乌丹第三中学2016-2017学年度八年级上学期数学期末测试卷附答案与解析
2016-2017八年级上数学试题及答案
八年级数学试题 第 1 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.若分式22-+x x 有意义,则x 的取值范围是( ). A .2=xB .2≠xC .2-=xD .2-≠x2.下列图形中,是轴对称图形的是( ).A B C D 3.下列分解因式正确的是( ). A .23)1(-=-x x x xB .))((22y x y x y x -+=+C .))((22y x y x y x +--=--D .22)12(144-=+-x x x(超范围)4.下列各组数中不能作为直角三角形的三边长的是( ) . A . 9,8,6B .25,24,7C .5.2,2,5.1D .15,12,95.如果q px x x x ++=+-2)3)(2(,那么q p ,的值分别为( ). A.6,5==q pB. 6,1-==q pC. 6,1==q pD. 6,5-==q p6. 一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是( ). A .8B .9C .7D. 67.已知2=+y x ,则222121y xy x ++的值是( ). A .2B .4C .1D .218. 化简xxx x -+-112的结果是( ) A. 1+x B. 1-x C.x - D. x八年级数学试题 第 2 页 (共 9 页)9. 如图,在△ABC 中,AB=AC ,BD平分∠ABC 交AC于点D ,AE ∥BD 交CB 的延长线于 点E .若∠E=30°,则∠BAC 的度数为( ) . A. 30B. 45C. 60D. 75超范围11.如图,ABC ∆中, 90=∠C , 30=∠A ,AB 的垂直平分线交AC 于点D ,交AB 于点E ,6=AC ,则CD 的长为( ).A .1B .2C .3D .412.如图,ABD ∆是等边三角形,以BD 为边向外作等边三角形DBC ∆,点F E ,分别在AD AB ,上且DF AE =,连接DE BF ,,两直线相交于点G ,连接CG ,下列结论:①ADE ∆≌CDG ∆, ② 60=∠BGE ,③ BG DG CG +=, ④CDG BDG S S ∆∆=.其中正确的结论有( ). A.1个B.2个C.3个D.4个二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:)5(152ab b a -÷________. .14.已知等腰三角形两边的长分别是8和6,则该三角形的周长为 _________ . 15. 如图,DCB ABC ∠=∠,请补充一个条件:________________ ,使ABC ∆≌DCB ∆.9题图12题图11题图15题图DCBA18题图16题图八年级数学试题 第 3 页 (共 9 页)16. 如图,AD 是ABC ∆的角平分线,DF DE ,分别是ABD ∆和ACD ∆的高,6=AC ,7=AB ,ACD ∆的面积是18,则ABC ∆的面积是_______________ .17. 一组按规律排列的式子:a 2b5,38b a,…(0≠ab ),则第n 个式子是 .18.如图所示,在ABC ∆中,AC AB =,E D ,是ABC ∆内两点,AD 平分BAC ∠. 60=∠=∠E EBC ,若10=BE ,4=DE ,则BC 的长度是___________ .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 解分式方程:xx x -=+--23123.20.如图,已知AE AB =,21∠=∠,E B ∠=∠, 求证:ED BC =.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出 必要的演算过程或推理步骤.21.因式分解:(1)39x x -; (2)32296y y x xy --.22.先化简,再求值:221(1)24x x x x x +-÷+-,其中x 是方程2111x x =+-的解.23. 如图,在直角坐标系中,正方形网格的边长为1,ABC ∆的顶点在网格的格点上,(1)将ABC ∆向下平移3个单位,得到111C B A ∆, 请在网格中画出111C B A ∆;(2)画出111C B A ∆关于y 轴对称的图形222C B A ∆, 并写出222C B A ∆的顶点坐标.20题图第 4 页 (共 9 页)24.如图,∠ABC = 90,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD=DE ,点F 是AE 的中点,FD 与AB 的延长线相交于点M ,连接MC . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.为了改变我区城市环境,创建全国卫生城市,梓潼街道拟对滨江路带的排水道等公用设施 全面更新改造,现有甲、乙两个工程队有意承包这项工程.经调查知道:甲工程队单独完成此 项工程的时间是乙工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需12天 完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2) 根据梓潼街道的要求,工程须在21天内完成.若甲工程队每天的工程费用是2.5万元,乙工程队每天的工程费用是4.5万元.请你选择一种方案(方案一:甲单独完成;方案二:乙单独完成;方案三:甲乙合作完成),既能按时完工,又能使工程费用最少,并求出最少费用是多少万元.26.我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况 下,可通过证明等底等高来说明它们的面积相等.已知ABC ∆与DEC ∆是等腰直角三角形, 90=∠=∠DCE ACB ,连接BE AD ,.(1)如图1,当 90=∠BCE 时,求证BCE ACD S S ∆∆=.(2)如图2,当 0<BCE ∠< 90时,(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,作BE CF ⊥,延长FC 交AD 于点G ,求证:点G 为AD 中点.D A B C E图2八年级数学试题 第 5 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13. a 3-; 14.22或20 ; 15.AB=CD(答案不唯一);16.39; 17.n a 1-3n b ; 18.14.三、解答题(本大题2个小题,每题7分,共14分) 解答时每小题必须写出必要的演算过程或推理步骤. 19.解:两边同时乘以(2-x ),得323-=-+-x x ………………………3分22=x解得1=x ………………………6分经检验,1=x 是原方程的解. ………………………7分 20.证明:∵∠BAD=∠BAD ,∠1=∠2,∴∠BAD+∠1=∠BAD+∠2即∠BAC=∠EAD. ……………………………………………3分 在△BAC 和△DAE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠EAD BAC AE AB E B ∴△BAC ≌△EAD (ASA ). ………………………………………6分 ∴BC=ED. ………………………………………………………7分四、解答题(本大题4个小题,每小题10分,共40分)八年级数学试题 第 6 页 (共 9 页)21. 解:(1)原式=)9(2-x x …………………………2分=)3)(3(-+x x x …………………………5分(2)原式)96(22y x xy y --=…………………………2分 )69(22y xy x y +--=2)-3(y x y -=…………………………5分22.解:原式1422222+-⨯+--=x x x x x x x …………………………………………………………2分()()()()()12222+++---=x x x x x x x………………………………………………………4分 ()()()()()21221+++-+-=x x x x x x x 2+-=x ;…………………………………………………………………………6分 因为1112-=+x x , 所以122+=-x x ,解得3=x ,……………………………………………………8分 原式132-=-=……………………………………………………………………10分 23.解:(1)作图略…………………………………………………………………4分 (2)作图略…………………………………………………………………7分三个顶点的坐标分别为()1,12-A ,()0,32B ,()2,22C .……………10分 24.(1)证明:∵△ADE 是等腰三角形,F 是AE 的中点,DE AD ⊥∴DF ⊥AE ,DF=AF=EF. ...................................................................................2分 又∵∠ABC=90°,∠DCF,∠AMF 都与∠MAC 互余, ∴∠DCF=∠AMF又∵∠DFC=∠AFM =90°∴△DFC ≌△AFM. ……………………………………………..5分 ∴CF=MF , ∴∠FMC=∠FCM. ……………………………………..6分 (2)AD ⊥MC …………………………7分 由(1)知∠MFC=90°,FD=FE,FM=FC ∴∠FDE=∠FMC=45°.八年级数学试题 第 7 页 (共 9 页)∴DE ∥CM ,∴AD ⊥MC. (10)五、解答题(本大题2个小题,每小题12分,共24分)25天,则甲工程队单独完成该工程需1.5x 天,2分1.5×20=30(天)答:甲工程队单独完成此项工程需30天,乙单独完成此项工程需20天………5分 (2)方案一:由甲工程队单独完成需30天,工程费用755.230=⨯(万元)…7分 方案二:由乙工程队单独完成需20天, 工程费用905.420=⨯(万元)………9分 方案三:由甲、乙两队合作完成需12天, 工程费用84125.25.4=⨯+)((万元) ……11分 答:选择方案三既能按时完成,又能使工程费用最少,最少费用为84万元.…12分 26.证明:(1)∵ABC ∆与DEC ∆是等腰直角三角形∴BC AC =,EC DC =,090=∠=∠DCE ACB , 又∵090=∠BCE∴BCE ACD ∠=∠,……………………………………………………1分 在ACD ∆与BCE ∆中,⎪⎩⎪⎨⎧=∠=∠=EC DC BCE ACD BCAC ,∴ACD ∆≌BCE ∆,……………………………2分∴BCE ACD S S ∆∆=;…………………………………………………………3分 (2)过点A 作AG 垂直DC 的延长线于点G ,作CE BH ⊥,垂足为H , ……………………………………………………………………………4分 ∵090=∠=∠GCE ACB ,∴BCH ACG ∠=∠,……………………………………………………5分 在ACG ∆与BCH ∆中八年级数学试题 第 8 页 (共 9 页)⎪⎩⎪⎨⎧=∠=∠∠=∠=090BHC AGC BCH ACG BC AC ,∴ACG ∆≌BCH ∆,………………………6分∴BH AG =, ∵CE CD =, ∴CE BH CD AG ⋅=⋅2121 即BCE ACD S S ∆∆=;……………………………………………………………7分 (3)过点A 作AM 垂直CG 的延长线于点M ,过点D 作CG DN ⊥,垂足为N , ……………………………………………………………………………………8分 ∵090=∠=∠BFC ACB ,∴ 090=∠+∠BCF ACM ,090=∠+∠BCF CBF ,∴CBF ACM ∠=∠,…………………………………………………………9分 在ACM ∆与CBF ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090BFC AMC CBF ACM BC AC ,∴ACM ∆≌CBF ∆,∴CF AM =,…………………………………………………………………10分 同理可证DCN ∆≌CEF ∆,…………………………………………………11分 ∴ CF DN =, ∴ AM DN =, 在AGM ∆与DGN ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090DNG AMG DGN AGM DN AM ,∴AGM ∆≌DGN ∆,∴DG AG =,即G 为AD 中点.………………………………………………………………12分。
-八年级数学上册期末试卷(含答案和解释)
-八年级数学上册期末试卷(含答案和解释)2016-2017八年级数学上册期末试卷(含答案和解释)每道错题做三遍。
第一遍:讲评时;第二遍:一周后;第三遍:考试前。
今天店铺给大家带来的是2016-2017八年级数学上册期末试卷(含答案和解释),大家一起来看看吧。
