八年级期中考试数学试卷
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是()A .1B .2C .3D .83.下面的多边形中,内角和与外角和相等的是()A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则()A .必有一个角等于30°B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为()A .2a +2b -2cB .2a +2bC .2cD .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是()A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是()A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=()A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有()A .①②B .①③C .①②③D .①②③④11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是()A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为()A .1B .2C .35D .53二、填空题13.如图,ABC 与A B C '''V 关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S =。
人教版八年级上册数学期中考试试卷带答案
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中考试试卷含答案
人教版八年级上册数学期中考试试题一、单选题1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A .B .C .D .2.下面各组线段中,能组成三角形的是()A .6,9,14B .8,8,16C .10,5,4D .5,11,63.一个多边形的每个内角均为135°,则这个多边形是()A .五边形B .六边形C .七边形D .八边形4.如图,ABC 中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120∠=︒BEC ;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有()A .①②B .①③C .②③D .①②③5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A .①B .②C .③D .①和②6.如图,在 ACE 中,点D 在AC 边上,点B 在CE 延长线上,连接BD ,若∠A =47°,∠B =55°,∠C =43°,则∠DFE 的度数是()A.125°B.45°C.135°D.145°7.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是()A.①②B.②③C.③④D.①④8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.189.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10B.15C.20D.3010.已知:如图,FD∥BE,则()A.∠1+∠2-∠A=180°B.∠2+∠A-∠1=180°C.∠A+∠1-∠2=180°D.∠1-∠2+∠A=180°二、填空题11.如图,在△ABC中,BE和AD分别是边AC和BC上的中线,则△AEF和四边形EFDC 的面积之比为_____.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD ),这其中的数学原理是__________.13.若一个多边形的内角和为1800°,则这个多边形______边形.14.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图,线段AC ,BD 相交于点E ,EB CE =,要使ABE DCE △≌△,只需增加的一个条件是________.(只要填出一个即可)17.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠=______.18.如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连结DE ,动点P 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动.设点P 的运动时间为t 秒,当t 的值为______________时,ABP △和DCE 全等.三、解答题19.如图,电信部门要在公路m ,n 之间的S 区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S 内的两个城镇A,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.一个等腰三角形的周长是36厘米.(1)已知腰长是底长的2倍,求各边长.(2)已知其中一边长为8厘米,求其它两边长.21.在一次数学课上,老师在黑板上画出如图所示的图形,并写下四个等式,(1)AB DC =,(2)BD AC =,(3)B C ∠=∠,(4)BDA CAD ∠=∠.要求同学从这四个等式中选出其中的两个或三个作为条件,推出第四个,请你试着完成王老师提出的要求(写出三种)并选择一种说明理由.22.已知BC ED =,AB AE =,B E ∠=∠,F 是CD 的中点,求证:AF CD ⊥.23.如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求ADE 的周长24.如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.25.探究与发现:如图①,在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在底边BC 上,AE=AD ,连接DE .(1)当∠BAD=60°时,求∠CDE 的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【解析】【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:由6,9,14可得,6+9>14,故能组成三角形;由8,8,16可得,8+8=16,故不能组成三角形;由10,5,4可得,4+5<10,故不能组成三角形;由5,11,6可得,5+6=11,故不能组成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.3.D【解析】【详解】︒-︒=︒,解:正多边形的每个外角都相等,每个外角为18013545多边形的外角和为360︒,︒÷︒=所以边数为:360458故选:D.4.D【解析】【详解】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG 中,90BFD CGD DF DG BDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒,∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.5.C【解析】【分析】观察每块玻璃形状特征,利用ASA 判定三角形全等可得出答案.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】本题属于利用ASA 判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合,解题的关键是熟练掌握全等三角形的判定定理.6.D【解析】【分析】利用三角形内角和定理求出∠AEC,再求出∠EFB可得结论.【详解】解:∵∠A+∠C+∠AEC=180°,∴∠AEC=180°﹣47°﹣43°=90°,∴∠FEB=90°,∴∠EFB=90°﹣∠B=35°,∴∠DFE=180°﹣35°=145°,故选:D.【点睛】本题考查三角形内角和定理,解题的关键是熟练掌握三角形的内角和定理,属于中考常考题型.7.D【解析】【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【详解】解:①全等三角形的对应边相等,正确;②全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.8.B【解析】【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【详解】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .【点睛】本题考查了等腰三角形的性质.9.B【解析】【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,对12BDC S BC DE =⨯ 计算求解即可.【详解】解:如图,过D 作DE ⊥BC 于E ,∵BD 平分ABC∠∴由角平分线的性质可知3DE AD ==∴111031522BDC S BC DE =⨯=⨯⨯= 故选B .【点睛】本题考查了角平分线的性质.解题的关键在于根据角平分线的性质求出BDC 的高.10.A【解析】【详解】∵FD//BE ,∴∠2=∠4,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-∠2,∵∠1+∠3=180°,∴∠3=180°-∠1,∵∠3+∠5+∠A=180°,∴180°-∠1+(180°-∠2)+∠A=180°,∴∠1+∠2-∠A=180°,故选:A.11.1:2【解析】【分析】设△DEF的面积为S,先判断F点为△ABC的重心,根据三角形重心的性质得到AF=2FD,=2S,再利用E点为AC的中点得到S△DAE=S△DCE=则根据三角形面积公式得到S△AEF3S,从而得到△AEF和四边形EFDC的面积之比.【详解】解:设△DEF的面积为S,∵BE和AD分别是边AC和BC上的中线,∴F点为△ABC的重心,∴AF=2FD,=2S,∴S△AEF∵E点为AC的中点,=S△DCE=S+2S=3S,∴S△DAE∴△AEF和四边形EFDC的面积之比为2S:(S+3S)=1:2.故答案为:1:2.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S12=⨯底×高.三角形的中线将三角形分成面积相等的两部分.12.三角形的稳定性【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.【点睛】本题主要考查了三角形的稳定性,解题的关键在于能够熟知三角形具有稳定性.13.十二【解析】【分析】根据多边形的内角和公式列式求解即可.