f(x)•g(x)的图象关于原点对称,故选A.8.D【解析】将函数y=sin x向左平移φ(0≤φ<2π)个单位得到函数y=sin(x+φ).根据诱导公式知当φ=π时有:y=sin(x+π)=sin(x﹣).故选D.9.C【解析】∵当x>3时满足f(x)=﹣f(x﹣3)=f(x﹣6),周期为6,∴f(2009)=f(334×6+5)=f(5)=f(﹣1)当x≤0时f(x)=1﹣x)∴f(﹣1)=1∴f(2009)=f(﹣1)=log22=1故选C.10.C【解析】∵,∴,∴.故选C.11.B【解析】由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选B.12.A【解析】分别作出四个函数y=,y=2x,y=log2x的图象,观察它们的交点情况.由图象知:∴a<b<c.故选A.二、填空题(共4小题,每小题5分,满分20分)13.1【解析】原式=sin320°(tan340°+)=﹣sin40°(﹣tan20°﹣)=sin40°(tan20°+)=•=1.故答案为1.14.[4,10)【解析】函数y=x2﹣8x的对称轴为:x=4,由函数y=x2﹣8x在区间(a,10)上为单调函数,可得:4≤a,即a∈[4,10).故答案为[4,10).15.(4,﹣)【解析】设N的坐标为:(x、y),∵点A(0,0),B(6,﹣4),∴=(x,y),=(6,﹣4),∵3AN=2AB,∴3(x,y)=2(6,﹣4),∴,解得x=4,y=﹣,故答案为(4,﹣)16.②③④【解析】∵若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,∴①函数f(x)=x2不是单函数,∵f(﹣1)=f(1),显然﹣1≠1,∴函数f(x)=x2(x∈R)不是单函数;②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,且x1≠x2,若f(x1)=f(x2),则x1=x2,与x1≠x2矛盾∴③正确;④同②;故答案为②③④.三、解答题(共6小题,满分70分)17.解:(1)∵=(6,1),=(x,y),=(﹣2,3)∴=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),∵∥,∴,解得x=y.(2)∵=(6,1),=(x,y),=(﹣2,3),∴=(6+x,1+y),=(x﹣2,y+3),=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),⊥,且,∴,解得x=y=.18.解:(1)由题意可得M={x|﹣x﹣1>0}={x|x<﹣1},N={x|x﹣3>0}={x|x>3},∴A=N∪M={x|x<﹣1,或x>3}.由于x≤2,可得2x∈(0,4],故函数g(x)=2x﹣a(x≤2)的值域为B=(﹣a,4﹣a].(2)若函数A∩B=B,则B⊆A,∴B=∅,或B≠∅.当B=∅时,﹣a≥4﹣a,a无解.当B≠∅,则有4﹣a<﹣1,或﹣a≥3,求得a>5,或a≤﹣3,综合可得,a>5或a≤﹣3.19.解:(1)∵角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,),∴x=﹣3,y=,r=|OP|==2,∴sinα==,cosα==﹣,tanα==﹣,∴sin2α﹣tanα=2sinαcosα﹣tanα=﹣+=﹣.(2)函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cos[(x﹣α)+α]=cos x,∴函数y=f(﹣2x)﹣2f2(x)=cos(﹣2x)﹣2cos2x=sin2x﹣cos2x﹣1=2(sin2x﹣cos2x)﹣1=2sin(2x﹣)﹣1,在区间[0,]上,2x﹣∈[﹣,],故当2x﹣=﹣或时,函数y取得最小值为﹣2;当2x﹣=时,函数y取得最大值为1,故函数y在区间[0,]上的取值范围为[﹣2,1].20.解:(1)①当m=0时,f(x)=﹣12x﹣9为一次函数,有唯一零点;②当m≠0时,由△=9(m﹣4)2+36m=9(m﹣2)2+108>0故f(x)必有两个零点;(2)由条件可得f(x)的图象关于直线x=1对称,∴﹣=1,且m≠0,解得:m=;(3)依题原命题等价于f(x)﹣a>0有解,即f(x)>a有解,∴a<f(x)max,∵f(x)在[0,2]上递减,∴f(x)max=f(0)=﹣9,故a的取值范围为a<﹣9.21.