一.选择题(共8个小题,每小题3分,共24分.)1. 在中,分式的个数是( )A. 2B. 3C. 4D. 52. 已知等腰三角形的两边长分别为7和3,则第三边的长是( )A. 7B. 4C. 3D. 3或73. 如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是( )A. 边边边B. 角边角C. 边角边D. 角角边4. 在下列各式的计算中,正确的是( )A. a2+a3=a5B. 2a(a+1)=2a2+2aC.(ab3)2=a2b5D. (y﹣2x)(y+2x)=y2﹣2x25. 能使分式的值为零的所有x的值是( )A. x=1B. x=﹣1C. x=1或x=﹣1D. x=2或x=16. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A. 3B. 4C. 5D. 67. 已知xm=6,xn=3,则的x2m﹣n值为( )A. 9B.C. 12D.8. 若 =0无解,则m的值是( )A.﹣2B. 2C. 3D. ﹣3二.填空题(共8个小题,每小题3分,共24分.)9. 等腰三角形的一内角等于50°,则其它两个内角各为 .10. 三角形的三边长分别为5,1+2x,8,则x的取值范围是 .11. 分解因式:ax2﹣6ax+9a= .12. 如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC 于点D,如果BC=10cm,那么△BCD的周长是 cm.13. 如图,AD∥BC,BD平分∠ABC.若∠ABD=30°,∠BDC=90°,CD=2,则∠A= °,BC= .14. 一个多边形的内角和等于外角和的3倍,那么这个多边形为边形.15. 若5x﹣3y﹣2=0,则105x÷103y= .16. 以知关于x的分式方程 =2的解是非负数,则a的取值范围是 .三.解答题(本大题共8个小题,满分72分)17. 计算(1)(2a)3•b4÷12a3b2(2) .18. 先化简,再求值:,其中 .19. 解下列分式方程.(1)(2) .20 在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)21. 如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22. 如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠ =∠ (角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .23. 如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.24. 某市在道路改造过程中,需要铺设一条长为2000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.参考答案与试题解析一.选择题(共8个小题,每小题3分,共24分.)1. 在中,分式的个数是( )A. 2B. 3C. 4D. 5考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:在中,分式有,∴分式的个数是3个.故选:B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.2. 已知等腰三角形的两边长分别为7和3,则第三边的长是( )A. 7B. 4C. 3D. 3或7考点:等腰三角形的性质;三角形三边关系.分析:分7是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.解答:解:①7是腰长时,三角形的三边分别为 7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选A.点评:本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是( )A.边边边B.角边角C. 边角边D. 角角边考点:全等三角形的应用.专题:证明题.分析:因为AA′、BB′的中点O连在一起,因此OA=OA′,OB=OB′,还有对顶角相等,所以用的判定定理是边角边.解答:解:∵AA′、BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴△OAB≌△OA′B′(SAS).所以用的判定定理是边角边.故选:C.点评:本题考查全等三角形的判定定理,关键知道是怎么证明的全等,然后找到用的是哪个判定定理.4. 在下列各式的计算中,正确的是( )A. a2+a3=a5B. 2a(a+1)=2a2+2aC. (ab3)2=a2b5D. (y﹣2x)(y+2x)=y2﹣2x2考点:单项式乘多项式;合并同类项;幂的乘方与积的乘方;平方差公式.分析:利用合并同类项的法则以及积的乘方、幂的乘方,平方差公式即可判断.解答:解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选B.点评:本题考查了同类项的法则以及积的乘方、幂的乘方,平方差公式,正确理解法则是关键.5. 能使分式的值为零的所有x的值是( )A. x=1B. x=﹣1C. x=1或x=﹣1D. x=2或x=1考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵ ,即,∴x=±1,又∵x≠1,∴x=﹣1.故选:B.点评:此题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为0这个条件.6. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A. 3B. 4C. 5D. 6考点:角平分线的性质.分析:已知条件给出了角平分线、PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.解答:解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.点评:本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.7. 已知xm=6,xn=3,则的x2m﹣n值为( )A. 9B.C. 12D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.解答:解:∵xm=6,xn=3,∴x2m﹣n=(xm)2÷xn=62÷3=12.故选C.点评:本题考查了同底数的幂的.除法,幂的乘方的性质,把原式化成(xm)2÷xn是解题的关键.8. 若 =0无解,则m的值是( )A. ﹣2B. 2C. 3D. ﹣3考点:分式方程的解.专题:计算题.分析:先按照一般步骤解方程,得到用含有m的代数式表示x的形式,因为无解,所以x是能令最简公分母为0的数,代入即可解出m.解答:解:方程两边都乘(x﹣4)得:m+1﹣x=0,∵方程无解,∴x﹣4=0,即x=4,∴m+1﹣4=0,即m=3,故选C.点评:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二.填空题(共8个小题,每小题3分,共24分.)9. 等腰三角形的一内角等于50°,则其它两个内角各为50°,80°或65°,65° .考点:等腰三角形的性质.分析:已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.解答:解:当50°的角为底角时,只一个底角也为50°,顶角=180°﹣2×50×=80°;当50°的角为顶角时,底角=(180°﹣50°)÷2=65°.故答案为:50°,80°或65°,65°.点评:本题考查了等腰三角形的性质及三角形内角和.定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10. 三角形的三边长分别为5,1+2x,8,则x的取值范围是 1考点:三角形三边关系.分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解答:解:由题意,有8﹣5<1+2x<8+5,解得:1点评:考查了三角形的三边关系,还要熟练解不等式.11. 分解因式:ax2﹣6ax+9a= a(x﹣3)2 .考点:提公因式法与公式法的综合运用.版权所有专题:因式分解.分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.解答:解:ax2﹣6ax+9a=a(x2﹣6x+9)﹣﹣(提取公因式)=a(x﹣3)2.﹣﹣(完全平方公式)故答案为:a(x﹣3)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12. 如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC 于点D,如果BC=10cm,那么△BCD的周长是 26 cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.解答:解:如图,连接BD.。
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
八年级上册数学期末试卷含答案
八年级 2016-2017 学期第一学期数学期末试卷(时间90 分钟,满分100 分)考生姓名:考试时间:得分:一、仔细选一选。
(每题 3 分,共30 分)1.以下环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是(A. B. C. D.)2.王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.以以下图,已知△ABE≌△ ACD,∠ 1=∠2,∠ B=∠C,不正确的等式是(A .AB=AC B.∠ BAE= ∠CAD C. BE=DC D. AD =DE)(第2题)(第3题)( 第4题 )4.如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A . 180°B. 220°C. 240°D. 300°5.以下计算正确的选项是()A .2a+3b=5ab B.(x+2)2=x2+4C.( ab3)2=ab6D.(﹣1)0=16.以下式子变形是因式分解的是()A .x2﹣5x+6= x (x﹣5)+6B.x2﹣ 5x+6=( x﹣2)(x﹣3)C.( x﹣2)(x﹣3)= x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)7.若分式存心义,则 a 的取值范围是()A .a=0B. a=1C. a≠﹣1D. a≠00235﹣=﹣;④﹣(428.以下各式:①a =1;②a?a =a ;③23﹣5)+(﹣ 2)÷8(×﹣ 1)=0;⑤x2 +x2=2x2,此中正确的选项是()① ②③B.①③⑤C.②③④D.②④⑤A .9.跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车平均速度的倍,若设乘公交车均匀每小时走x 千米,依据题意可列方程为()A .B.C.D.10.如图,已知∠ 1=∠2,要获得△ABD≌△ ACD,从以下条件中补选一个,则错误选法是()A . AB=AC B. DB=DC C.∠ADB= ∠ADC D.∠B=∠C(第10题)( 第13题 )(第14题)二.仔细填一填(每题 3 分,共 15 分).分解因式:x 3﹣4x2﹣12x= _________ .1112.若分式方程:有增根,则 k= _________ .13.以下图,已知点 A、D、 B、F 在一条直线上, AC=EF,AD=FB,要使△ABC≌△ FDE,还需增添一个条件,这个条件能够是_______ .(只要填一个即可)14.如图,在△ABC中, AC=BC,△ABC的外角∠ ACE=100°,则∠ A= ___度.15.如图,边长为m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.耐心解一解(共 6 小题,满分 55 分)16.(每题 5 分,共 10 分)先化简,再求值(1)5(3a2b﹣ab2)﹣ 3(ab2+5a2b),此中 a= , b=﹣(2),此中x=17.(5 分)给出三个多项式:x2+2x﹣1, x2+4x+1, x2﹣ 2x.请选择你最喜爱的两个多项式进行加法运算,并把结果因式分解。
2016-2017学年最新人教版第一学期八年级数学(上册)期末测试卷(有答案)
2016-2017学年八年级(上)期末数学试卷一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y43.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣14.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.126.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±167.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣210.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=时,分式没有意义;当x=时,分式的值为0;当x=2时,分式的值为.12.(﹣)﹣1﹣(﹣2)0=.13.当a=时,关于x的方程=的解是x=1.14.用科学记数法表示0.0000002016=.15.已知x+=5,那么x2+=.16.若=3,则=.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为米.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是(只填序号)三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:;求证:.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.2016-2017学年中八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y4【考点】整式的混合运算.【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可.【解答】解:A、2a+3b不能合并,故错误;B、3x2÷2x=1.5x,故错误;C、(x2)3=x6,故正确;D、(x+y2)2=x2+2xy2+y4,故错误;故选C.【点评】本题考查了整式的混合运算,是各地中考题中常见的题型.涉及知识:合并同类项;单项式的除法;幂的乘方;完全平方公式.3.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母≠0即可求解.【解答】解:根据题意得:a﹣1≠0,解得:a≠1.故选C.【点评】本题考查了分式有意义的条件:分母≠0,理解分式有意义的条件是关键.4.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18﹣4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.12【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据比例求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,得到答案.