【详解】解:设这个多边形的边数是n,则()21801800n-⨯︒=︒,解得:12n=.故答案为:十二.【点睛】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.15.240°.【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16.AE=DE或∠A=∠D或∠B=∠C【解析】【分析】根据全等三角形的判定方法添加条件即可.【详解】解:∵BE=CE,∠AEB=∠DEC,添加AE=DE,可根据SAS证明△ABE≌△DCE,添加∠A=∠D,可根据AAS证明△ABE≌△DCE,添加∠B=∠C,可根据ASA证明△ABE≌△DCE,故答案为:AE=DE或∠A=∠D或∠B=∠C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.17.50︒【解析】【分析】想办法求出AED∠,再利用三角形的外角的性质求解即可.【详解】解:AE∠,∵平分BAC∴∠=∠=︒,BAE CAE30∴∠=∠-∠=︒-︒=︒,EAD EAC DAC302010,⊥AD BC∴∠=︒,ADE90∴∠=︒-∠=︒,AED EAD9080,∠=∠+∠AED B BAE∴∠=︒-︒=︒,B803050故答案是:50︒.【点睛】本题考查三角形内角和定理,角平分线的性质等知识,解题的关键是熟练掌握三角形内角和定理.18.1或7【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.19.作图见解析【解析】【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【详解】解:如图所示.20.(1)365cm,725cm,725cm;(2)14cm,14cm.【解析】【分析】(1)设底边BC=acm,则AC=AB=2acm,代入求出即可;(2)分类讨论,然后根据三角形三边关系定理判断求出的结果是否符合题意.解:如图,(1)设底边BC=acm ,则AC=AB=2acm ,∵三角形的周长是36cm ,∴2a+2a+a=36,∴a=365,2a=725,∴等腰三角形的三边长是365cm ,725cm ,725cm .(2)①当等腰三角形的底边长为8cm 时,腰长=(36-8)÷2=14(cm );则等腰三角形的三边长为8cm 、14cm 、14cm ,能构成三角形;②当等腰三角形的腰长为8cm 时,底边长=36-2×8=20;则等腰三角形的三边长为8cm ,8cm 、20cm ,不能构成三角形.故等腰三角形另外两边的长为14cm ,14cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.见解析【解析】【分析】根据SAS 、ASA 、AAS 进行推理即可得到答案.【详解】解:由①②③可推出④;由②③④可推出①;由①③④可推出②;第一种情况证明:∵AB DC =,BD AC =,B C ∠=∠,∴ABD DCA ∆≅∆(SAS )∴BDA CAD∠=∠第二种情况证明:∵BD AC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(ASA )∴AB DC=第三种情况证明:∵AB DC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(AAS )∴BD AC=22.见解析【分析】连接AC 、AD ,由已知证明ABC AED ∆≅∆,得到AC AD =,又因为点F 是CD 的中点,利用等腰三角形的三线合一或全等三角形可得AF CD ⊥.【详解】解:如图,连接AC 、AD,在ABC ∆和AED ∆中,AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,()ABC AED SAS ∴∆≅∆.AC AD ∴=.ACD ∴∆是等腰三角形.又 点F 是CD 的中点,AF AF CF DF AC AD =⎧⎪∴=⎨⎪=⎩,()ACF ADF SSS ∴∆≅∆,90AFC AFD ∴∠=∠=,AF CD ∴⊥.23.7cm【分析】根据翻折变换的性质可得DE=CD ,BE=BC ,然后求出AE ,再根据三角形的周长列式求解即可.【详解】解:∵BC 沿BD 折叠点C 落在AB 边上的点E 处,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,∴AE=AB-BE=AB-BC=8-6=2cm ,∴△ADE 的周长=AD+DE+AE ,=AD+CD+AE ,=AC+AE ,=5+2,=7cm .24.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒.【解析】(1)根据线段垂直平分线的性质,可得AM CM =,CN NB =,可得△CMN 的周长等于线段AB ;(2)根据三角形内角和定理,列式求出MNF NMF ∠+∠,再求出A B ∠+∠,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,即可求解.【详解】解:(1)∵DM ,EN 分别垂直平分AC 和BC∴AM CM =,CN NB=∵△CMN 的周长为15cm∴15CM CN MN cm++=∴15AM BN MN cm++=∴15AB cm=AB 的长为15cm(2)由(1)得AM CM =,CN NB=∴A ACM ∠=∠,B BCN∠=∠在MNF 中,70MFN ∠=︒∴110FMN FNM ∠+∠=︒根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE∠=∠在Rt ADM △中,9090A AMD FMN∠=︒-∠=︒-∠在Rt BNE 中,9090B BNE FNM∠=︒-∠=︒-∠∴909070A B FMN FNM ∠+∠=︒-∠+︒-∠=︒∴70MCA NCB ∠+∠=︒在ABC 中,70A B ∠+∠=︒∴110ACB ∠=︒∴()40MCN ACB MCA NCB ∠=∠-∠+∠=︒25.(1)30°(2)∠CDE=12∠BAD(3)∠CDE=12∠BAD 【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE ,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x ,于是得到∠CAD=90°﹣x ,根据等腰三角形的性质得到∠AED=45°+12x ,于是得到结论;(3)设∠BAD=x ,∠C=y ,根据等腰三角形的性质得到∠BAC=180°﹣2y ,由∠BAD=x ,于是得到∠DAE=y+12x ,即可得到结论.【详解】解:(1)∵AB=AC ,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE ,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+12x,∴∠CDE=12 x;∴∠CDE=12∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+12 x,∴12 CDE AED C x ∠=∠-∠=.∴∠CDE=12∠BAD21。
2024学年八年级上册数学期中考试试卷
2024学年(上)期中考试初二年级数学科试卷(问卷)考试时量:120分钟满分120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列常见的手机软件图标中,是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .1,2,3.5B .4,5,9C .6,8,10D .7,11,33.在平面直角坐标系中.点()5,1M -关于x 轴对称的点在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列几种说法①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是()A .①②B .②③C .③④D .①④5.如图1,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A .全等性B .美观性C .不稳定性D .稳定性6.如图2,已知AF CE =,//BE DF ,那么添加下列一个条件后,能判定ADF ∆≌CBE ∆的是()A .AFD CEB∠=∠B .//AD CBC .AE CF=D .AD BC=7.如图3,一把直尺压住射线OB ,另一把完全一样的直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的平分线.”这样说的依据是()A .角平分线上的点到这个角两边的距离相等B .三角形三条角平分线的交点到三条边的距离相等C .在一个角的内部,到角的两边距离相等的点在这个角的平分线上D .以上均不正确8.如图4,ABC ADE △≌△,BC 的延长线交DA 于点F ,交DE 于点G .若105AED ∠=︒,16CAD ∠=︒,30B ∠=︒,则1∠的度数为().A .66︒B .63︒C .61︒D .56︒9.如图5,AD 是△ABC 的角平分线,DF AB ⊥于点F ,点E ,G 分别在AB ,AC 上,且DE DG =,若24ADG S =△,18AED S =△,则△DEF 的面积为()A .6B .5C .4D .310.如图6,在Rt ABC △中,90C ∠=︒,20A ∠=︒.若某个三角形与△ABC 能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有()A .3种B .5种C .7种D .9种二、填空题(本大题共6小题,每小题3分,共18分)11.如图7,小明从坡角为30︒的斜坡的山底(A )到山顶(B )共走了200米,则山坡的高度BC 为米.12.如图8,是由射线AB BC CD DE EF FA ,,,,,组成的平面图形,若135170∠+∠+∠=︒,则246∠+∠+∠=︒.13.如图9,在平面直角坐标系中,以A (2,0)、B (0,4)为顶点作等腰直角△ABC (其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C '的坐标为.14.如图10,在△ABC 中,点D 是BC 边的中点,∠BAD =75°,∠CAD =30°,AD =3,则AC 的长为.15.等腰三角形中,一腰上的中线把三角形的周长分为6cm 和15cm 的两部分,则该三角形的腰长为.16.如图,在Rt ABC △中,90ACB ∠=︒,12AC =,BC =5,AB =13,(1)点C 到直线AB 的距离:.(2)动点P 在△ABC 内,且使得ACP △的面积为12,点Q 为AB 上的动点,则PB PQ +的最小值为.三、解答题(本大题共9小题,共72分)17.(本小题满分4分)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.