解:(1)=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m=2sin2x﹣2sin x cos x+1+m=2+m﹣cos2x﹣sin2x=2+m﹣2sin(2x+),由+2kπ≤2x+≤2kπ+(k∈Z),即为+kπ≤x≤kπ+,k∈Z,得y=f(x)在R上的单调递增区间为[+kπ,kπ+],k∈Z,又f(x)的定义域为[﹣,π],∴y=f(x)的增区间为:[﹣,﹣],[,].(2)当≤x≤π时,≤,∴﹣1≤sin(2x+)≤,即有1+m≤2+m﹣2sin(2x+)≤4+m,∴1+m≤f(x)≤4+m,由题意可得,解得m=1.22.解:(1)log2.56.25+lg+ln+2=2+0﹣2++6=.(2)x+x﹣1=3,可得:x2+x﹣2+2=9,x2+x﹣2﹣2=5,x﹣x﹣1=,x2﹣x﹣2=(x+x﹣1)(x﹣x﹣1)=.。

高一2018-2019年度期末考试试卷-数学试题

高一2018-2019年度期末考试试卷-数学试题

高一2018~2019年度期末考试试卷数学第I卷(选择题)一、选择题本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则等于( )A. B. C. D.2.点在直线上,则直线的倾斜角为( )A. 120° B. 60° C.45° D. 30°3.函数的定义域是( )A . B.C. D.4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( )A.B.C.D.5.设为正数,且,当时,的值为( )A. B. C. D.6.定义域为D的奇函数,当时,.给出下列命题:①;②对任意;③存在,使得;④存在,使得.其中所有正确的命题的个数为( )A.0 B.1 C.2 D.37.如图,为正方体,下列结论错误的是( )A.B.C.D.异面直线与所成角为8.定义在上的偶函数的图象关于直线对称,当时,,设函数,则函数与的图象交点个数为( )A. 3 B. 4 C. 5 D. 69.如图1,直线将矩形纸分为两个直角梯形和,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得∥平面B . 在翻折的过程中,∥平面恒成立C . 存在某一位置,使得平面D . 在翻折的过程中,平面恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A . B . C . D .11.设集合,集合,若中恰含有一个整数,则实数的取值范围是( )A .B .C .D .12.在直角坐标系内,已知是上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若上存在点,使,其中、的坐标分别为、,则的最大值为( )A . 4B . 5C . 6D . 7第II卷(非选择题)请点击修改第II卷的文字说明二、填空题本大题共4小题,每小题5分,共20分.13.已知过点和的直线与平行,则的值为______.14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行;③垂直于同一直线的两条直线可能相交、可能平行也可能异面;④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.满足2,的集合A的个数是A. 2B. 3C. 4D. 8【答案】C【解析】由题意,可得满足2,的集合A为:,,,2,,共4个.故选:C.2.已知幂函数的图像过点,若,则实数的值为()A. B. C. D.【答案】D【解析】依题意有2=4a,得a=,所以,当时,m=9.3.的值是A. B. C. D.【答案】A【解析】.4.已知直线:,:,:,若且,则的值为A. B. 10 C. D. 2【答案】C【解析】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选:C.5.已知2a=5b=,则+=()A. B. 1 C. D. 2【答案】D【解析】∵2a=5b=,∴a=log2,b=log5,利用换底公式可得:+=2+5=10=2.6.如图,已知正方体中,异面直线与所成的角的大小是A. B. C. D.【答案】C【解析】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是.故选:C.7.已知,则()A. B. C. D.【答案】D【解析】=,故选D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,,则【答案】D【解析】,,故选D.9.已知函数,则()A. 1B.C. 2D. 0【答案】C【解析】由题意,函数,.故选:C.10.若存在正数x使成立,则a的取值范围是A. B.C. D.