【解答】解:过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,DE⊥AB,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故选:C.【点评】本题主要考查的是角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.6.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±16【考点】完全平方式.【分析】这里首末两项是x和4y这两个数的平方,那么中间一项为加上或减去x和4y积的2倍.【解答】解:∵x2+kxy+16y2是一个完全平方式,∴±2×x×4y=kxy,∴k=±8.故选B.【点评】本题考查的是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【考点】翻折变换(折叠问题);矩形的性质.【专题】证明题.【分析】对翻折变换及矩形四个角都是直角和对边相等的性质的理解及运用.【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2 【考点】解分式方程.【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.10.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:ax=4+x﹣2解得:(a﹣1)x=2,∴当a﹣1=0即a=1时,整式方程无解,分式方程无解;当a≠1时,x=x=2时分母为0,方程无解,即=2,∴a=2时方程无解.故选:C.【点评】本题考查了分式方程无解的条件,是需要识记的内容.二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=﹣2时,分式没有意义;当x=﹣时,分式的值为0;当x=2时,分式的值为.【考点】分式有意义的条件;分式的值为零的条件;分式的值.【分析】根据分式没有意义的条件,分式等于0的条件以及把x=2代入分式求值即可.【解答】解:当分式没有意义时,x+2=0,解得:x=﹣2;当分式的值是0时,2x+1=0,解得:x=﹣;当x=2时,原式==.故答案是:﹣2;﹣;.【点评】本题考查了分式有意义的条件,当分母等于0时,分式无意义,分式有意义的条件是:分母≠0.12.(﹣)﹣1﹣(﹣2)0=﹣4.【考点】负整数指数幂;零指数幂.【专题】计算题;推理填空题.【分析】首先根据负整指数幂的运算方法,求出(﹣)﹣1的值是多少;然后根据零指数幂的运算方法,求出(﹣2)0的值是多少;最后根据有理数减法的运算方法,求出算式的值是多少即可.【解答】解:(﹣)﹣1﹣(﹣2)0=﹣3﹣1=﹣4.故答案为:﹣4.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.13.当a=﹣9时,关于x的方程=的解是x=1.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:=,去分母得:4a+6=3a﹣3,解得:a=﹣9,经检验a=﹣9是原方程的解,故答案为:﹣9【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.用科学记数法表示0.0000002016= 2.16×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002016=2.16×10﹣7.故答案为:2.16×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.已知x+=5,那么x2+=23.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.若=3,则=.【考点】比例的性质;分式的值.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=3,得a=3b.===.故答案为:.【点评】本题考查了比例的性质,利用等式的性质得出a=3b是解题关键.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为20.【考点】轴对称的性质.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为100米.【考点】解直角三角形的应用-坡度坡角问题.【分析】此题实际上是在直角三角形中,已知斜边,求30度所对的直角边.【解答】解:由题意得,AB=200米,∠A=30°,故可得BC=100米.故答案为:100.【点评】本题考查了坡度及坡角的知识,本题涉及的角度比较特殊,所以我们可以直接利用含30°角的直角三角形的性质求解.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于1260°.【考点】多边形内角与外角.【分析】先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n﹣2)180°计算即可求解.【解答】解:多边形的边数是:360°÷40°=9,则内角和是:(9﹣2)180°=1260°.故答案是:1260°.【点评】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是①②③④(只填序号)【考点】全等三角形的判定与性质.【分析】根据HL可证Rt△AGB≌Rt△AFC,从而得出∠B=∠C,进而得出∠EAF=∠DAG,再利用ASA证明△AEF≌△AGD,从而得出AD=AE,BE=CD.【解答】解:∵AG⊥BD,AF⊥CE,∴△AGB和△AFC是直角三角形,在Rt△AGB和Rt△AFC中,,∴Rt△AGB≌Rt△AFC(HL),∴∠B=∠C,∠BAG=∠CAF,故①正确;又∵∠BAG=∠EAF+∠FAG,∠CAF=∠DAG+∠FAG,∴∠EAF=∠DAG,故②正确;在△AFE和△AGD中,,∴△AFE≌△AGD(ASA),∴AD=AE,故③正确;∵AB=AC,∴AB﹣AE=AC﹣AD,∴BE=CD,故④正确.故答案为:①②③④.【点评】本题主要考查了直角三角形全等的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】首先根据分式化简的方法,把(1+)÷化简;然后把a=2代入化简后的算式,求出算式的值是多少即可.【解答】解:(1+)÷=÷=×=﹣当a=2时,原式=﹣=﹣.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:分式的化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.【考点】整式的混合运算—化简求值.【分析】直接利用乘法公式去括号,进而合并同类项,再利用整式除法运算法则化简,进而得出答案.【解答】解:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y=[x2﹣4y2﹣(x2+4y2+4xy)]÷2y=(﹣8y2﹣4xy)÷2y=4y+2x,将x=5,y=2代入上式得:原式=4×2+2×5=18.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,进而分解因式,再将已知代入求出答案.【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,∴将a﹣b=4,ab=3代入上式可得:原式=3×42=48.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确分解因式是解题关键.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.【考点】分式方程的应用.【分析】首先设原计划行军的速度为xkm/时,则加速后的速度为(1+20%)xkm/时,根据题意可得等量关系:原计划所用时间﹣实际所用时间=1小时,根据等量关系列出方程,再解即可.【解答】解:设原计划行军的速度为xkm/时,由题意得:﹣=1,解得:x=12,经检验:x=12是原分式方程的解,答:原计划行军的速度为12km/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;求证:AB=AC.【考点】全等三角形的判定与性质;命题与定理.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.【解答】解:已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN,求证:AB=AC.证明:在△ADM与△AEN中,∵,∴△ADM≌△AEN(SAS),∴∠D=∠E.∵∠DAM=∠EAN,∴∠DAC=∠EAB.在△ABE和△ACD中,∵,∴△ABE≌△ACD(ASA),∴AB=AC.故答案为:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;AB=AC.【点评】本题考查全等三角形的判定与性质,在解答此题时要注意SAS、ASA定理的应用,此题属开放性题目,答案不唯一.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.【考点】分式方程的应用.【分析】根据方案(1)的叙述可知:甲工程队单独完成时的时间=工期;由方案(2)可得:乙工程队单独完成这项工程时,所用的天数﹣5天=工期;可以设出工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数,即可表示出各自的工作效率,根据方案(3)即可列方程求得工期,进而计算方案(1)(3)各自需要的工程款,即可作出比较.【解答】解:设工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数是x天,(x+5)天.根据题意得:4(+)+=1,解得:x=20,经检验x=20是原方程的解.则甲、乙单独完成这项工程时所需要的天数是20天,25天.则方案(1)的工程款是:20×1.5=30万元;方案(3)的工程款是:1.5×4+1.1×20=28(万元).综上所述,可知在保证正常完工的前提下,应选择第三种方案:甲、乙两队合作4天,剩下的工程由乙队独做.答:方案(3)比较省钱.【点评】本题主要考查了分式方程的应用,正确理解工作时间、工作效率、工作量之间的关系是解题的关键.。
20162017学第一学期期末测试卷
2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。
2016-2017学年初二人教版数学上册期末考试试题及答案word版
D CAB2016-2017学年初二人教版数学上册期末考试试题总分:150 时间:120分钟一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组x>3x<4⎧⎨⎩的解集是( ) A 、3<x<4 B 、x<4 C 、x>3 D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°, 则∠CFD ′等于( )A .31°B .28°C .24°D .22° 6、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、下列各组中的两个根式是同类二次根式的是( )A.和B.和C.和D.和8、如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是 ( ).A . m >5B . m ≥5C . m<5D . m ≤8C9、的整数部分为,的整数部分为,则的值是( )A. 1B. 2C. 4D. 91abABDFABO CD 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________; 12、已知,则.13、在实数范围内因式分解 . 14、计算22142a a a -=-- .15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度;17、若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是_______.第15题图 第16题图18、如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、解答题(共78分)19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。
2016~2017学年度八年级第一学期数学期末考试