(本小题满分4分)如图12,在平面直角坐标系中,△ABC 各顶点的坐标分别为:(4,0),(1,4),(3,1)A B C --,△ABC 关于x 轴的对称图形为△A 1B 1C 1,(1)画出△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标.19.(本小题满分6分)如图13,D 是△ABC 的边AB 上一点,CF AB ∥,DF 交AC 于点E ,=DE EF .求证:CF =AD .20.(本小题满分6分)如图14,在△ABC 中,BAC BCA ∠=∠,CD 平分ACB ∠,CE ⊥AB 交AB 的延长线于E 点,若∠DCE =54°,求BCE ∠的度数.21.(本小题满分8分)如图15,在ABC 中,AB AC =.(1)利用尺规,作AC 边的垂直平分线交AC 于点E ,交A 于点D ;(不写作法,保留作图痕迹)(2)在(1)中,连接CD ,若BC=a ,AC=b ,求△BDC 的周长.22.(本小题满分10分)如图16,△ABC 为等腰三角形,AC =BC ,△BDC 和△ACE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 交AB 于点G ,求证:(1)G 为AB 的中点;(2)若∠FAG =15°,求∠BCE 的度数.23.(本小题满分10分)如图17,在△ABC 中,∠ABC 的平分线与AC 的垂直平分线相交于点P ,过点P 作PE ⊥AB 交BA 的延长线于点E .(1)画出△PBE 关于直线PB 对称的△PBF ;(2)求证:AB +BC =2BE ;(3)若AB =7,BC =23,求AE 的长.24.(本小题满分12分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,∠MON 的两边分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系?并证明;(3)如图3,当α=45°时,问线段之间BM 、MN 、AN有何数量关系?并证明.25.(本小题满分12分)在等边△ABC 的AC BC 、边上各取一点P 、Q .(1)如图1,若AQ BP 、相交于点O ,若60BOQ ∠=︒,求证AP CQ =;(2)如图1,连接PQ ,若13AP AC =,AQ BP =,求CPQ ABC S S 的值;(3)如图2,若AQ 是等边△ABC 的中线,点E 是线段AQ 上的动点,AE =CP ,请直接写出当BE +BP 取得最小值时∠EBP的度数.图1图2图17。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
滕州八年级期中考试数学试卷
一、选择题(每题4分,共40分)1. 已知a,b,c是等差数列的三项,且a+c=12,a-b+c=8,则b的值为()A. 4B. 6C. 8D. 102. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()A. 45°B. 60°C. 75°D. 105°3. 若x-3是x2-5x+6的因式,则x的值为()A. 2B. 3C. 4D. 64. 若函数f(x)=2x-1在区间[0,2]上单调递增,则实数a的取值范围是()A. a≥0B. a≥1C. a≤0D. a≤15. 已知一次函数y=kx+b的图象过点A(1,2),且与y轴的交点坐标为(0,-3),则该函数的解析式为()A. y=2x-3B. y=x-3C. y=2x+3D. y=x+36. 若x是方程2x2-3x+1=0的解,则x的值为()A. 1B. 2C. 1/2D. 1/47. 已知a,b,c是等比数列的三项,且a+b+c=6,b+c=4,则a的值为()A. 2B. 1C. 3D. 48. 若一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且OA=3,OB=4,则该函数的解析式为()A. y=4x/3B. y=3x/4C. y=3x+4D. y=4x+39. 若x是方程x2-2x+1=0的解,则x的值为()A. 1B. 2C. 1/2D. 1/410. 已知等差数列{an}的公差为d,且a1+a5+a9=24,则a3的值为()A. 6B. 8C. 10D. 12二、填空题(每题5分,共50分)11. 若m是方程x2-2x+1=0的解,则m的值为______。
12. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为______。
13. 已知一次函数y=kx+b的图象过点A(2,-3),且与y轴的交点坐标为(0,1),则该函数的解析式为______。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
新疆维吾尔自治区喀什地区喀什市第十中学2023-2024学年八年级上学期期中数学试题(含解析)
喀什市第十中学2023-2024学年第一学期期中考试八年级数学试卷(本试卷满分100分,考试时间90分钟)请将试卷答案书写在答题卡上,认真答题,书写工整,祝同学们考试顺利!一、选择题(每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段能组成三角形的是( )A .3,4,8B .5,6,11C .5,6,10D .4,4,93.如图,已知,添加下列条件不能判定的是( )A .B .C .D .4.已知图中的两个三角形全等,则∠α的度数为( )A .105°B .75°C .60°D .45°5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为( )DAB CAB ∠=∠DAB CAB ≌△△DBE CBE∠=∠D C ∠=∠DA CA =DB CB=A .1260°B .1080°C .1620°D .360°6.如图,小明试卷上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与试卷原图完全一样的三角形,那么两个三角形完全一样的依据是( )A.ASA B.SAS C .AAS D .SSS7.如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为( )A .70°B .80°C .90°D .100°8.如图所示,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,DE =4,BC =9,则BD 的长为( )A .6B .5C .4D .39.形沿对角线折叠,使点落在点处,若,则( )A .44°B .58°C .64°D .84°10.如图,在Rt AEB 和Rt AFC 中,∠E =∠F =90°,BE =CF ,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB .有下列结论:①∠B =∠C ;②CD =DN ;③CM =BN ;④ACN ≌ABM .其中正确结论的个数是( )ABCD AC B B '158∠=︒2∠=12.如果一个多边形的内角和是外角和的13.一个三角形的三条高线的交点在三角形的外部,则这个三角形是三、解答题(共5大题,共43分)19.如图,和交于点O ,.AC BD A D ∠=∠ABC DCB △≌△20.如图,三个顶点坐标分别为、、.(1)画出将向右平移5个单位长度得到的图形;(2)画出关于轴的对称图形,并写出的坐标.21.如图,要在街道旁修建一个奶站,向居民区提供牛奶,牛奶站应建在什么地方,才能使到它的距离之和最短,作图并说明.22.如图,在中,,是高,,.则的长为.23.如图,点A 、B 、C 、D 在同一直线上,,,.ABC ()4,4A -()3,1B -()1,2C -ABC 111A B C △111A B C △x 222A B C △2B ,A B ,A B ABC 90ACB ∠=︒CD 30A ∠=︒4AB =BD ACE DBF ≌△△8AD =2BC =(1)求的长;(2)求证:.参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A 、3+4=7<8,不能组成三角形,该选项不符合题意;B 、5+6=11,不能够组成三角形,该选项不符合题意;C 、5+6=11>10,能够组成三角形,该选项符合题意;D 、4+4=8<9,不能够组成三角形,该选项不符合题意.故选:C .AC AE DF ∥【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.D【分析】根据题意已知 ,是公共边,选项A 可利用全等三角形判定定理“角边角”可得,选项B 可利用全等三角形的判定定理“角角边”可得;选项C 可利用全等三角形判定定理“边角边”可得,唯有选项D 不能判定.【详解】选项A ,∵∴ 即∵ ,是公共边,,∴(角边角),故选项A 不符合题意;选项B ,∵,,是公共边,∴(角角边),故选项B 不符合题意;选项C ,∵,,是公共边,∴(边角边)故选项C 不符合题意;添加DB=CB 后不能判定两个三角形全等,故选项D 符合题意;故选D【点睛】本题旨在考查全等三角形判定定理,熟练掌握此知识点是解题的关键.4.B【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】∵两个三角形全等,∴故选:B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.5.B【分析】用360°除以45°求出该多边形的边数,再根据多边形的内角和公式(n -2)•180°列式计算即可得解.【详解】解:多边形的边数是:360°÷45°=8,则多边形的内角和是(8-2)×180°=1080°.故选:B .【点睛】本题考查多边形的内角与外角,根据多边形的外角和求出边数是解题的关键.6.ADAB CAB ∠=∠AB DAB CAB ≌△△DBE CBE ∠=∠180180DBE CBE ︒-∠=︒-∠DBA CBA ∠=∠DAB CAB ∠=∠AB DBA CBA ∠=∠DAB CAB ≌△△D C ∠=∠DAB CAB ∠=∠AB DAB CAB ≌△△DA CA =DAB CAB ∠=∠AB DAB CAB ≌△△180456075α∠=︒-︒-︒=︒,【分析】本题考查了全等三角形的判定,由图可知,三角形的两角和它们的夹边是完整的,即可得到答案.【详解】解:由图可知,三角形的两角和它们的夹边是完整的,可以利用“ASA”画出完全一样的三角形.故选:A .7.B【分析】根据任意多边形内角和都等于360°,进行计算即可解答.【详解】解:由题意得:∠1+2+∠3+∠4+∠5=360°,∵∠1+2+∠3+∠4=280°,∴∠5=360°﹣280°=80°,故选:B .【点睛】本题考查了多边形的内角与外角,熟练掌握任意多边形内角和都等于360°是解题的关键.8.B【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC =DE =4,∴BD =BC ﹣CD =9﹣4=5.故选:B .