【答案】D【解析】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选:D.11.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A. B. C. D.【答案】A【解析】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为.故选:A.12.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B. C. D.【答案】A【解析】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选:A.二、填空题(本大题共4小题,共20.0分)13.函数的定义域为___________。

2018-2019学年高一上学期期末考试数学试题(答案+解析)(1)

2018-2019学年高一上学期期末考试数学试题(答案+解析)(1)

2018-2019学年高一上学期期末考试数学试卷一.选择题1.已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则B A ⋂() A .]1,2[-- B .)2,1[- C.]1,1[- D .)2,1[2.下列各式中,值为23的是() A.2sin15cos15︒︒ B.︒-︒15sin 15cos 22C.115sin 22-︒D.︒+︒15cos 15sin 223.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=()A.3 B .3- C .53 D .53- 4.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ()A. 3-B. 1-C. 1D. 35.若非零向量a 、b 满足|a |=|b |=1,(2a +b )⊥b ,则a 与b 的夹角为()A. 300B. 600C. 1200D. 15006.函数1)(log 1)(22-=x x f 的定义域为() A. )21,0( B. ),2(+∞ C.),2[]21,0(+∞⋃ D. ),2()21,0(+∞⋃ 7.已知向量=)sin ,(cos θθ,向量 =)1,3(-,则|2–|的最大值、最小值分别是() A. 0,24 B.22,4 C.0,16 D.0,48.ABC △的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p ()a c b =+,,q ()=--,b a c a ,若p ∥q ,则角C 的大小为()A .π6B .π3C .π2D .2π39.设函数⎩⎨⎧≥<-+=-1,21),2(log 1)(12x x x x f x ,则)12(log )2(2f f +- = ()A. 3B. 6C. 9D. 1210.函数π()sin cos()6f x x x =-+的值域为()[ -2 ,2] B .C .[-1,1 ] D .] 11.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,λ=,若OP ⋅≥,则实数λ的取值范围是()A.112λ≤≤ B. 112λ-≤≤C.112λ≤≤+ D. 11λ≤≤+ 12.已知在ABC ∆中,0)32(=⋅-,则角A 的最大值为()A .π6 B. π4 C. π3 D. π2二.填空题13.已知向量)3,1(),,1(-==b n a ,若b a -2与b 共线,则n 的值为.14.若βα,都是锐角,135)sin(,53sin =-=βαα,则=βcos . 15.当π02x <<时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为. 16.已知函数⎩⎨⎧>-≤-=3,)3(3|,|3)(2x x x x x f ,函数)3()(x f a x g --=,其中a 为实数.若函数)()(x g x f y -=恰有4个零点,则a 的取值范围是:.三.解答题17.已知函数()2cos 2,.f x x x x =+∈R(1)求该函数的最小正周期、单调增区间;(2)若56)2(=αf ,求πcos(2)3α+的值18.已知向量=(sin A ,cos A ),=1)-,·=1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)当π2π[,]63x ∈-时,求函数x A x x f sin cos 42cos )(+=的值域.19.已知函数f (x )=3-2x 2log ,g (x )=x 2log .