2016~2017学年度第一学期期末考试八年级数学试题(满分:150分考试时间:120分钟)注意:请将所有题目的答案填到答题纸上,答在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分)1.下列图案中不是轴对称图形的是A B C D2.我国2016年10月17日7时30分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是393000米,用科学计数法表示,其结果为A.3.93×105米B.3.9×105米C.3.93×104米D.3.9×104米3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA4.若分式11-x有意义,则x的取值范围是A.x≠1B.x=1 C.x>1D.x<15.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而减小,则m的值为A.﹣1 B.1 C.3 D.﹣1或36.下列命题:aa=33)1(;aa=2)2(;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数包括正实数和负实数两类,其中正确命题的个数有A.1个B.2个C.3个D.4个二、填空题:(本大题共10小题,每小题3分,计30分)7.49的算术平方根是.8.如果分式xx--242的值为零,那么x =.9.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC 直角三角形.(填“是”或“不是”)第3题图10.若031=-+-y x ,则_____=xy .11.若点A (),21a a +在第一、三象限的两坐标轴夹角的平分线上,则a = . 12.某班在一次适应性考试中,分数段在140-150分的频率为0.2,在此分数段共有8人,则该班有 人.13.如图,平面直角坐标系xoy 中,直线y 1=k 1x+b 1的图像与直线y 2=k 2x+b 2的图像相交于点(―1, ―3),当y 1<y 2时,实数x 的取值范围为 .14.底角为45°的等腰三角形一边长为4cm ,则此等腰三角形的底边长= cm . 15.在△ABC 中,AB=2cm ,AC=1cm ,AD 平分∠BAC ,则△ABD 与△ACD 的面积之比是__________.16.如图,在平面直角坐标系xoy 中,点A (0,6),点B (-8,0),过A 点的直线交x 轴于点C ,当△ABC 是以AB 为底的等腰三角形时,直线AC 对应的函数关系式为 . 三、解答题(本大题共10小题,共102分.) 17.(本题8分)(1)计算:()21333π-⎛⎫-+- ⎪⎝⎭(2)解方程:x x --21—21-x =3第9题图x2x+b 2第13题图 第16题图18.(本题8分)已知x 3+81=0,求代数式423--x x ÷⎪⎭⎫ ⎝⎛--+252x x 的值.19.(本题10分)某初级中学围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(每位学生必须从“羽毛球、跳绳、足球、篮球、其他”五个选项中选一项且只能选填一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题: (1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少名学生?占被调查人数的百分比是多少? (3)若该校九年级共有300名学生,图2是根据该校各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图24525八年级九年级七年级20.(本题10分)在平面直角坐标系xoy 中,点A 、B 、C 的坐标分别为(-1,0)、(-2,3)、(-3,1). (1)作出△ABC 关于x 轴对称的 △A 1B 1C 1 ,直接写出B 1、C 1两点的坐标: B 1( , ) C 1( , ) .(2)写出△ABC 的面积,S △ABC = . (3)在y 轴上找一点D ,使得BD+DA 的值最小, 求D 点的坐标.21.(本题10分)已知y 与4x +2成正比例,当x =3时,y =14. (1)求y 与x 之间的函数表达式;(2)若点),2(1y 与),1(2y 在该函数图像上,比较1y 与2y 的大小关系.22.(本题10分)如图,在△ABE 中,AB=AE ,C 、D 是BE 边上两点且AC=AD ,求证:BC=DE .23.(本题10分)网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?24.(本题10分)如图,△ABC中,AD是△ABC的边BC上的高,E、F分别是AB、AC 的中点,AC=13、AB=20、BC=21.(2)求△ABC的面积.第24题图25.(本题12分)某蔬菜基地要把一批新鲜蔬菜运往外地,有汽车和火车两种运输方式可火车运输总费用y2(元)与运输路程x(km)之间的函数图像如上图所示:(1)请分别写出汽车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数关系;(2)若蔬菜基地先由汽车把蔬菜运往60km外的中转站再用火车运送(中转时间忽略不计),写出运输总费用y与运输总路程x(km)之间的函数关系,并求出当运输总路程为200km时的总费用;(3)若只选择一种运输方式,你认为哪种运输方式运输的总费用较少?并说明理由.26.(本题14分)如图所示,在平面直角坐标系xoy中,直线y=3x+3交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y=3x+3平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.备用图(2)备用图(1)八上期末数学参考答案一、选择题1、B2、A3、B4、A5、A6、B二、填空题 7、7 8、-2 9、是 10、3 11、-1 12、40 13、x <-114、4或24(或写成82) 15、2:1 16、6724+=x y 三、解答题17、(1)()21333π-⎛⎫-+- ⎪⎝⎭759351=-+-+=(2)x=2 检验:当x=2时,x-2=0. ∴x=2是增根,原方程无解。
2016-2017学年第一学期人教版八年级上册期末数学试卷含答案
2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
2016-2017学年人教版八年级上册期末考试数学试题含答案
P RE图2图1第6题图D DBCBCA(Q)A2016—2017学年度第一学期终结性检测试题八年级数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.1.2的平方根是A.±2B.2C.−2D.42.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是..轴对称图形的是A.B.C.D.3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是A.23B.25C.35D.14.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的A.3 B.4 C.7 D.105.在0,π,722,2,0.021021021…这五个数字中,无理数有A.2个 B.3个 C.4个 D.5个6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB 和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是A.SAS B.ASA C.AAS D.SSS7. 某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的A.平均数B.中位数C.众数D .频数8. 下列计算正确的是A.2a a= B .a b a b+=+ C.()2a a= D.ab a b=⋅赵爽“勾股圆方图”lQABP160°45°mm mmD.C.B.A.MNNMNMNM图1图2B 2A 2D C D 1B 1C 1A 1BA D 2C 2D CA B A 1C1B 1D 1DCBA MN9.如图,△ABC 中,AC =3,BC =4,AB=5,BD 平分∠ABC ,如果 M 、N 分别为BD 、BC 上的动点,那么CM+MN 的最小值是 A .2.4 B .3 C .4 D .4.810.如图,直线m 表示一条河,点M 、N 表示两个村庄,计划在m 上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)mNM二、填空题(本题共18分,每小题3分)11.如果二次根式 1x - 有意义,那么 x 的取值范围是 . 12.如果将一副三角板按如图方式叠放,那么∠1= .13.已知x 1 和 x 2分别为方程220x x +-=的两个实数根,那么 x 1+x 2= ;12x x ⋅= . 14. 计算: 2(23)26=-+ .15. “已知点P 在直线 l 上 ,利用尺规作图过点P 作直线 PQ ⊥l ”的作图方法如下:①以点 P 为圆心,以任意长为半径画弧,交直线 l 于A 、B 两点;②分别以A 、B 两点为圆心,以大于 12AB 的长为半径画弧,两弧交于点Q ; ③连接PQ .则直线 PQ ⊥l .请什么此方法依据的数学原理是 .16. 中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD 的面积为1,如果把它的各边分别延长一倍得到正方形A 1B 1C 1D 1,则正方形A 1B 1C 1D 1的面积为 ;再把正方形A 1B 1C 1D 1的各边分别延长一倍得到正方形A 2B 2C 2D 2(如图2),如此进行下去,得到的正方形A n B n C n D n 的面积为 (用含n 的式子表示,n 为正整数).三、解答题(本题共30分,每题5分)17.计算:()313+2312+64---EC B A D18.用配方法解一元二次方程:x 2 + 6x = 919. (本题5分)从①∠B =∠C ②∠BAD =∠CDA ③AB =DC④BE =CE 四个等式中选出两个作为条件,证明AED △是等腰三角形(写出一种即可).20. 某调查小组采用简单随机抽样方法,对我区部分初中生每天进行课外阅读的时间进行了抽样调查,将所得数据进行整理后绘制成如下统计图表,根据图表中的信息回答下列问题:我区部分初中生课外阅读时间频数分布直方图我区部分初中生课外阅读时间扇形统计图50分钟40分钟30分钟20分钟时间(分钟)50分钟 12% 分钟30分钟 44%分钟人数22018020024014010012060204080160O(1)该调查小组抽取的样本容量是多少? (2)分别补全两个统计图表;(3)请估计我区初中生每天进行课外阅读的平均时间.21.已知:关于x 的一元二次方程()22210k x x -++=有两个实数根.(1)求k 的取值范围;(2)如果k 为正整数,且该方程的两个实根都是整数,求k 的值.22. 对于正实数a 、b ,定义新运算a b ab a b *=-+.如果21661x *=,求实数x 的值.四、解答题(本题共21分)23. (本题5分)已知:关于x 的一元二次方程22(23)320x m x m m -++++=(m 为实数)的两个实数根分别是△ABC 的两边AB 、AC 的长,且第三边BC 的长为5.当m 取何值时,△ABC 为直角三角形?24.(本题5分)列方程解应用题:某校为开展开放性综合实践活动,计划在校园内靠墙用篱笆围出一块长方形种植园地.已知离校墙10m 的距离有一条平行于墙的甬路,如果篱笆的长度是40m ,种植园地的面积是198 m 2,那么这个长方形园地的边长应该各是多少m ?甬路25. (本题5分)如图,在Rt△ABC中,∠ACB =90°,AB=8 cm,AC=4cm,点D从点B出发,以每秒3cm的速度在射线..BC上匀速运动,当点D运动多少秒时,以A、D、B为顶点的三角形恰为等腰三角形?(结果可含根号).AC B26. (本题6分)(1)已知:图1中,△ABC为等边三角形,CE平分△ABC的外角∠ACM,D为BC边上任意一点,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)图2中△ABC为任意三角形且∠ACB=60°,如果其他条件不变,这个结论还成立吗?说明你的理由.ADE MAB ME图1图2CBCD2016—2017学年度第一学期终结性检测试题八年级数学答案及评分标准一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B C A D B C D A 二、填空题(本题共18分,每小题3分)11.x≥1 12.105°13.-2(2分),1(1分);14.5 15.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线.(仅回答前一句扣1分)(或等腰三角形三线合一)注:此题答案不唯一,其他正确答案请酌情相应给分16.5(1分),5n(2分).三、解答题(本题共30分,每题5分)我区部分初中生课外阅读时间频数分布直方图50分钟40分钟30分钟20分钟时间(分钟)人数22018020024014010012060204080160O 20 分钟我我区部分初中生课外阅读时间扇形统计图302050分钟 12% 40 分钟30分钟44%人221820241410126020408016OECBA D 17.解:原式=1+2323+4-- 4分 =733- 5分18.解:x 2 + 6x = 9x 2 +6x+9 = 9+9 1分(x +3)2 =18 2分x +3=±32 3分x 1 =-3+32,x 2=-3-32 5分注:此题用其他解法不给分19.选择的条件是:①∠B =∠C ②∠BAD =∠CDA (或①③,①④,②③)1分证明:在△BAD 和△CDA 中∵B C BAD CDA AD DA ∠=∠⎧⎪∠=∠⎨⎪=⎩2分 ∴ BAD CDA ∆≅∆(AAS) 3分∴ A D B D A C ∠=∠ 4分 即 在△AED 中 A D E D A E∠=∠ ∴AE = DE ,△AED 为等腰三角形 5分 (注:选择不同条件且证明过程正确请酌情相应给分)20.解:(1)样本的容量为500 1分 (2)4分(3)208030220401405060500⨯+⨯+⨯+⨯=33.6答:我区初中生每天进行课外阅读的时间大约为33.6分钟. 5分21.解:(1)∵关于x 的一元二次方程()22210k x x -++=有两个实根∴k ≠2且△=()224242124b ac k k -=--=-≥0 1分 ∴k ≤3且k ≠ 2 2分 (2)∵k 为正整数,∴k=1或3 3分 又∵方程()22210k x x -++=的两个实根都为整数当k=1时,△ = 12-4k = 8,不是完全平方数,∴k=1不符合题意,舍去; 4分当k=3时,△ = 12-4k = 0,原方程为2210x x ++=符合题意∴k= 3 5分22.解:∵a b ab a b *=-+,且21661x *=,∴22161661x x -+= 1分当x >0时,得:241661x x -+=即24770x x +-= 2分解得:111x =-(舍去),27x = 3分当x <0时,得:241661x x --+=即24770x x --= 4分解得:311x =(舍去),47x =-∴x =±7 5分23.(1)∵a = 1,b = -(2m +3) ,c=m 2+3m+2 ∴ △= b 2-4ac=()()2223432m m m -+-++⎡⎤⎣⎦=2241294128m m m m ++--- = 1 >0∴无论m 取何值,方程总有两个不相等的实数根x40-2x 甬路由求根公式得:()2231422m b b ac x a +±-±-==即12x m =+,21x m =+ 2分 不妨设AB=m+1,AC=m+2,则AB < AC∵△ABC 为直角三角形且第三边BC =5,当BC 为直角边时,由勾股定理得:AB 2+ BC 2=AC 2∴()()222152m m ++=+,解得m =11 3分 当BC 为斜边时,由勾股定理得:AB 2 +AC 2=BC 2 ∴()()222125m m +++=,解得m 1=2,m 2=-5当m =-5时,AB=m+1=-4,∴m =-5舍去 4分 ∴m =11或m =2时,△ABC 为直角三角形. 