【点睛】掌握角平分线的性质为本题的关键.9.C【分析】先求出∠CAB 的度数,然后根据折叠的性质得出∠EAB =2∠CAB ,最后根据平行线的性质可求∠2=∠EAB .【详解】解:∵四边形ABCD 是矩形,∴∠B =90°,,又∠1=58°,∴∠CAB =32°,∵将矩形沿对角线折叠,使点落在点处,AB CD ∥ABCD AC B B∴∠EAC =∠BAC =32°,∴∠EAB =2∠CAB =64°,∵,∴∠2=∠EAB =64°,故选:C .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质等知识,判断出∠2=∠EAB =2∠CAB 是解题的关键.10.C【分析】只要证明△ABE ≌△ACF ,△ACN ≌△ABM 即可判断.【详解】解:∵∠EAC =∠FAB ,∴∠EAB =∠CAF ,在△ABE 和△ACF ,,∴△ABE ≌△ACF (AAS ),∴∠B =∠C .AE =AF ,故①正确;由△AEB ≌△AFC 知:∠B =∠C ,AC =AB ;在△ACN 和△ABM ,,∴△ACN ≌△ABM (ASA ),故④正确;∴AN =AM .∵AC =AB ,∴CM =BN ,故③正确;由于条件不足,无法证得②CD =DN ;AB CD ∥E F EAB FAC BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩BAC CAB CA BAB C ∠=∠⎧⎪=⎨⎪∠=∠⎩综上所述,正确的结论是①③④,共有3个.故选:C.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.11.21:05【分析】根据镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为21:05,故答案为:21:05.【点睛】本题考查镜面反射的原理与性质,解决此类题应认真观察,注意技巧.12.九【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,根据题意,得(n-2)•180=360×3+180,解得:n=9.故答案为:九.【点睛】考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.13.钝角三角形【分析】锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.【详解】解:由题意知,如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故答案为:钝角三角形.【点睛】本题考查的知识点是三角形的角平分线、中线、高,主要考查了三角形的三条高线交点的位置与三角形的形状的关系.14.1【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x 轴对称,∴,∴.故答案为.【点睛】此题主要考查了关于x 、y 轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.15.10【分析】根据全等三角形的性质求出x ,y ,故可求解.【详解】∵这两个三角形全等,∴x =6,y =4∴x +y =10故答案为:10.【点睛】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的对应边相等.16.10【分析】根据垂直的定义求出∠ACB =∠ECF =90°,然后利用“角角边”证明△ABC 和△EFC 全等,再根据全等三角形对应边相等可得AC =CE ,BC =CF ,然后根据CE =BE -BC 代入数据进行计算即可得解.【详解】解:∵AC ⊥BE ,∴∠ACB =∠ECF =90°,在△ABC 和△EFC 中,,∴△ABC ≌△EFC (AAS ),∴AC =CE ,BC =CF =8,∵CE =BE −BC =18−8=10,∴AC =10故答案为10.【点睛】本题考查了全等三角的判定与性质,熟练掌握三角形全等的判定方法是解题的关(,4)A a (3,)B b 3a =4b =-()a b 341+=+-=-1-90A E ACB ECF AB EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩键.17.或【分析】分两种情况讨论:①当角为顶角;②当为底角,根据三角形内角和定理求解即可.【详解】解:①当角为顶角时,顶角度数为;②当为底角时,顶角:,故答案为:或.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18. ##35度 6【分析】本题主要考查了全等三角形的性质,根据全等三角形的对应边相等得,再根据得出答案,先根据三角形内角和定理求出,再根据全等三角形的对应角相等得,得出答案.【详解】∵≌,∴,.∵,,∴,∴.故答案为:,6.19.见解析【分析】本题考查的是全等三角形的判定,利用直接证明三角形全等即可,熟记全等三角形的判定方法是解本题的关键.【详解】证明:在与中,∵,,,∴.20.(1)见解析;(2)见解析,B 2的坐标为(2,-1).【分析】(1)根据平移与坐标变化的规律即可画出将△ABC 向右平移5个单位长度得到的图形△A 1B 1C 1;(2)根据轴对称与坐标变化的规律即可画出△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,进而可20︒80︒80︒80︒80︒80︒80︒18028020︒-⨯︒=︒20︒80︒35︒=8A B D E =DH DE EH =-ACB ∠=F A CB ∠∠ABC DEF =8A BDE =826DH D E E H =-=-=85A ∠=︒=60B ∠︒=180856035A CB ∠︒-︒-︒=︒35F ACB ∠=∠=︒35︒AAS ABC DCB △90AD ∠=∠=︒ACB DBC ∠=∠BC CB =()AAS ABC DCB ≌得出B 2的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求,B 2的坐标为(2,-1).【点睛】本题考查了平移与轴对称变换,掌握平面直角坐标系中图形的平移及依据轴对称的性质得出对称点的位置是解决问题的关键.21.图见解析,说明见解析【分析】如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.【详解】解:如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.由轴对称的性质可知AD =CD ,则AD +BD =CD +BD =BC ,在街道上任取一点不同于D 点的E ,连接CE ,BE ,根据两点之间线段最短可知BE +CE >BC ,则点D 即为所求;【点睛】本题主要考查了最短路径问题,熟知相关知识是解题的关键.22.的长为1【分析】利用含角的直角三角形的性质即可得到答案.【详解】解:在中,,,,BD 30︒ Rt ABC △90ACB ∠=︒30A ∠=︒4AB =。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学期中考试试卷
一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a=bB. a=-bC. a和b不相等D. a和b相等或互为相反数3. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²4. 如果等腰三角形的底边长为4cm,腰长为6cm,那么这个三角形的周长是()A. 10cmB. 12cmC. 16cmD. 20cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 3B. y = x² - 1C. y = 3/xD. y = 2√x二、填空题(每题5分,共25分)6. 已知一个数的平方是25,那么这个数是______或______。
7. 如果|a| = 5,那么a的取值范围是______。
8. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。
9. 已知等边三角形的边长为a,那么它的周长是______。
10. 函数y = 2x - 3的图象是一条直线,且斜率为______。
三、解答题(共55分)11. (10分)计算下列各式的值:(1)(-3)² - 2×(-3)×2 + 2²(2)√(49 - 14√3)12. (10分)解下列方程:(1)2x - 3 = 7(2)3(x + 2) - 2x = 513. (10分)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求这个三角形的面积。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.718B. 3.14159C. √2D. 0.33333...2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1cmB. 1cm ≤ x < 7cmC. 7cm < x < 10cmD. x = 7cm3. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如果一个数的平方根是另一个数的立方根,那么这个数是:A. 1B. 0C. -1D. 85. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm6. 已知一个正数的平方是16,那么这个数是:A. 4B. ±4C. -4D. 167. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是:A. 24cm³B. 12cm³C. 6cm³D. 9cm³8. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个角的余角是它的补角的一半,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°10. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 0D. 正数或0二、填空题(每题2分,共20分)11. 如果一个三角形的两边长分别是5cm和12cm,那么第三边长x的取值范围是______。
12. 函数y = 3x + 2的斜率是______。
13. 一个圆的半径是7cm,那么它的直径是______。
14. 一个数的立方根是2,那么这个数是______。