(1)求函数)(2)()(2x g x f x f y +⋅=在x ∈[1,4]上的零点; (2)若函数k x g x f x h -⋅+=)(]1)([)(在x ∈[1,4]有零点,求k 的取值范围.20.定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)当k =0时,证明f (x )为奇函数(2)设k =-1,且f (x )是R 上的增函数,已知f (4)=5,解关于x 的不等式f (mx 2-2mx +3)≥3.21.已知函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-.(1) 写出()f x 在[]3,3-上的表达式,并写出函数()f x 在[]3,3-上的单调区间(不用过程,直接出即可);(2) 求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值.【参考答案】1-12 ABACC,DDBCB,BA13.-3 14.6563 15. 416. )3,411( 17.解:(1)x x x f 2cos 2sin 3)(+=1ππ22cos 2 2sin 2cos cos 2sin 266x x x x ⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎝⎭ π2sin 2,6x x ⎛⎫=+∈ ⎪⎝⎭R . )(x f ∴的最小正周期2ππ2T ==, 令πππππ2π22πππ,26236k x k k x k k -≤+≤+⇒-≤≤+∈Z , 即得单调增区间为ππ[ππ],36k k k -+∈Z ,, 56)2(=αf 得π6π32sin sin()6565αα⎛⎫+=⇒+= ⎪⎝⎭, πcos(2)3α+πcos 2()6α=+ =2π12sin ()6α-+ =257)53(212=⨯-.18.解:(Ⅰ)m ·n πcos 2sin()16A A A -=-=, 得 π1sin()62A -=,由A 为锐角得,.663A A πππ-== (Ⅱ)由(Ⅰ)知1cos ,2A = 所以x x x x x f sin 2sin 21sin 22cos )(2+-=+=, 令]1,21[,sin -∈⇒=t x t , 故122)(2++-==t t x f y =23)21(22+--t , 因为]1,21[-∈t ,因此,当=t 1sin 2x =时,f (x )有最大值32. 当21-=t 时,f (x )有最小值21-, 所以所求函数f (x )的值域是]23,21[-. 19.解:(1)由f (x 2)·f (x )+2g (x )=0,得(3-4x 2log )(3-x 2log )+2x 2log =0,令t =x 2log ,因为x ∈[1,4],所以t =x 2log ∈[0,2],得091342=+-t t ,解得1=t 或49=t (舍去), 故21log 2=⇒=x x ,即原函数在x ∈[1,4]上的零点为2 ,(2)h (x )=(4-2x 2log )·x 2log =-2(x 2log -1)2+2-k ; (一)令t =x 2log ,因为x ∈[1,4],所以t =x 2log ∈[0,2] ,2)1(20)(2+--=⇒=t k x h .因]2,0[∈t 故]2,0[2)1(22∈+--t ,由2)1(22+--=t y 及k y =图像及得当2=k 时,得一解1=t ,t =x 2log 在[0,2]上单调增得此时有一个零点,当20<≤k 时,同理函数有2个零点,综上,20≤≤k 为所求;(二)令t =x 2log ,因为x ∈[1,4],所以t ∈[0,2], 02)1(20)(2=-+--⇒=k t x h .即0422=+-k t t ,令k t t t +-=42)(2ϕ,当16802k k ∆=-=⇒=时,得21=⇒=x t ,此时1个零点,当16802k k ∆=->⇒<时,因k ==)2()0(ϕϕ,故0)2()0(2≥=k ϕϕ, 由k t t t +-=42)(2ϕ的图像开口向上,对称轴为1=t 得 ⎪⎩⎪⎨⎧<<≥≥2100)2(0)0(ϕϕ解得20<≤k ,综上,20≤≤k 为所求.20.(1)证明:当k =0时,令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,∴f (x )是奇函数.(2).解:∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)≥3=f (2),又f (x )是R 上的增函数,∴mx 2-2mx +3≥2,即mx 2-2mx +1≥0 ,当m =0时,不等式显然成立;此时x ∈R ,当m ≠0时,244m m ∆=-,若001m ∆≤⇒≤≤,即10≤<m 时,由函数12)(2+-=mx mx x g 图像得.x ∈R当01m ∆>⇒>∑或0<m 时解方程0122=+-mx mx 得mm m m x m m m m x -+=--=2221,, 当1>m 时,由函数12)(2+-=mx mx x g 图像得2x x ≥或1x x ≤,当0<m 时,由函数12)(2+-=mx mx x g 图像得12x x x ≤≤,综上:当10≤≤m 时,不等式的解集为R ,当1>m 时,不等式的解集为|{x 2x x ≥或1x x ≤}当0<m 时,不等式的解集为|{x 12x x x ≤≤}.21.解:∵()(2)f x kf x =+, ∴(2)(4)f x kf x +=+,∴2()(4)f x k f x =+,(1)当时, , 当时,,当时,,,32≤≤x 120≤-≤x )32()4)(2()2()(≤≤--=-=x kx x k x f x f 02≤≤-x 220≤+≤x )02)(2()2()(≤≤-+=+=x x kx x kf x f 23-≤≤-x 021≤+≤-x )23)(4)(2()4)(2()2()(2-≤≤-++=++⋅=+=x x x k x x k k x kf x f综上:()f x 在[]3,3-上的表达式为2(2)(4),32,(2),20,()(2),02,1(2)(4),23k x x x kx x x f x x x x x x x k⎧++-≤<-⎪+-≤<⎪⎪=⎨-≤<⎪⎪--≤≤⎪⎩由于0<k ,由)(x f 在]3,3[-上的图象,可得]1,3[--和]3,1[为增区间,]1,1[-为减区间.(2)由(1)得()f x 的最小值出自1)1(,)3(2-=-=-f k f , ()f x 的最大值出自kf k f 1)3(,)1(-=-=-, 当01<<-k 时,kk k 1,12-<-->-,此时,()f x 最大值为k 1-,最小值为1-; 当1-=k 时,kk k 1,12-=--=-,此时,()f x 最大值为1,最小值为1-, 当时,, 此时:.1-<k 12-<-k kk 1->-2min max )3()(,)1()(k f x f k f x f -=-=-=-=。

2018-2019学年高一上学期期末考试数学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.设全集U =M ∪N ={1,2,3,4,5},M ∩N C U ={2,4},则N = ( ) A .{1,2,3} B. {1,3,5} C. {1,4,5} D. {2,3,4}2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A.1)2(22=-+y x B.1)2(22=++y xC.1)3()1(22=-+-y x D .22(1)(2)1x y -+-=3.已知四边形的斜二测画法的直观图是一边长为1正方形,则该四边形的的面积等于( ) A.1B .22 C.42D.2 4.3log 21=a ,2log 31=b ,3.0)21(=c ,则( )A .a <b <c B.a <c <b C.b <c <a D.b <a <c5.长方体的一个顶点上三条棱长分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( )A B. C.50π D.200π6.点),4(a A 和),5(b B 的直线与直线0=+-m y x 平行,则AB 的值为( ) A.6 B.2 C.2 D.不确定7.若函数)12(log )(23-+=x ax x g 有最大值1,则实数a 的值等于( ) A.21-B.41C.41- D.48. 直线03=-+m y x 与圆122=+y x 在第一象限内有两个不同的交点,则m 的取值范围是( )A.)2,1(B.)3,3(C.)3,1(D.)2,3( 9.下列命题中正确命题的个数是( )⑴如果一条直线与一个平面不垂直,那么这条直线与这个平面内的任何直线都不垂直;⑵过不在平面内的一条直线可以作无数个平面与已知平面垂直; ⑶如果一个几何体的主视图和俯视图都是矩形,则这个几何体是长方体; ⑷方程05222=--+y y x 的曲线关于y 轴对称( ) A. 0 B. 1 C. 2 D. 310.过直线:l y x =上的一点P 做圆2)1()5(22=-+-y x 的两条切线1l 、2l ,A 、B 为切点,当直线1l 、2l 关于直线l 对称时,∠APB 等于( )A.︒30 B.︒45 C.