5分24.解:设该园地垂直于校墙的一边长为 x m ,则平行于墙的一边长为(40-2x )m ,根据题意列方程得: 1分()402198x x -= 2分 整理,得:220990x x -+=解得:111x =,29x = 3分 ∵11>10,∴ 111x =不符合实际要求,舍去∴x = 9,此时40-2x = 22 4分答:这个长方形园地该园地垂直于校墙的一边长为9 m ,平行于墙的一边长为22m . 5分25.解:在Rt △ABC 中,∵∠A CB =90°,AB =8 cm ,AC=4 cm ,∴BC=22AB AC -=43 cm∵点D 从点B 出发,以每秒3 cm 的速度在射线BC 上匀速运动, 设当点D 运动t 秒时△ABD 为等腰三角形,则BD =(3t )cm 1分如图所示:D 3CD 2BAD 1ABME图1C D F当 AB = AD 时,∵∠A CB = 90°, ∴BD =2 BC = 83 cm即3t = 83,解得 t 1=8 2分当 BD=AB 时,3t = 8,∴t 2 =8333分 当 BD=AD 时,点D 在AB 的垂直平分线上, 作AB 的垂直平分线交BC 于D ,在Rt △ACD 中, ∵∠ACD =90°,∴ AC 2+ CD 2= AD 2又∵AC=4 cm ,AD = BD=3t cm , CD =BC -BD =(43-3t ) cm ,∴42+(43-3t )2 =(3t )2解得 t 3 = 83 4分答:当点D 运动8秒,833秒,83秒时,△ABD 为等腰三角形. 5分26.证明:(1)在AB 上取点F ,使得AF=DC ,连接FD 1分 ∵等边△ABC ,∴AB =BC ,∠B = ∠ACB = 60°,∠ACM = 120° 又∵AF=DC∴BF=BD ,△FBD 为等边三角形 ∴∠BFD = 60°∴∠AFD = 120° ∵CE 平分∠ACM ,∠ACM = 120° ∴∠ECM = 60°,∠DCE =120°∴∠AFD =∠DCE∵∠ADC =∠B+ ∠BAD ,∠ADC =∠ADE+ ∠EDC 且∠B=∠ADE=60°∴∠BAD = ∠EDC 即∠FAD = ∠CDE 在△AFD 和△DCE 中∵AFD DCEAF DC FAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFD ≌△DCE (ASA)∴AD =DE 3分EM图2DBCAG(2) AD =DE 成立 在AC 上取点G ,使GC=CD ,连接GD 4分 ∵∠ACB =60°,∴△CDG 为等边三角形,∴DG=DC ,∠DGC =∠GDC = 60°,∠AGD = 120° ∵(1)中已证明∠ECD =120° ∴∠AGD =∠ECD∵∠ADE =∠ADG+ ∠GDE=60°, ∠GDC =∠GDE+ ∠EDC =60°∴∠AD G = ∠EDC 在△ADG 和△EDC 中∵AGD ECD DG DC ADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADG ≌△EDC (ASA)∴AD =ED 6分备注:此评分标准仅提供有限的解法,其他正确解法仿此标准酌情给分。
—17学年上学期八年级期末考试数学试题(附答案)
2016——2017学年度上学期期末素质测试八年级数学试题(人教版)亲爱的同学:寒假快要到了,祝贺你又完成了一个学期的学习,为了使你度过一个丰富多彩的寒假生活,过一个快乐、幸福的春节,请你认真思考、细心演算,尽情发挥,向一直关心你的人们递交一份满意的答卷,祝你成功! 亲爱的同学,请注意: ★ 本试卷满分150分; ★试时间120分钟; 一、精心选一选(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).1.下列图形中不是轴对称图形的是( ) A . B . C . D .2.下列多项式中能用平方差公式分解因式的是 ( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x3. 一个多边形的内角和比它的外角和的3倍少180°,这个多边形边数是( ) A. 5条 B. 6条 C. 7条 D. 8条4.下列运算正确的是 ( )A..D .C .B5.已知P (a ,3)和Q (4,b )关于x 轴对称,则(a+b )2016的值为 ( ) A. 1 B. -1 C. 72016 D. -720166.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) A. 60° B. 120° C. 60°或150° D.60°或120°7.如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC+BC 的长度最短,作法为:①作点B 关于直线l 的对称点B ’;②连接AB ’,与直线l 相交于点C ,则点C 为所求作的点。
在解决这个问题时没有..运用到的知识或方法是 ( ) A: 转化思想B: 三角形的两边之和大于第三边 C: 两点之间,线段最短D: 三角形的一个外角大于与它不相邻的任意一个内角8.下列各式计算正确的 ( ) A.xa·x 3=(x 3)a B .xa·x 3=(x a )3C.(x a)4=(x 4)aD. x a· x a· xa=xa+39.若关于x 的分式方程1x 1m --=2的解为正数,则m 的取值范围是 ( ) A.m>-1 B.m ≠-1 C.m>1 且m ≠-1 D.m>-1且m ≠110.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =S △ABC ; ④ 当∠EPF 在△ABC 内绕顶点P 旋转时 (点E 不与A 、B 重合),BE +CF =EF , 上述结论中始终正确的有 ( ) A .1个 B .2个 C .3个 D .4个二、细心填一填(本大题共有8个小题,每小题4分,共32分.请把答案填在题中的横线上.) 11. 因式分解:a 3-ab 2= .12. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .2113.如图所示,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .14.已知a+b=-3,ab=1,则a 2+b 2=15.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: .(答案不唯一,写一个即可)16.要使4y 2+9是完全平方式,需添加一项,添加的项为 (写出一个答案即可)。
2016-2017学年第一学期八年级数学答案
2016—2017学年第一学期期末初中质量监测八年级数学科试题参考答案及评分说明(本答案仅供参考,允许解法多样化,本答案后面的分数为累计得分)一、选择题(每小题3分,共30分,每小题只有一个正确答案)1.A 2. D 3.C 4. B 5.A 6.C 7.B 8.D 9.D 10. A二、填空题(每小题3分,共24分)11.55° 12. 3 13.1 14.2.5×10-6 15.2)(y x m + 16.30°17. 30°18. 5三.解答题(共8小题,满分66分)19、(本题8分).(1)))(32(y x y x -+解:=223322y xy xy x -+- ----------------------2分=2232y xy x -+ ----------------------4分(2) xy xy y x y x 6)6312(2334÷-+解: =xy xy xy y x xy y x 66636122334÷-÷+÷-----------------2分=1212223-+y x y x -----------------4分20(本题6分).解:原式 = 222299124y x y xy x -++- -----------------2分= xy x 1252------------4分当2=x ,5=y 时,原式=5212252⨯⨯-⨯=100------------------6分21(本题7分).证明:∵ BE =CF ,∴BE+EC =CF+EC即BC =FE -----------------2分又∵ AB ∥DE∴DEF B ∠=∠-----------------4分在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠F ACB EF BC DEF B∴△ABC ≌△DEF(ASA) -----------------7分22(本题7分).解: )1(2311-=+-x x x ------------1分 方程两边同时乘以)1(2-x ,得得3)1(22=-+x x ------------------3分化简,得 54=x .------------------5分 解得:45=x . ------------------6分 检验:45=x 时,0)1(2≠-x ,即45=x 是原分式方程的解.-----------7分 23(本题8分).解:(1)ABC S ∆=3521⨯⨯=215----------2分 (2)略----------5分(3)A 1(1,5),B 1(1,0),C 1(4,3)----------8分 24(本题10分).解:(1)(共6分)△MBO 和△NOC 是等腰三角形,------------------2分∵OB 平分∠ABC ,∴∠MBO=∠OBC ,∵MN ∥BC ,∴∠MOB=∠OBC ,∴∠MBO=∠MOB ,∴MO=MB ,同理可证:ON=NC ,∴△MBO 和△NOC 是等腰三角形;------------------6分(2)(共4分)∵△MBO 和△NOC 是等腰三角形∴MO=MB ,ON=NC-----------------8分∵△AMN 的周长=AM+MO+ON+AN∴△AMN 的周长=AM+MB+AN+NC=AB+AC=14------------------10分 25(本题8分).解:设篮球的单价为x 元-----------------1分 依题意得,409001500-=x x -----------------3分 解得:x=100-----------------5分经检验:x=100是原分式方程的解,且符合题意-----------------6分 则足球的价钱为:100﹣40=60(元)-----------------7分答:篮球和足球的单价分别为100元,60元.-----------------8分 26(本题12分).(1)①90°;-----------------2分②证明:∵BP=4,BC=5∴PC=1又∵AB=1∴AB=PC-----------------3分∵AB⊥BC,CM⊥BC,DP⊥AP∴∠B=∠C=∠APD=90°-----------------4分∴∠BAP+∠APB= 90°,∠APB+∠CPD =90°∴∠BAP=∠CPD -----------------5分又∵AB=PC,∠B=∠C =90°∴△ABP≌△PCD(ASA)-----------------6分(2)PB=PC,理由如下:延长线段AP、DC交于点E-----------------7分∵DP平分∠ADC∴∠ADP=∠EDP∵DP⊥AP∴∠DPA=∠DPE=90°又∵∠ADP=∠EDP,DP=DP∴△DPA≌△DPE(ASA)-----------------9分∴PA=PE∵AB⊥BP,CM⊥CP∴∠ABP=∠ECP=90°又∵∠APB=∠EPC,PA=PE∴△APB≌△EPC(AAS)-----------------10分∴PB=PC(3)4-----------------12分。
20162017学年八年级上期末数学试卷两套合集三附答案解析
2016-2017学年八年级(上)期末数学试卷两套合集三附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题1.以下大学的校徽图案中,是轴对称图形的是()A. B.C.D.2.以下运算正确的选项是()A.3x2+2x3=5x5B.(π﹣3.14)0=0 C.3﹣2=﹣6 D.(x3)2=x63.假设分式成心义,那么x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣34.假设x2﹣kxy+9y2是一个完全平方式,那么k的值为()A.3 B.±6 C.6 D.+35.以下长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,56.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,那么∠BDC的度数是()A.85°B.80°C.75°D.70°7.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC8.已知﹣=,那么的值为()A.B.C.﹣2 D.29.假设分式方程无解,那么m的值为()A.﹣1 B.0 C.1 D.310.如图,AD是△ABC的中线,E,F别离是AD和AD延长线上的点,且DE=DF,连接BF,CE、以下说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个C.3个D.4个二、填空题(共9小题,每题3分,总分值27分)11.计算:﹣|﹣5|+(2016﹣π)0﹣()﹣2= .12.假设分式的值为0,那么x= .13.已知2x=3,那么2x+3的值为.14.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,那个数用科学记数法表示为.15.一个多边形的内角和等于1260°,那么那个多边形是边形.16.一个三角形等腰三角形的两边长别离为13和7,那么周长为.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AD长为8cm,那么BC= .18.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,假设△EBC的周长为21cm,那么BC= cm.19.如图是我国古代数学家杨辉最先发觉的,称为“杨辉三角”.