15. 一个长方体的体积是60cm³,长是5cm,宽是4cm,那么它的高是______。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、单选题1.以下面各组线段为边,不能构成三角形的是()A.5,6,7B.6,6,6C.8,4,4D.20,30,362.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1 5.下列运算正确的是()A.-a4·a3=a7B.a4·a3=a12C.(a4)3=a12D.a4+a3=a7 6.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°7.如图,在等边 ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A .1B .2C .3D .48.如图,用直尺和圆规作已知角的平分线,要证明CAD DAB ∠=∠成立的全等三角形的判定依据是()A .SSSB .SASC .ASAD .AAS9.如图,已知等边 ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;② EDP ≌ GFP ;③∠EDP=60°;④EP=1中,一定正确的个数是()个A .1B .2C .3D .410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A .20°B .35°C .40°D .70°二、填空题11.若()2120a b -+-=,则以a 、b 为边长的等腰三角形的周长为_____.12.若am=3,则(a 3)m =.13.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 的长为____14.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.15.如图,撑伞时,把伞“两侧的伞骨”和支架分别看作AB 、AC 和DB 、DC ,始终有AB=AC ,DB=DC ,请大家考虑一下伞杆AD 所在的直线是B 、C 两点的连线BC 的____线.16.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西50°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村村观测A 、B 两村的视角∠ACB 的度数是__.三、解答题17.计算:(1)[(-a)3]4;(2)(-m 2)3·(-m 3)2.(3)[(m-n)2]5(n-m)3(4)(-x 2)5+(-x 5)218.已知在△ABC 中,AB =AC ,且线段BD 为△ABC 的中线,线段BD 将△ABC 的周长分成12和6两部分,求△ABC 三边的长.19.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与 ABC 关于直线l 成轴对称的A B C '''(2)四边形ABCA '的面积为_____;(3)在直线l 上找一点P ,使PA+PB 的长最短.20.如图,AD ⊥BC 于D ,AD=BD ,AC=BE .(1)请说明∠1=∠C ;(2)猜想并说明DE 和DC 有何特殊关系.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点FC.F,交AB于点E.求证:BF=1222.(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.23.如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.(1)证明:△ABE≌△CBF;(2)若∠FBE=40°,∠C=45°,求∠E的度数.24.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当 PAB的周长最小时,求∠APB 的度数.25.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】+>,能构成三角形,该项不符合题意;A.567+>,能构成三角形,该项不符合题意;B.666+=,不能构成三角形,该项符合题意C.448+>,能构成三角形,该项不符合题意;D.203036故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.A【解析】【分析】根据三角形的稳定性即可解决问题.【详解】解:根据三角形的稳定性可固定窗户.故选:A.【点睛】本题考查了三角形的稳定性,属于基础题型.3.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.A【解析】【分析】关于y 轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变,据此解出a,b 的值.【详解】解:根据题意,点M(2,a)和点N(a+b ,3)关于y 轴对称,则a+b=-2,a=3,解得b=-5,故选:A .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,掌握相关知识是解题关键.5.C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437·a a a -=-,故A 错误;B 、437·a a a =,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断.6.C【解析】【分析】先根据三角形外角性质,用∠C 表示出∠AED ,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C 的度数,再求∠DAE .【详解】解:设∠C=x ,∵AB=AC ,∴∠B=∠C=x ,∴∠AED=x+10°∵AD=DE ,∴∠DAE=∠AED=x+10°根据三角形的内角和定理,得x+x+(20°+x+10°)=180°解得x=50°,∴∠DAE=50°+10°=60°故选C .【点睛】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,求出∠C 的度数是解答本题的关键.7.B【解析】【分析】由等边△ABC 的“三线合一”的性质推知142BD BC ==,根据等边三角形三个内角都相等的性质、直角三角形的两个锐角互余推知∠BDE=30°,最后根据“30°角所对的直角边等于斜边的一半”来求BE 即可.【详解】∵ABC 是等边三角形,AD 是它的角平分线,∴118422BD BC ==⨯=,60B ∠=︒.∵DE AB ⊥于E ,∴30BDE ∠=︒,∴122BE BD ==.故选B 【点睛】本题考查了等边三角形的性质及含30°角的直角三角形,解题的关键是熟练掌握以上知识.8.A【解析】【分析】根据全等三角形的判定定理即可解答.【详解】解:∵AF=AE ,FD=ED ,在△AFD 与△AED 中AF AE FD ED AD AD =⎧⎪=⎨⎪=⎩∴△AFD ≌△AED (SSS )∴CAD DAB ∠=∠,因此全等三角形的判定依据是SSS ,故选:A .【点睛】本题考查了角平分线的尺规作图的依据,解题的关键是找到图中的全等三角形,并熟记全等三角形的判定定理.9.C【解析】【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF B BD CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEB ≌△FGC (AAS ),∴BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.故答案为:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,解题的关键是证明三角形全等.10.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.11.5【解析】【分析】根据偶次方和绝对值的非负性,可以得到a -1=0,b -2=0,得到a ,b 的值,根据三角形三边关系求解即可.【详解】解:∵()2120a b -+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,∴周长=2+2+1=5.故答案为:5【点睛】本题考查了偶次方和绝对值的非负性,等腰三角形的性质,三角形的三边关系,关键是求出a ,b 的值.12.27【解析】【分析】根据幂的乘方的逆运算可得结果.【详解】解:∵am=3,∴(a 3)m=()333327m m a a ====,故答案为:27.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方以及其逆运算法则是解题的关键.13.3【解析】【详解】∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 与△ADC 中,DBF DAC BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC(ASA),∴AD=BD=BC−CD=7−2=5,DF=CD=2,∴AF=AD−DF=5−2=3;故答案为3.14.15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得∠ABD=∠A ,然后求∠DBC 的度数即可.【详解】∵AB=AC ,∠A=50∘,∴∠ABC=12(180∘−∠A)=12(180∘−50∘)=65∘,∵MN 垂直平分线AB ,∴AD=BD ,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【点睛】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.15.垂直平分【解析】【分析】根据线段的垂直平分线的性质定理的逆定理得出A 、D 都在线段BC 的垂直平分线上,根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线.【详解】解:如图,连接BC 、AD ,∵,AB AC DB DC ==,∴点A 在线段BC 的垂直平分线上,点D 在线段BC 的垂直平分线上,∴根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线,故答案为:垂直平分.【点睛】本题考查了线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的性质.16.80°【解析】【分析】根据三角形的内角和进行计算,即可得到结论.【详解】由题意得:∠BAE=∠ABD=50°,∠CAE=15°,∠DBC=85°,∴∠BAC =50°+15°=65°,∠ABC =85°﹣50°=35°,在△ABC 中,∠ACB =180°﹣∠BAC ﹣∠ABC =180°﹣65°﹣35°=80°.故答案为:80°.【点睛】本题考查的是方向角的概念及三角形内角和定理,解题的关键是熟练掌握三角形的内角和.17.(1)a 12;(2)-m 12;(3)(n-m )13;(4)0【解析】【分析】(1)由题意利用积的乘方和幂的乘方的运算法则进行计算即可;(2)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(3)由题意先利用幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(4)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用合并同类项原则进行计算即可.