︒60 D.︒9011. ⎩⎨⎧++-++=2222)(22x x x x x f 00<≥x x ,若()()4342>+-f a a f ,则a 的取值范围是( ) A. (1,3) B. (0,2) C. (-∞,0)∪(2,+∞) D. (-∞,1)∪(3,+∞)12. 如图,已知平面α⊥平面β,α∩β=AB ,C ∈β, D ∈β,DA ⊥AB , CB ⊥AB , BC =8, AB =6, AD =4, 平面α有一动点P 使得∠APD =∠BPC ,则△P AB 的面积最大值是 ( )A .24B .32 C. 12 D. 48 二. 填空题13. 已知A (1,1)B (-4,5)C (x ,13)三点共线,x =__________. 14. 点(2,3,4)关于x 轴的对称点的坐标为__________. 15. 已知二次函数342)(2+-=x x x f ,若)(x f 在区间[1,2+a a ]上不单调,则a 的取值范围是______.16. 若),(11y x A ,),(22y x B 是圆422=+y x 上两点,且∠AOB =︒120,则2121y y x x += __________. 三. 解答题(第12题图)B17.如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明A P O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.18.一个几何体的三视图如右图所示,已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.⑴求该几何体的体积V ; ⑵求该几何体的表面积S .13俯视图左视图主视图19. 直线l :10-=kx y 与圆C :04222=-+++y mx y x 交于M 、N 两点,且M 、N 关于直线02:=+y x m 对称, ⑴求直线l 截圆所得的弦长;⑵直线:35n y x =-,过点C 的直线与直线l 、n 分别交于P 、Q 两点,C 恰为PQ 的中点,求直线PQ 的方程.20. 已知二次函数)(x f y =的图象与函数12-=x y 的图象关于点P (1,0)成中心对称, 数)(x f 的解析式;⑵是否存在实数m 、n ,满足()f x 定义域为[m ,n ]时,值域为[m ,n ],若存在,求m 、n 的值;若不存在,说明理由.21. 如图,直三棱柱111C B A ABC 中,M 、N 分别为B A 1和11C B 的中点,(1)求证:直线MN ∥平面C C AA 11; ⑵若B A 1⊥C B 1,1A N ⊥11B C , 求证: C B 1⊥1AC .22. 矩形PQRS 的两条对角线相交于点M (1,0),PQ 边所在的直线方程为x -y -2=0,原点O (0,0)在PS 边所在直线上, (1)矩形PQRS 外接圆的方程;(2)设A (0,t ),B (0,t +6) (-5≤t ≤-2),若⑴的圆是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.【参考答案】(第20题图)C 11.B2.A3.B4.A5.C6.B7.C8. D 9 .B 10.C 11.D 12.C 13.-14 14.)4,3,2(-- 15.)21,0( 16.-2 17. (Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥.于是180OPA OMA ∠+∠=°.由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得AP O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°.18.解:由已知,该几何体是平行六面体,⑴ 侧视图长为3∴几何体的高为3∴3311=⨯⨯=V ;⑵几何体左右两个侧面的高为()21322=+,则326221231211+=⨯⨯+⨯⨯+⨯⨯=S .19. 解:(1) m l ⊥∴1)21(-=-⨯k ∴2=k ∴l :0102=--y x)1,2(--m C 在m 上,0)1(22=-+-m,4-=m ,则)1,2(-C ,3=r 设C 到l 的距离为d ,则()()5121012222=-+---⨯=d ,2222=-=d r MN ,∴弦长为4;⑵设),(b a P ,则)2,4(b a Q ---,又l P ∈,n Q ∈,则有⎩⎨⎧--=---=5)4(32102a b a b ,解之得⎩⎨⎧-=-=121b a)12,1(--P ,311)1(2)12(1=-----=PQ K ,直线PQ 的方程为)2(3111-=+x y ,即025311=--y x .20. 