它的发觉比西方要早五百年左右,由此可见我国古代数学的成绩是超级值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按序数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数一、二、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数一、3、3、1恰好对应图中第四行的数字.请认真观看此图,写出(a+b)4的展开式,(a+b)4= .三、解答题(本大题共7小题,共63分)20.计算(1)﹣ab2c•(﹣2a2b)2÷6a2b3(2)4(x+1)2﹣(2x﹣5)(2x+5).21.分解因式(1)x2(x﹣2)﹣16(x﹣2)(2)2x3﹣8x2+8x.22.(1)先化简,再求值:(1﹣)÷,其中a=﹣1(2)解方程式:.23.△ABC在平面直角坐标系中的位置如下图.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;(3)求出△ABC的面积.24.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判定△OEF的形状,并说明理由.25.2016年12月28日沪昆高铁已经开通运营,从昆明到某市,可乘一般列车或高铁,已知高铁的行驶里程是400千米,一般列车的行驶里程是高铁的行驶里程的1.3倍.(1)求一般列车的行驶里程;(2)假设高铁的平均速度(千米/时)是一般列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时刻比一般列车所需时刻缩短3小时,求高铁的平均速度.26.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.参考答案与试题解析一、选择题1.以下大学的校徽图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念:若是一个图形沿一条直线折叠,直线两旁的部份能够相互重合,那个图形叫做轴对称图形,这条直线叫做对称轴进行解答即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;应选:C.【点评】此题要紧考查了轴对称图形,关键是把握轴对称图形的概念.2.以下运算正确的选项是()A.3x2+2x3=5x5B.(π﹣3.14)0=0 C.3﹣2=﹣6 D.(x3)2=x6【考点】幂的乘方与积的乘方;归并同类项;零指数幂;负整数指数幂.【分析】依照归并同类项法那么、零指数幂、负整数指数幂、幂的乘方别离求出每一个式子的值,再判定即可.【解答】解:A、3x2和2x3不能归并,故本选项错误;B、结果是1,故本选项错误;C、结果是,故本选项错误;D、结果是x6,故本选项正确;应选D.【点评】此题考查了归并同类项法那么、零指数幂、负整数指数幂、幂的乘方的应用,能求出每一个式子的值是解此题的关键.3.假设分式成心义,那么x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣3【考点】分式成心义的条件.【分析】依照分式成心义的条件可得x+3≠0,再解即可.【解答】解:由题意得:x+3≠0,解得:x≠3,应选:B.【点评】此题要紧考查了分式成心义的条件,关键是把握分式成心义的条件是分母不等于零.4.假设x2﹣kxy+9y2是一个完全平方式,那么k的值为()A.3 B.±6 C.6 D.+3【考点】完全平方式.【分析】依照首末两项是x和3y的平方,那么中间项为加上或减去x和3y的乘积的2倍,进而得出答案.【解答】解:∵x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×3y•x,解得k=±6.应选:B.【点评】此题要紧考查了完全平方公式,依照两平方项确信出这两个数,再依照乘积二倍项求解是解题关键.5.以下长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,5【考点】三角形三边关系.【分析】依照三角形的三边关系进行分析判定,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能组成一个三角形.【解答】解:依照三角形任意两边的和大于第三边,A选项中,3+4=7<8,不能组成三角形;B选项中,5+6=11,不能组成三角形;C选项中,5+6=11<12,不能够组成三角形;D选项中,3+4>5,能组成三角形.应选D.【点评】此题考查了能够组成三角形三边的条件:用两条较短的线段相加,若是大于最长的那条线段就能够够组成三角形.6.如图,在△ABC中,∠A=50°,∠AB C=70°,BD平分∠ABC,那么∠BDC的度数是()A.85° B.80° C.75° D.70°【考点】三角形内角和定理.【分析】先依照∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再依照三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,应选:A.【点评】此题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.7.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC【考点】全等三角形的判定.【分析】由条件AB=AD,结合∠A=∠A,要使△ABC≌△ADE那么需添加一组角相等或AC=AE,那么可求得答案.【解答】解:∵AB=AD,且∠A=∠A,∴当∠E=∠C时,知足AAS,可证明△ABC≌△ADE,当AC=AE时,知足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,知足ASA,可证明△ABC≌△ADE,当DE=BC时,知足SSA,不能证明△ABC≌△ADE,应选D.【点评】此题要紧考查全等三角形的判定,把握全等三角形的判定方式是解题的关键,即SSS、SAS、ASA、AAS和HL.8.已知﹣=,那么的值为()A.B.C.﹣2 D.2【考点】分式的加减法.【专题】计算题;分式.【分析】已知等式通分并利用同分母分式的减法法那么计算,整理即可求出所求式子的值.【解答】解:已知等式整理得: =,即=﹣,那么原式=﹣2,应选C【点评】此题考查了分式的加减法,熟练把握运算法那么是解此题的关键.9.假设分式方程无解,那么m的值为()A.﹣1 B.0 C.1 D.3【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x+2=m,由分式方程无解取得x=﹣3,代入整式方程得:m=﹣1,应选A【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.10.如图,AD是△ABC的中线,E,F别离是AD和AD延长线上的点,且DE=DF,连接BF,CE、以下说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】依照题意,结合已知条件与全等的判定方式对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.应选:D.【点评】此题考查三角形全等的判定方式和全等三角形的性质,判定两个三角形全等的一样方式有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必需有边的参与,假设有两边一角对应相等时,角必需是两边的夹角.二、填空题(共9小题,每题3分,总分值27分)11.计算:﹣|﹣5|+(2016﹣π)0﹣()﹣2= ﹣11 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式利用平方根概念,绝对值的代数意义,零指数幂、负整数指数幂法那么计算即可取得结果.【解答】解:原式=2﹣5+1﹣9=﹣11,故答案为:﹣11【点评】此题考查了实数的运算,熟练把握运算法那么是解此题的关键.12.假设分式的值为0,那么x= 2 .【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是,分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.【点评】分式是0的条件中专门需要注意的是分母不能是0,这是常常考查的知识点.13.已知2x=3,那么2x+3的值为24 .【考点】同底数幂的乘法.【分析】依照同底数幂的乘法,可得答案.【解答】解:2x+3=2x×23=3×8=24,故答案为:24.【点评】此题考察了同底数幂的乘法,熟记法那么并依照法那么计算是解题关键.14.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,那个数用科学记数法表示为 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所利用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】此题考查用科学记数法表示较小的数,一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左侧起第一个不为零的数字前面的0的个数所决定.15.一个多边形的内角和等于1260°,那么那个多边形是九边形.【考点】多边形内角与外角.【分析】那个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,若是已知多边形的内角和,就能够够取得一个关于边数的方程,解方程就能够够求出多边形的边数.【解答】解:依照题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,能够转化为方程的问题来解决.16.一个三角形等腰三角形的两边长别离为13和7,那么周长为33或27 .【考点】等腰三角形的性质;三角形三边关系.【分析】分腰长为13和7两种情形,再结合三角形的三边关系进行验证,再求其周长即可.【解答】解:当腰长为13时,那么三角形的三边长为13、13、7,现在知足三角形三边关系,周长为33;当腰长为7时,那么三角形的三边长为7、7、13,现在知足三角形三边关系,周长为27;综上可知,周长为33或27,故答案为:33或27.【点评】此题要紧考查等腰三角形的性质和三角形的三边关系,把握等腰三角形的两腰相等是解题的关键.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AD长为8cm,那么BC= 12cm .【考点】含30度角的直角三角形.【分析】因为AD是∠BAC的平分线,∠BAC=60°,在Rt△ACD中,可利用勾股定理求得DC,进一步求得AC;求得∠ABC=30°,在Rt△ABC中,可求得AB,最后利用勾股定理求出BC.【解答】解:∵AD是∠BAC的平分线,∠BAC=60°,∴∠DAC=30°,∴DC=AD=4cm,∴AC==4,∵在△ABC中,∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=8,∴BC==12cm.故答案为:12cm.【点评】此题考查了角平分线的概念,含30°直角三角形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和必然等于斜边长的平方是解答此题的关键.18.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,假设△EBC的周长为21cm,那么BC= 8 cm.【考点】线段垂直平分线的性质.【分析】由DE是AB的垂直平分线得AE=BE,故21=BE+BC+CE=AE+BC+CE=AC+BC=13+BC,即BC=8cm.【解答】解:∵AB的垂直平分线交AB于D,∴AE=BE又△EBC的周长为21cm,即BE+CE+BC=21∴AE+CE+BC=21又AE+CE=AC=13cm因此BC=21﹣13=8cm.【点评】此题考查三角形的有关问题,利用周长的整体替换求出结果.19.如图是我国古代数学家杨辉最先发觉的,称为“杨辉三角”.它的发觉比西方要早五百年左右,由此可见我国古代数学的成绩是超级值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按序数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数一、二、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数一、3、3、1恰好对应图中第四行的数字.请认真观看此图,写出(a+b)4的展开式,(a+b)4= a4+4a3b+6a2b2+4ab3+b4.【考点】整式的混合运算.【专题】规律型.【分析】由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为一、4、六、4、1.【解答】解:依照题意得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.【点评】此题考查了完全平方公式,学生的观看分析逻辑推理能力,读懂题意并依照所给的式子寻觅规律,是快速解题的关键.三、解答题(本大题共7小题,共63分)20.(10分)(2016秋•腾冲县期末)计算(1)﹣ab2c•(﹣2a2b)2÷6a2b3(2)4(x+1)2﹣(2x﹣5)(2x+5).【考点】整式的混合运算.【分析】(1)依照单项式的乘法法那么进行计算即可;(2)依照完全平方公式、平方差公式进行计算即可.【解答】解:(1)原式==﹣3a5b4c÷6a2b3=;(2)原式=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29.【点评】此题考查了整式的混合运算,把握单项式的乘法法那么和完全平方公式、平方差公式是解题的关键.21.分解因式(1)x2(x﹣2)﹣16(x﹣2)(2)2x3﹣8x2+8x.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(x﹣2)(x2﹣16)=(x﹣2)(x+4)(x﹣4);(2)原式=2x(x2﹣4x+4)=2x(x﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.22.(11分)(2016秋•腾冲县期末)(1)先化简,再求值:(1﹣)÷,其中a=﹣1(2)解方程式:.【考点】解分式方程;分式的化简求值.