【详解】解:(1)[(-a)3]412a =;(2)(-m 2)3·(-m 3)26612m m m =-⋅=-;(3)[(m-n)2]5(n-m)310310313()()()()()m n n m n m n m n m =-⋅-=-⋅-=-;(4)(-x 2)5+(-x 5)210100x x =-+=.【点睛】本题考查幂的运算,熟练掌握积的乘方和幂的乘方以及同底数幂的乘法运算法则是解题的关键.18.8,8,2【解析】【分析】设腰长为x ,底边长为y ,分两种情况进行讨论,12为腰长加腰长的一半和6为腰长加腰长的一半,求解即可.解:设腰长为x ,底边长为y ,当12为腰长加腰长的一半时,则:1122162x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得82x y =⎧⎨=⎩此时三角形的三边长为8,8,2,能组成三角形当6为腰长加腰长的一半时,则1621122x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得410x y =⎧⎨=⎩,此时三角形的三边长为4,4,10,不能组成三角形故三角形的三边长为8,8,2【点睛】本题考查了等腰三角形和三角形三边关系的求解,解题的关键是注意分情况讨论,并判断是否组成三角形.19.(1)见解析;(2)172;(3)见解析【解析】【分析】(1)根据题意作出点A ,点B 关于L 的对称点A′、B′,连结CA′,A′B′,B′C 即可;(2)用割补法利用矩形面积减去3个直角三角形面积求解即可得到结论;(3)作出图形,根据勾股定理求得结果即可.【详解】解:(1)作出点A ,点B 关于l 的对称点A′、B′,连结CA′,A′B′,B′C ,如图所示,△A'B'C'即为所求;(2)四边形ABCA'的面积=4×412-⨯2×112-⨯1×412-⨯3×3=16-1-2-92=172;故答案为:172;(3)∵点B 与点B′关于l 对称,连接AB'交直线l 与点P ,∴PA+PB=PA+PB′,则PA+PB长的最短值=AB',∴AB'==;.【点睛】本题考查了轴对称﹣最短路线问题,勾股定理,作图﹣轴对称变换,正确的理解题意是解题的关键.20.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.本题考查了直角三角形全等的判定及性质;三角形全等的判定和性质是中考的热点,斜边与直角边对应相等的两个直角三角形全等.21.见解析【解析】【详解】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°,∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.22.(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y ﹣3=0,则2x+5y=32525343222228x y x y x y +⋅=⋅===;(2)(a 2m )3+(bn )3-a 2mbn·a 4mb 2n=(a 3m )2+(b 3n )-a 6mb 3n=(a 3m )2+(b 3n )-(a 3m )2b 3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.23.(1)证明见解析;(2)25°【解析】【分析】(1)根据SAS 即可证明;(2)在△ABE 中,求出∠A ,∠ABE 即可解决问题.【详解】(1)证明:∵∠1=∠2,∴∠1+∠EBF =∠2+∠EBF ,即∠ABE =∠CBF .在△ABE 和△CBF 中,∵AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF .(2)∵∠1=∠2,∠FBE =40°,∴∠1=∠2=70°.∵△ABE ≌△CBF ,∴∠A =∠C =45°,∵∠ABE =∠1+∠FBE =70°+40°=110°,∴∠E =180°-∠A -∠ABE =180°-45°-110°=25°.【点睛】本题考查全等三角形的判定和性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常见题.24.(1)①100°;②当90MON ∠=︒时,10GH =;(2)60APB ∠=︒【解析】【分析】(1)①根据对称性可得OG OP OM GP =⊥,,即可得到OM 平分POG ∠,ON 平分∠POH ,进而得出∠GOH 的值;②当90MON ∠=︒时,180GOH ∠=︒,此时G O H ,,在同一直线上,可得=10GH GO HO +=;(2)设点P 关于OM 、ON 对称点分别为P P ''',,当点A 、B 在P P '''上时, PAB 周长的最小,根据轴对称的性质,可求出APB ∠的度数.【详解】解:(1)①P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,OG OP OM GP ∴=⊥,,OM ∴平分POG ∠,同理得,ON 平分∠POH ,=2250100GOH MON ∴∠∠=⨯︒=︒,故答案为:100°;②P O=5,5GO HO ∴==当90MON ∠=︒时,180GOH ∠=︒G O H ∴,,在同一直线上,=10GH GO HO ∴+=;(2)如图,分别作点P 关于OM 、ON 的对称点P P ''',,连接OP OP P P P P '''''''''、、,交OM ON 、于点A 、B ,连接PA ,PB ,则AP=AP BP BP '''=,,此时 PAB 周长的最小值等于P P '''的长,由对称性可得,==,OP OP OP P OA POA P OB POB ''''''∠=∠∠=∠,,2260120P OP MON '''∴∠=∠=⨯︒=︒(180120)230OP P OP P ''''''∴∠=∠=︒-︒÷=︒30OPA OP A '∴∠=∠=︒同理可得30BPO OP B ''∠=∠=︒303060APB ∴∠=︒+︒=︒.【点睛】本题考查轴对称——最短路线问题,涉及角平分线性质等知识,是重要考点,掌握相关知识是解题关键.25.(1)证明见解析(2)∠QMC 的大小不变,∠QMC=60°(3)∠QMC 的大小不变,∠QMC =120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;(2)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=60°;(3)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ =∠CAP =60°,AB =CA ,又∵点P 、Q 运动速度相同,∴AP =BQ ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS );(2)解:点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小不变,∠QMC =60°.理由:∵ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠ACP +∠MAC ,∴∠QMC =∠BAQ +∠MAC =∠BAC =60°(3)解:点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠BAQ +∠APM ,∴∠QMC =∠ACP +∠APM =180°-∠PAC =180°-60°=120°.。
八年级数学期中考试试卷【含答案】
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.以下列四组线段的长为边,能组成三角形的是()A.1,4,7B.2,5,8C.3,6,9D.6,8,103.下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形4.图中三角形的个数是()A.4个B.6个C.8个D.10个5.下列多边形中,内角和与外角和相等的是()A.三角形B.四边形C.五边形D.六边形6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C.3D.47.如图,△ABC≌△ADE,点D 在BC 上,且∠B=60°,则∠EDC 的度数等于()A.30°B.45°C.60°D.75°8.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17B.22C.27D.17或229.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:510.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B、C、E 在同一条直线上,AE 与CD 交于点G,AC 与BD 交于点F,连接FG,则下列结论:①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题11.点A(3,﹣1)关于y 轴对称的点的坐标是___________.12.如图,120ACD ∠= ,20B ∠= ,则A ∠的度数是__________.13.如图,AC DC =,BC EC =,请你添加一个适当的条件:_____,使得ABC DEC△≌△14.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且24cm ABC S =△,则S =阴影_________.15.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.16.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_________.17.如图,ABC 中,7565A B ∠=︒∠=︒,,将纸片的一角折叠,使点C 落在ABC 内,若120∠=︒,则2∠的度数是_____________.三、解答题18.如图,作∠BAC 的平分线AP (用尺规作图,保留作图痕迹,不写作法)19.如图,在△ABC 中,∠B=40°,∠C=60°,AE、AD 分别是角平分线和高.求∠DAE 的度数.20.如图,四边形ABCD 中,AB AC =,B C ∠=∠,求证:BD CD =.21.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC22.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △;(2)点1A ,1B ,1C 的坐标分别是______,______,______;(3)ABC 的面积为______.23.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠.24.已知:如图,∠A=∠D=90°,点E、F 在线段BC 上,DE 与AF 交于点O,且AB=CD,BE=CF.