解:(1)在)(x f y =上任取点),(y x ,则),2(y x --在12-=x y 上, 则有1)2(2--=-x y ,即1)2(2+--=x y ,∴1)2()(2+--=x x f ;⑵假设存在实数m 、n ,满足题意 1)(≤x f ∴12n ≤<,∴)(x f 在区间[],m n 上是单调递增函数,则x x f =)(有两个不等实根m 、n ,即0332=+-x x 有两个不等实根m 、n ,033432<-=⨯-=∆,方程无解.∴不存在.21. 解:(1)连接1AB ,则M 为1AB 中点,又N 为11C B 中点,MN ∥1AC ,1AC ⊂平面C C AA 11,MN ⊄平面C C AA 11, ∴直线MN ∥平面C C AA 11;⑵ 1111C B A BB 平面⊥∴⊥B B 1N A 1 111C B N A ⊥,∴111BCC B N A 平面⊥,∴C B N A 11⊥ C B A 11B ⊥,∴BN A C B 11平面⊥,11MN A BN B C MN ⊂∴⊥又平面∴11AC C B ⊥22. 解:⑴由已知111-=∴-=⋅=PR PR PQ PQ k k k k 又x y l PR =∴:, 又02:=--y x l PQ )1,1(-∴P 则1==PM r ,∴圆的方程为1)1(22=+-y x ,⑵设t kx y l AC+=:即0=+-t y kx 由已知112=++k tk ,t t k 212-=, ∴t x tt y l AC+-=21:2同理)6()6(2)6(1:2++++-=t x t t y l BC ,联立得)6(1)6(2+++=t t t t x ,⋅-+=∴])6[(21t t S )6(1)6(2+++t t t t =)6(1)6(6+++t t t t =)6(116++t t ,]5,9[9)3()6(252--∈-+=+∴-≤≤-t t t t 91)6(151-≤+≤-∴t t ,∴≤427)6(116++t t 215≤, 当3-=t 时,S 有最小值427; 当5-=t 时,S 有最小值215.。

青海省西宁市2018-2019学年高一数学上学期期末教学质量检测试题

青海省西宁市2018-2019学年高一数学上学期期末教学质量检测试题

青海省西宁市2018-2019学年高一数学上学期期末教学质量检测试题一、选择题1.执行如图所示的程序框图,如图输出的S 的值为2,则判断框中的条件可能是( )A.3n <?B.3n ≤?C.2n ≥?D.2n >?2.命题2:,10p x R x ∀∈+≥,则p ⌝为( )A .20,10x R x ∃∈+> B .20,10x R x ∃∈+≤C .20,10x R x ∃∈+<D .2,10x R x ∀∈+<3.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞- D .(1,)+∞4.若命题p :∀x ∈,tanx>sinx ,则命题非p 为( )A.∃x 0∈,tanx 0≥sinx 0B.∃x 0∈,tanx 0>sinx 0C.∃x 0∈,tanx 0≤sinx 0D.∃x 0∈,tanx 0>sinx 05.已知{}n a 为等差数列,且7421a a -=-,30a =,则公差d =( ) A.-2B.12-C.12D.26.已知图中的网格是由边长为1的小正方形组成的,一个几何体的三视图如图中的粗实线和粗虚线所示,则这个几何体的体积为A.64B.643C.1283D.1287.已知x 与y 之间的一组数据:则y 与的线性回归方程y bx a =+必过点( ) A .()2,2B .()1.5,0C .()1,2D .()1.5,48.若关于x 的不等式0x xe ax a -+<的解集为(,)(0)m n n <,且(,)m n 中只有一个整数,则实数a 的取值范围是( ) A .221[,)3e eB .221,)3e e( C .221[,)32e eD .221,32e e ⎛⎫⎪⎝⎭9.若圆C :x 2+y 2﹣4x ﹣4y ﹣10=0上至少有三个不同的点到直线l :x ﹣y+m =0的距离为,则m 的取值范围是( )A .B .C .[﹣2,2]D .(﹣2,2)10.已知函数()22,?52,x x a f x x x x a+>⎧=⎨++≤⎩,若函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是 A.[)1,1- B.[)1,2- C.[)2,2- D.[]0,211.已知2sin23α=,则2cos 4πα⎛⎫+= ⎪⎝⎭( )A.16B.13 C.12D.2312.