【专题】计算题;分式;分式方程及应用.【分析】(1)原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,把a的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解取得x的值,经查验即可取得分式方程的解.【解答】解:(1)原式=•=a+1,当a=﹣1时,原式=;(2)方程两边乘(x+3)(x﹣3)得:3+x(x+3)=(x+3)(x﹣3),整理得:3+x2+3x=x2﹣9,移项得:x2+3x﹣x2=﹣9﹣3,归并得:3x=﹣12,解得:x=﹣4,查验:当x=﹣4时,(x+3)(x﹣3)≠0,那么原方程的解是x=﹣4.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要查验.23.△ABC在平面直角坐标系中的位置如下图.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;(3)求出△ABC的面积.【考点】作图-轴对称变换.【分析】(1)先取得△ABC关于y轴对称的对应点,再按序连接即可;(2)先取得△ABC关于x轴对称的对应点,再按序连接,而且写出△ABC关于x轴对称的△A2B2C2的各点坐标即可;(3)利用轴对称图形的性质可得利用矩形的面积减去三个极点上三角形的面积即可.【解答】解:(1)如下图:(2)如下图:A2(2,﹣3),B2(3,﹣1),C2(﹣2,2).(3)S△ABC=5×5﹣×3×5﹣×1×2﹣×5×4=25﹣7.5﹣1﹣10=6.5.【点评】此题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.24.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判定△OEF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)依照BE=CF取得BF=CE,又∠A=∠D,∠B=∠C,因此△ABF≌△DCE,依照全等三角形对应边相等即可得证;(2)依照三角形全等得∠AFB=∠DEC,因此是等腰三角形.【解答】(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.【点评】此题要紧考查三角形全等的判定和全等三角形对应角相等的性质及等腰三角形的判定;依照BE=CF取得BF=CE是证明三角形全等的关键.25.2016年12月28日沪昆高铁已经开通运营,从昆明到某市,可乘一般列车或高铁,已知高铁的行驶里程是400千米,一般列车的行驶里程是高铁的行驶里程的1.3倍.(1)求一般列车的行驶里程;(2)假设高铁的平均速度(千米/时)是一般列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时刻比一般列车所需时刻缩短3小时,求高铁的平均速度.【考点】分式方程的应用.【分析】(1)依照高铁的行驶路程是400千米和一般列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设一般列车平均速度是x千米/时,依照高铁所需时刻比乘坐一般列车所需时刻缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)依题意可得,一般列车的行驶里程为:400×1.3=520(千米).(2)设一般列车的平均速度为x千米/时,那么高铁的平均速度为2.5x千米/时,依照题题得:,解之得:x=120,经查验x=120是原方程的解,因此原方程的解为x=120;因此高铁的平均速度为2.5×120=300(千米/时);答:高铁的平均速度为300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到适合的数量关系列出方程,解分式方程时要注意查验.26.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.【考点】全等三角形的判定与性质.【分析】(1)过O点作OE⊥AC于点E,利用角平分线的性质定理和判定定理即可证明.(2)由Rt△ABO≌Rt△AEO(HL),推出AB=AE,由Rt△CDO≌Rt△CEO(HL),推出CD=CE,推出AB+CD=AE+CE=AC.【解答】证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.【点评】此题考查角平分线的性质定理和判定定理、全等三角形的判定和性质等知识,解题的关键是学会添加经常使用辅助线,构造全等三角形解决问题,属于中考常考题型.2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.。
2016-2017学年人教版初二数学上册期末检测题含答案
15.如图所示,∠E=∠F=90° ,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF; ③△ACN≌△ABM;④CD=DN.其中正确的是(将你认为正确的结论的序号都填上) .如图所示, AD 是△ABC 的角平分线, DE⊥AB 于点 E,DF⊥AC 于点 F,连接 EF 交 AD 于点 G,则 AD 与 EF 的位置关系是. 17.如图所示,已知△ABC 和△BDE 均为等边三角形,连接 AD、CE,若∠BAD=α,则 ∠BCE=. 18.(2015·河北中考)若 a=2b≠0,则 19.方程
第 8 题图
(甲)作∠������������������、∠������������������的平分线,分别交������������于������、������,则������、������即 为所求; (乙)作������������、������������的中垂线,分别交������������于������、������,则������、������即为所求. 对于甲、乙两人的作法,下列判断正确的是( ) A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确 2 骣m 4 ÷ + 9.化简 ç ) ç ÷? (m 2) 的结果是( çm - 2 2 - m ÷ 桫
第 3 题图
第 4 题图
第 5 题图
5.如图,在△������������������中,������������ = ������������ ,������������ 平分∠������������������,������������ ⊥������������,������������ ⊥������������,������、������ 为垂足,则下 列四个结论:(1)∠������������������=∠������������������;(2)������������ = ������������ ;(3)������������平分∠������������������;(4)������������ 垂直 平分������������.其中正确的有( ) A.1 个 B.2 个 C.3 个 D.4 个 6.(2016·湖北宜昌中考)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信 息:a-b,x-y, x+y,a+b,������ 2 − ������ 2 ,������2 − ������2 分别对应下列六个字:昌,爱,我,宜,游,美. 现将 ������ 2 − ������ 2 ������2 − ������ 2 − ������ 2 ������2 因式分解,结果呈现的密码信息可能是( ) A.我爱美 B.宜昌游 C.爱我宜昌 D.美我宜昌 7.已知等腰三角形的两边长������,b 满足 2a 3b 5 +(2������+3������-13)2= 0,则此等腰三角形的周长为( )
八年级数学上册期末试卷及答案
2016—2017学年度第一学期初中 八年级期末考试数学试题题签考生注意:1、考试时间120分钟。
2、全卷共三道大题,总分120分。
一、选择题(本题每题3分,共30分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )B2. 王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )3.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )(3题图) (4题图) 4、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )5、下列计算正确的是( )6.如图,给出了正方形ABCD 的面积的四个表达式,其中错误的是( )7、下列式子变形是因式分解的是( )A 、x 2﹣5x+6=x (x ﹣5)+6 B 、x 2﹣5x+6=(x ﹣2)(x ﹣3) C 、(x ﹣2)(x ﹣3)=x 2﹣5x+6 8、若分式有意义,则a 的取值范围是( )9、化简的结果是( ) 10、随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ).二、填空题(本题共10小题,满分共30分)11、分解因式:x 3﹣4x 2+4x=)12、如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 .(只需填一个即可)13、如图,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°,则∠A= .八 年级数学试卷 第1页(共6页)八年级 数学试卷 第2页(共6页)(13题图) 14、根据分式的基本性质填空:()1422=-+a a15、若分式方程:有增根,则k= .16、如图所示,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 交AD 于点G ,则AD 与EF 的位置关系是 .17、已知等腰三角形的两边a ,b ,满足532+-b a +(2a+3b-13)2=0,则此等腰三角形的周长为 .18、五边形的内角和为 .19、小明不慎将一块三角形的玻璃打碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带 去. 20、 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 . 三.解答题:21、计算(5分):22211111x x x x x ⎛⎫-++÷⎪-+⎝⎭22、解分式方程:(5分)解方程:.23、(8分)如图,CE=CB ,CD=CA ,∠24、(8分)ABC ∆与C B A '''∆在平面直角坐标系中的位置如图⑴分别写出下列各点的坐标:A ' ;⑵说明C B A '''∆由ABC ∆经过怎样的平移得到⑶若点P (a ,b )是ABC ∆内部一点,⑷求ABC ∆的面积.第16题图第19题图八年级数学试卷 第3页(共6页)八年级数学试卷 第4页(共6页)25、(8分)如图1,在等边△ABC 中,点E 从顶点A 出发,沿AB 的方向运动,同时,点D 从顶点B 出发,沿BC 的方向运动,它们的速度相同,当点E 到达点B 时, D 、E 两点同时停止运动.(1)求证:CE =AD ;(2)连接AD 、CE 交于点M ,则在D 、E 运动的过程中,∠CMD 变化吗?若变化,则说明理由;若不变,则求出它的度数;(3)如图2,若点D 从顶点B 出发后,沿BC 相反的方向运动,其它条件不变.求证:CE =DE .图2图1AEBDCB DMEA C26、(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?27、20、(8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程。
2016~2017学年度第一学期期末考试八年级数学试卷参考答案及评分细则
2016~2017学年度第一学期期末考试八年级数学参考答案1.B2.B3.A4.D5.C6.C7.D8.B9.D 10.D11.2 12. 33x 13. 6± 14. ab 8 15. 9 16. 2317.解:两边同时乘以)1(2-x 得:3)1(2=+x ......4分解得: 21=x , ......6分检验:当21=x 时,0)1(2≠-x ......7分∴原分式方程的解为21=x .......8分18.解:原式x x x x x x 2)3)(3(333+-⨯+-++= ......4分32)3)(3(32-=+-⨯+=x x xx x x ......8分19. 证明:∵BE=CF , ∴BE+E C=CF+EC , 即BC=EF, …………2分∵AB ∥DE, ∴∠DEF=∠B , …………4分在△AB C 和△DE F 中,∵⎪⎩⎪⎨⎧=∠=∠=EFBC DEF B DEAB ∴△AB C ≌△DE F (SAS) …… 7分∴AC=DF. ………… 8分20.(1)解:原式)21)(21(22a a a a -+++= ......2分22)1()1(-+=a a ......4分(2) 原式)16(22-=x a ......6分)4)(4(2-+=x x a ......8分21. 解:(1)图略略 ......2分 2(1C ,)1 ......3分(2) 痕迹图略 ......5分 2(P ,)0 ......6分(3)3-=a ,21=b ......8分22.解(1)设单独完成此项工程,甲需x 天,则乙需x 2天, 由题意得:212155=+x x ,解得25=x ......3分检验:当25=x 时,02≠x ,∴原分式方程的解为25=x ,502=x ......5分答:甲需25天,乙需50天.(2)设乙每天的施工费用为y 万元,则甲每天的施工费用为)8.0(+y 万元,由题意得:2815)8.0(5=++y y , 2.1=y ,28.0=+y答:乙每天的施工费为2.1万元,甲每天的施工费用为2万元. ......7分(3) 20天或21天. ......10分23.(1) 证明:∵CA=CB ,∠CAB=900,点O 是AB 的中点,∴∠BCO=21∠CAB=450 , ∠A=∠B=450, ……2分∴∠BCO=∠B , ∴CO=OB. ……3分(2)连接CO,,在CB 上截取CQ=AM,连OQ, 可证△CQO ≌△AMO(SAS) ……4分 ∴OM=OQ,∠MOA =∠COD ,∵CO ⊥OA,∴MO ⊥OQ又∵△MON ≌△QON(SSS) ……5分∴∠MON=∠NOQ =21∠MOQ=450. ……6分(3)CQ=DQ, CQ ⊥DQ.