求证:△OEF 是等腰三角形.25.如图,在Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若点M 从点B 出发以2cm/s 的速度向点A 运动,点N 从点A 出发以1cm/s 的速度向点C 运动,设M,N 分别从点B,A 同时出发,运动的时间为ts.(1)用含t 的式子表示线段AM,AN 的长;(2)当t 为何值时,△AMN 是以MN 为底边的等腰三角形?(3)当t 为何值时,MN∥BC?26.如图,AD 与BC 相交于点O,OA OC =,A C ∠=∠,BE DE =.(1)求证:OE 是BD 的垂直平分线;(2)如图2,若OE 与BD 的交点K 是OE 的中点,写出图中所有的等腰三角形.参考答案1.B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后即可得出答案.【详解】解:A、∵1+4=5<7,∴1,4,7不能组成三角形,故本选项错误;B、∵2+5=7<8,∴2,5,8不能组成三角形,故本选项错误;C、∵3+6=9,∴3,6,9不能组成三角形,故本选项错误;D、6+8=14>10∴6,8,10能组成三角形,故本选项正确.故选:D.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.3.A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】此题考查了三角形的稳定性和四边形的不稳定性.4.C【解析】【分析】根据三角形的定义即可得.【详解】图中的三角形是,,,,,,,ABC ABE ACD BCF BCE BCD BDF CEF ,共8个故选:C.【点睛】本题考查了三角形的定义,掌握理解三角形的概念是解题关键.5.B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.6.A【分析】利用角平分线的性质解答.【详解】解:过点P作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD=2,故选:A.【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等.7.C【解析】【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】解:∵△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=60°.故选:C.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.C【解析】【分析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,根据角平分线的性质:角平分线上的点到角两边的距离相等,可得:OE OF OD ==,依据三角形面积公式求比值即可得.【详解】解:过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是三条角平分线交点,OE OF OD \==,ABO S ∴ :BCO S △:12CAO S AB OE =⋅⋅ :12BC OF ⋅⋅:12AC OD ⋅⋅::2:3:4AB BC AC ==,故选:C.【点睛】题目主要考查角平分线的性质及三角形面积公式,理解角平分线的性质是解题关键.10.A【解析】【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS 判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,证得CF=CG,得到△CFG是等边三角形,易得③④正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠BCD=∠ACE,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)正确的结论为①②③④,故选A.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.11.(-3,-1)【解析】【分析】根据关于y 轴对称点的坐标特点,纵坐标不变,横坐标变为原来的相反数.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,1A -关于y 轴对称的点的坐标是()3,1--,故答案为:()3,1--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.12.100︒【解析】【分析】根据三角形外角定理求解即可.【详解】∵120ACD B A ∠=∠+∠= ,且20B ∠= ,∴12012020100A B ∠=︒-∠=︒-︒=︒.故答案为:100︒【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.13.AB=DE(答案不唯一).【解析】【详解】解:添加条件是:AB=DE,在△ABC 与△DEC 中,AC DC BC EC AB DE =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为AB=DE.本题答案不唯一.14.21cm 【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高,所以S△BEF=12S△BEC,同理可求△EBC 的面积是△ABC 面积的一半,据此求解即可.【详解】解:点F 是CE 的中点,∴△BEF 的底是EF,△BEC 的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E 是AD 的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,∵24cm ABC S =△,∴S△BEF=12cm ,即S =阴影12cm ,故答案为:21cm .本题主要考查了三角形中线的性质,三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.15.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.16.50︒或80︒.【解析】【分析】讨论这个50︒的角是顶角或是底角两种情况求解即可.解:若50︒的角是顶角,则底角是18050652°-°=°,成立;若50︒的角是底角,则顶角是18025080︒-⨯︒=︒,成立;顶角为50°或80°.故答案是:50︒或80︒.【点睛】本题考查等腰三角形的性质,三角形内角和,解题的关键是掌握等腰三角形的性质.17.60︒【解析】【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【详解】解:∵∠A=75°,∠B=65°,∴∠C=180°-(65°+75°)=40°,∴∠CDE+∠CED=180°-∠C=140°,∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-300°=60°.故答案为:60°.【点睛】本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.18.见解析【解析】按角平分线的画法作图即可.【详解】解:如下图,射线AP为所求作,19.10°.【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=12∠BAC,而∠DAC=90°-∠C,然后利用∠DAE=∠EAC-∠DAC进行计算即可.【详解】在△ABC中,∵∠B=40°,∠C=60°∴∠BAC=180°-∠B-∠C=180°-40°-60°=80°∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=12×80°=40°,∵AD是△ABC的高,∴∠ADC=90°∴在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°-60°=30°,∴∠DAE=∠EAC-∠DAC=40°-30°=10°.20.见解析连接BC,利用等腰三角形的等边对等角证得A ABC CB =∠∠,进而证得DBC DCB ∠=∠,再根据等腰三角形的等角对等边即可得证.【详解】连接BC ,如图,∵AB AC =,∴A ABC CB =∠∠,又∵ABD ACD ∠=∠,∴DBC DCB ∠=∠,∴BD CD =.21.见解析【分析】连接CD,利用HL 定理得出Rt△ADC≌Rt△BCD 进而得出答案.【详解】证明:如图,连接CD,∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°,在Rt△ADC 和Rt△BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt△ADC≌Rt△BCD(HL),∴AD=BC.22.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172.【分析】(1)首先作出A、B、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S△ABC =5×5-12×4×5-12×1×3-12×2×5=172;故答案为:17 2.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.23.见解析【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”,以及到角两边距离相等的点在角的角平分线上进行分析证明.【详解】解:如图,过点M作ME⊥AD于F,∵∠C=90°,DM平分∠ADC,∴ME=MC,∵M是BC的中点,∴BM=CM,∴BM=EM,又∵∠B=90°,∴点M在∠BAD的平分线上,∴AM 平分∠DAB.【点睛】本题考查角平分线性质和角平分线的判定,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.24.见解析【解析】【分析】证明Rt△ABF≌Rt△DCE,根据全等三角形的性质得到∠AFB=∠DEC,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF 和Rt△DCE 中,AB DC BF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.25.(1)AM=10-2t,AN=t;(2)t=103;(3)t=2.5【解析】【分析】(1)根据线段的和差即可得到结论;(2)根据等腰三角形的性质得到∴AM=AN,列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)AM=AB-BM=10-2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10-2t=t,解得,103 t=∴当103t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵MN∥BC,∴∠NMA=30°∴AN=12AM,∴t=12(10-2t),解得t=2.5,∴当t=2.5时,MN∥BC.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.26.(1)见解析;(2)DBO ,DEB ,EBO △,DEO【解析】【分析】(1)先证△ABO 和△CDO 全等,得到BO=OD,结合BE DE =,利用垂直平分线的判定即可得解;(2)结合已知和已证及垂直平分线的性质,由图直接写出即可;【详解】解:(1)在△ABO 和△CDO 中,A C OA OC AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABO CDO △≌△,∴OB OD =,∴点O 在线段BD 的垂直平分线上,又∵BE DE =,∴点E 在线段BD 的垂直平分线上,∴OE 是BD 的垂直平分线;(2)∵OE 是BD 的垂直平分线;又∵K 是OE 的中点,∴,,OB BE OD DE ==∵BE DE =,∴=OB BE OD DE==故等腰三角形有:DBO ,DEB ,EBO △,DEO。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的。