下列函数中与函数y x =相同的是( )A .2y x = B .y =C .y =D .2x y x=二、填空题 13.函数211()2f x x x=+的极小值是______. 14.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()ln 2342ln3++=, ()ln 345672ln5++++=, ()ln 456789102ln7++++++=,……则根据以上四个等式,猜想第n 个等式是__________.()*n N ∈16.已知函数2,()24,x x mf x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________________. 三、解答题17.如图,在各棱长均为4的直四棱柱中,底面为菱形,,为棱上一点,且.(1)求证:平面平面;(2)求二面角的余弦值.18.设(1)求的单调递增区间、对称轴方程和对称中心(2)求f(x)在x ∈(0,]的值域19.设函数在及处取极值.(1)求的值;(2)若对于任意的,都有成立,求的取值范围. 20.已知二阶矩阵对应的变换将点变换成,将点变换成.(1)求矩阵的逆矩阵;(2)若向量,计算.21.一条隧道的横断面由抛物线弧及一个矩形的三边围成,尺寸如图所示单位:,一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3m ,车与箱共高,此车是否能通过隧道?并说明理由.22.某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:(2)据此估计广告费用为12万元时的销售额约为多少?参考公式:【参考答案】***试卷处理标记,请不要删除 一、选择题13.3214.5%.15.()()()()ln 12...322ln 21n n n n n ⎡⎤++++++-=-⎣⎦.16.()3+∞,三、解答题17.(1)见解析;(2).【解析】试题分析:(1)由底面为菱形,可得,根据直棱柱的性质可得,由线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得平面平面;(2)设与交于点,与交于点,以为原点,分别为轴,建立空间直角坐标系,分别根据向量垂直数量积为零列方程组求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得二面角的余弦值.试题解析:(1)证明:∵底面为菱形,∴. 在直四棱柱中,∴底面, ∴.∵,∴平面,又平面,∴平面平面. (2)解:设与交于点,与交于点,以为原点,分别为轴,建立空间直角坐标系,如图所示,则,,,,则,,,设为平面的法向量,则,取,则.取的中点,连接,则,易证平面,从而平面的一个法向量为.∴,∴由图可知,二面角为锐角,二面角的余弦值为.【方法点晴】本题主要考查面面垂直的证明以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.(1)见解析.(2) .【解析】【分析】(1)由题意将函数解析式进行变换可得,然后将作为整体,并结合正弦函数的相关性质求解可得所求.(2)根据的取值范围得到的取值范围,结合图象可得的范围,利用不等式的性质可得值域.【详解】(1)由.由得所以函数的单调递增区间是.由,,解得,,所以函数图象的对称轴方程为.由,,解得,,所以函数图象的对称中心为(),.(2)∵,∴,∴,∴,∴函数的值域为.【点睛】研究形如的函数的性质时,可把看作一个整体,然后结合正弦函数的相应性质得到后可得所求,在解决单调性的问题时还要注意的符号对结果的影响.19.(1) ;(2) 或【解析】【分析】⑴由题意在及处取极值代入求出的值⑵由题意成立,求出,得到关于的不等式,求出的取值范围【详解】解:(1)由题意函数在及处取极值,故有和两个根,由根与系数之间的关系得,所以(2)由题意对于任意的,都有恒成立,即,由⑴知,当时,单调递减,当时,单调递增,,,则故即有解得或【点睛】本题考查了由导数极值求参量及解答关于恒成立的不等式问题,在求解恒成立问题时将其转化为最值问题,然后求出不等式的结果即可,需要掌握解题方法20.(1);(2).【解析】分析:(1)利用阶矩阵对应的变换的算法解出,再求(2)先计算矩阵的特征向量,再计算详解:(1),则,,解得,,,,所以,所以;(2)矩阵的特征多项式为,令,解得,,从而求得对应的一个特征向量分别为,.令,求得,,所以.点睛:理解矩阵的计算规则和相互之间的转换。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档