证明:延长CQ 至H,,使QH=CQ,,连OH 、DH 、CD ,延长HQ 交AC 于I ,可证△OQH ≌△BQC(SAS) ∴OH =BC=AC, ∠QHO =∠BCQ, ……7分∴BC ∥HI, ∴∠AIO =∠ACB=900,∴在四边形ADOI 中,∠CAD+∠IOD=1800,又∠DOH+∠IDO=1800, ∴∠CAD =∠DOH, ……8分∴△CAD ≌△HOD(SAS) ∴DH =CD, ∠ADC =∠HDO,∵∠ADC+∠CDO=900, ∴∠HDO+∠CDO=900, ……9分∴CD ⊥DH,又点Q 是CH 的中点,∴DQ ⊥CQ ∴CQ=DQ. .....10分(另解:延长DO 交BC 于G ,连QD ,证△OGC ≌△QOD 亦可,参照给分.)24.解:(1)∵01)3(2=-++b a ,0)3(2≥+a ,01≥-b , 0)3(2=+∴a ,01=-b 3-=∴a ,1=b ,3(-∴A ,)0,1(B ,)0 ......2分 4==∴BC AB ,∵∠CBA=600 , ∴∠ODB=300 ∴BD=2OB=2, ∴CD=BC-BD=4-2=2. ......4分(2)延长EB 交y 轴于F ,连CE,△CEP 为等边三角形,可证△CDE ≌△CAP(SAS) ......6分∴∠CEB=∠CPA, ∴∠EBP=∠ECP=600, ∴∠FBO=∠DBO=600, ∴∠BFO=∠BDO=300,∴BD=BF, ∵BO ⊥DF,∴DO=OF ......7分 ∴点D 、F 关于x 轴对称,∴直线EB 必过点D 关于x 轴对称的对称点. ......8分(3)过D 作DI ∥AB 交AC 于I ,则△CDI 为等边三角形, ∴DI=CD =DB, ......9分 ∴∠MID =1200=∠DBN,∴△MDI ≌△NDB(AAS) ......10分 ∴NB =MI ,∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6. ......12分(另解:连AD ,在∠BDN 内作∠BDJ=300,DJ 交x 轴于J 亦可,参照给分.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页共6页◎第2页共6页乌丹第三中学2016-2017学年度上学期八年级数学期末测试卷 试卷副标题 考试范围:人教版八年级上册;考试时间:120分钟;命题人:乌丹三中数学组 学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题 1.(本题3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D . 2.(本题3分)设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为() A .-6<a<-3B .-5<a<-2 C .-2<a<5D .a<-5或a>2 3.(本题3分)如图,在Rt △ADB 中,∠D=90°,C 为AD 上一点,则x 可能是() A .10°B .20°C .30°D .40°4.(本题3分)如图,△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于() A .360°B .250°C .180°D .140° 5.(本题3分)如图,△ABC 中,AB=AC ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合.若∠OEC=136°,则∠BAC 的大小为(). A .44°B.58°C.64°D.68° 6.(本题3分)如图,ABC △中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE AB ⊥交AB 的延长线于E ,DF AC ⊥于F ,现有下列结论: ①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=. 其中正确的个数有 A .1个B .2个C .3个D .4个 7.(本题3分)如图,在ABC △中,OB 和OC 分别平分ABC ∠和ACB ∠,过O 作DE BC ∥,分别交AB 、AC 于点D 、E ,若=5BD CE +,则线段DE 的长为 A .5B .6C .7D .8 8.(本题3分)若改动多项式22129y xy x ++中的某一项,使它变成完全平方式,则改动的办法是() A .只能改动第一项 B .只能改动第二项 C .只能改动第三项 D .可以改动三项中的任意一项 9.(本题3分)下列各式从左到右的变形中,为因式分解的是(). A .x (a ﹣b )=ax ﹣bx B .()()222111x y x x y -+=-++ C .2y ﹣1=(y+1)(y ﹣1)第3页共6页◎第4页共6页D .ax+by+c=x (a+b )+c 10.(本题30,则b 的值为() A.1B.-1C.±1D.2 11.(本题3分)已知x 2﹣3x ﹣4=0 A.3B .2C .D .12.(本题3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x 米/分,则根据题意所列方程正确的是() A B C D。
. 14.(本题3分)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为 15.(本题3分)若43=x ,79=y ,则y x 23-的值为.16.(本题3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为 . 三、计算题 17.(本题5分)计算:(2m -1n -2)-2²18.(本题20分)计算: (1)(2+1)(224(2(3(419.(本题10分)分解因式:(1)(2a +1)2-(2a +1)(-1+2a)(2)4(x+y)2-(x-y)220.(本题70,﹣1,2中选一个合适的数作为a的值代入求值.21.(本题10分)(2013•三明)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价﹣进价) 四、解答题22.(本题8分)作图题(不写作法,保留作图痕迹):①有公路l 1同侧、l 2异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法) ②张庄A 、李庄B 位于河沿L 的同侧,现在河沿L 上修一泵站C 向张庄A 、李庄B 供水,问泵站修在河沿L 的什么地方,所用水管最少?23.(本题10分)如图,在△ABC 中,AC=BC ,∠C=90°,D 是AB 的中点,DE⊥DF,点E ,F 分别在AC ,BC 上,求证:DE=DF .A B 河 L李庄B 张庄A第5页共6页◎第6页共6页24.(本题10分)阅读下列解答过程,并回答问题. 在(x 2+ax+b )(2x 2-3x-1)的积中,x 3项的系数为-5,x 2项的系数为-6,求a ,b 的值. (x 2+ax+b )•(2x 2-3x-1) =2x 4-3x 3+2ax 3+3ax 2-3bx ① =2x 4-(3-2a )x 3-(3a-2b )x 2-3bx ② 根据对应项系数相等,有3-2a=-5,3a-2b=-6,解得a=4,b=9. 回答:(1)上述解答过程是否正确?. (2)若不正确,从第步开始出现错误. (3)写出正确的解答过程. 25.(本题12分)图①、图②分别由两个长方形拼成. (1)观察思考: (Ⅰ)图①的两个长方形的面积和S 1=; A.a 2+b 2B.a 2+abC.b 2-abD.a 2-b 2 (Ⅱ)图②的两个长方形的面积和S 2=; A.a(a-b)B.b(a-b)C.(a+b)(a-b)D.ab(a+b) (2(3)猜想归纳:S 1S 2(填“>”或“=”或“<”) (4)结论应用:10000.52-9999.52(写出具体计算过程) 26.(本题10分)(本题11分)(1)如图①,已知:在ABC △中,=90=BAC AB AC ∠︒,,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D E 、.证明:=DE BD CE +. (2)如图②,将(1)中的条件改为:在ABC △中,AB AC =,D A E 、、三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论=DE BD CE +是否成立?若成立,请你给出证明;若不成立,请说明理由. 图①图②参考答案1.A【解析】试题分析:轴对称图形是指将图形沿着某条直线折叠,图形的两边能够完全重合的图形.本题中只有A 是轴对称图形.考点:轴对称图形2.B【解析】试题分析:根据三角形的三边关系可得:8-3<1-2a<8+3,则-5<a<-2.考点:不等式组的应用3.B【解析】试题分析:根据三角形外角的性质可得:90°<6x <180°,解得:15°<x <30°. 考点:三角形外角的性质4.B【解析】试题分析:根据∠C=70°可得:∠A+∠B=110°,结合四边形内角和定理可得:∠1+∠2=360°-110°=250°.考点:四边形内角和定理5.D .【解析】试题分析:如图,连接OB 、OC .首先证得OB=OA=OC ,所以∠OBA=∠OAB=∠OAC=∠OCA ,设∠OBA=∠OAB=∠OAC=∠OCA=x ,求出∠OCB=∠OBC=22°,根据三角形内角和定理得4x+2³22°=180°,所以x=34°,所以∠BAC=2x=68°.故选:D .考点:翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.6.C①∵AD 平分BAC ∠,②∵60EAC ∠=︒,AD .∵DE AB ⊥,在Rt BED △和Rt CFD △中DE DF BD DC=⎧⎨=⎩,∴Rt Rt (HL)BED CFD △≌△. ∴BE FC =.∴AB AC AE BE AF FC +=-++,又∵,AE AF BE FC ==,∴2AB AC AE +=.故④正确.综上可知,选C .7.A 【解析】根据角平分线的性质可得,,OBD OBC OCB OCE ∠=∠∠=∠,根据平行线的性质及等量代换可得:,OBD DOB OCE COE ∠=∠∠=∠,则,BD DO CE OE ==,即DE DO OE BD =+=5.CE +=8.D【解析】试题分析:如果改变第一项,则这个多项式为:221236y xy x ++;如果改变第二项,则这个多项式为:2269y xy x ++;如果改变第三项,则这个多项式为:224129y xy x ++. 考点:完全平方公式9.C.【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积,可得答案.A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积,故B 错误;C 、把一个多项式转化成几个整式积,故C 正确;D 、没把一个多项式转化成几个整式积,故D 错误.故选:C .考点:因式分解的意义.10.A【解析】试题分析:根据题意得:⎪⎩⎪⎨⎧≠--=-0320122b b b ,解得b=1.考点:分式的性质11.D【解析】试题分析:已知等式变形求出x已知等式整理得:x 考点:分式的值12.B【解析】试题分析:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:故选:B.考点:由实际问题抽象出分式方程.13.23【解析】试题分析:考点:完全平方公式14.50°或130°考点15【解析】试题分析:根据3x-2y=3x÷32y=3x÷9y即可代入求解.Array试题解析:3x-2y=3x÷32y=3x÷9y考点:1.同底数幂的除法;2.幂的乘方与积的乘方.16.(2n+1)2﹣12=4n(n+1)【解析】试题分析:通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).考点:规律型问题17【解析】试题分析:按照分式的运算法则进行计算即可.试题解析:原式考点:分式的化简.18.(1)256;(2)1;(3)无解.(3)【解析】试题分析:(1)运用平方差公式进行计算即可;(2)变成同分母后,再进行计算即可;(3)(4)按照解分式方程的步骤进行计算即可.试题解析:(1)原式=(2-1)(2+1)(22+1)(24+1)+1=(22-1)(22+1)(24+1)+1=(24-1)(24+1)+1=28-1+1=256.(2)原式(3)去分母得:2x=x-5+10移项得:2x-x=-5+10∴x=5经检验:x=5是原方程的增根.故原方程无解.(4)去分母得:2(x-3)+x2=x(x-3)去括号得:2x-6+x2=x2-3x移项得:2x+x2-x2+3x=6合并同类项,得:5x=6系数化为1,得:经检验:考点:1.平方差;2.分式的运算;3.解分式方程.19.(1)2(2a+1);(2)(3x+y)(x+3y).【解析】试题分析:(1)提取公因式(2a+1)即可;(2)运用平方差公式进行分解因式即可.试题解析:(1)原式=(2a+1)[(2a+1)-(-1+a)=(2a+1)(2a+1+1-2a)=2(2a+1);(2)原式=[2(x+y)+(x-y)][2(x+y)-(x-y)]=(2x+2y+x-y)(2x+2y-x+y)=(3x+y)(x+3y).考点:1.因式分解-提公因式法.2.因式分解-运用公式法.20.当a=0时,原式=1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.=当a=0时,原式=1.考点:分式的混合运算21.见解析 【解析】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元;(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进=50(件). 由题意,得120³50³+y ³50³﹣4950≥650,解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.22.(本题8分)作图题(不写作法,保留作图痕迹):①有公路l 1同侧、l 2异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)保留作图痕迹,否则不给分。