)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的立方根是2,那么这个数是______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。
14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。
八年级数学期中考试测试卷
考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √-1B. √2C. πD. 3.142. 已知 a = -2,b = -3,则 a + b 的值为()A. 1B. -1C. -5D. 53. 如果 a > b > 0,那么下列不等式中不正确的是()A. a^2 > b^2B. a - b > 0C. a/b > 1D. a/b^2 < 14. 下列函数中,自变量的取值范围是全体实数的是()A. y = √(x + 2)B. y = x^2 - 4C. y = 1/xD. y = |x|5. 在直角坐标系中,点 P(2, -3) 关于 y 轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)6. 如果一个三角形的三边长分别为 3, 4, 5,那么这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形7. 下列方程中,x 的值为整数的是()A. x^2 - 5x + 6 = 0B. x^2 - 4x + 3 = 0C. x^2 - 6x + 9 = 0D. x^2 - 8x + 7 = 08. 如果 a、b、c 是等差数列的前三项,且 a + b + c = 12,那么 c 的值为()A. 4B. 5C. 6D. 79. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 等边三角形10. 已知一次函数 y = kx + b 的图象经过点 (1, 2) 和 (3, 6),则该函数的解析式为()A. y = 2x + 1B. y = 2x - 1C. y = 3x + 1D. y = 3x - 1二、填空题(每题3分,共30分)11. 计算:-3 + (-5) = ______12. 已知 a = 2,b = -3,则 a^2 - b^2 的值为 ______13. 如果 x + y = 5,且 x - y = 1,那么 x 的值为 ______14. 下列函数中,自变量的取值范围是全体实数的是 ______15. 在直角坐标系中,点 A(3, 4) 到原点 O 的距离是 ______16. 一个等腰三角形的底边长为 6,腰长为 8,那么该三角形的周长是 ______17. 解方程:2x - 5 = 3x + 118. 下列数列:2, 4, 8, 16, ... 是一个 ______ 数列19. 如果一个三角形的一边长为 5,另外两边长分别为 8 和 10,那么这个三角形是 ______ 三角形20. 一次函数 y = kx + b 的图象与 x 轴的交点坐标为 ______三、解答题(共40分)21. (10分)已知 a、b、c 是等差数列的前三项,且 a + b + c = 12,求该等差数列的公差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7题图
8. 若等腰梯形的三边长为3,4,11,则这个等腰梯形的周长为( )
A .21 B.29 C.21或29 D.21,22或29
二、填空题(每题3分,计30分)
9. 比较大小: .
10.等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长是________cm.
2012~2013学年度第一学期八年级数学期中考试试题
(考试时间:120分钟 满分:150分)
命题人:张亚峰 审核人:石才英
一、选择题(每题3分,计24分)
1.2的算术平方根是( )
A. B.± C.4 D.±4
2. 下列美丽的图案,既是轴对称图形又是中心对称图形的个数 ( )
A.1个 B.2个 C.3个 D.4个
3. 在实数: 3.14159,,1.010010001…… ,, , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
第17题图
第18题图
三、解答题(本大题10小题,共96分)
19.求下列各式中的(每小题5分,共10分)
① ②
A
B
C
D
20.计算:(本题满分6分)
21.(本题满分8分)如图在△ABC中,AB=13,BC=10, BC边上的中线AD=12。求⑴AC的长度 ;⑵△ABC的面积。
(2)求四边形AECF的面积;
(3)如果点G在边CD上,且GAE=450,
①试判断GE、BE、DG之间有什么样的数量关系?并说明理由。
②若BE=2,求DG的长。
28.(本题满分12分)如பைடு நூலகம்,在梯形ABCD中,AD//BC,E是BC的中点,AD=5,BC=12,CD= ,∠C=45°,点P是BC边上一动点,设PB的长为x。
11.据统计,2012年十一期间,我市某风景区接待中外游客的人数为86740人次,将这个数字保留三个有效数字,用科学记数法可表示为__________________.
12.已知菱形的两条对角线分别长为6㎝和8㎝,则此菱形的面积为 cm2.
13.如图,梯形ABCD中,AD∥BC,AB=DC=AD,BD⊥CD,则∠C的度数为________.
(3)画出△ABC关于点B的中心对称图形△A1B1C1。
A
B
C
D
E
F
M
23.(本题满分10分)如图,已知四边形ABCD是平行四边形,AF、BE分别是∠DAB、∠CBA的平分线。
(1)求证:DE=FC;
(2)如果AD=3,AB=5,求EF的长。
24.(本题满分10分)如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.
17.如图,在△ABC中,CE平分∠ACB,CF平分外角∠ACD,且EF∥BC交AC 于M,若CM=5,则 。
18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示),把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为____________。
的有( )
A.4个 B.3个 C.2个 D.1个
6.如图,在平行四边形 ABCD中,对角线AC和BD相交于点O,如果AC=12 , AB=10, BD=m ,
那么m的取值范围是( )
A.8<m<32 B.2<m<22 C.10<m<12 D.1<m<11
4.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )
A.1,1, B.,, C.0.2,0.3,0.5 D.,,
5.有下列几种说法:①角平分线上的点到角两边的距离相等;②顺次连结矩形四边中点
得到的四边形是菱形;③等腰梯形的底角相等;④平行四边形是中心对称图形.其中正确
注意:所有答案必须写在答题纸上。
(1)梯形ABCD的面积为_________;
(2)当x的值为___________时,以点P、A、D、E为顶点的四边形为直角梯形;
(3)当x的值为___________时,以点P、A、D、E为顶点的四边形为平行四边形;
(4)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由。
(1)试说明四边形AECF是平行四边形;
(2)连结AC,当BD与AC满足 时,四边形AECF是菱形,并说明理由。
第15题图
第14题图
第13题图
14.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE= °.
15. 如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为 。
16.已知等腰梯形的中位线长为6cm,腰长5cm,则它的周长是____________cm。
26.(本题满分10分)如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,四边形DHEF是等腰梯形吗?试说明理由。
A
B
C
D
E
F
G
27.(本题满分12分)如图,正方形ABCD的边长为6,E是边BC上的一点,△ABE经过旋转后得到△ADF.
(1)旋转中心是点 ;旋转角最少是 度;
7.如图,矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当点P在BC上由B向C移动而点R不动时,下列结论成立的是( )
A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
C.线段EF的长不变 D.线段EF的长与点P的位置有关
(1)折叠后,DC的对应线段是 ,CF的对应线段是 ;
(2)若∠1=50°,求∠2、∠3的度数;
(3)若AB=7,DE=8,求CF的长度。
A
B
C
D
E
F
25.(本题满分10分)在□ABCD中,E、F分别为对角线BD上的两点,且BE=DF。
22.(本题满分8分)作图题:如图,在的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.
A
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;
A
(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数,请画出所有满足条件的点C;