语音信号的数字滤波处理(一)
简述语音信号处理的关键技术

简述语音信号处理的关键技术语音信号处理是一门研究如何对语音信号进行分析、合成、增强、压缩等处理的学科。
在语音通信、语音识别、语音合成等领域都有广泛的应用。
本文将以简述语音信号处理的关键技术为标题,介绍语音信号处理的几个关键技术。
一、语音信号的数字化语音信号是一种连续的模拟信号,为了进行数字化处理,首先需要对其进行采样和量化。
采样是指在一定时间间隔内对语音信号进行测量,将其离散化;量化是指将采样得到的连续幅值值域离散化为一组有限的幅值级别。
通过采样和量化,将语音信号转换为离散的数字信号,为后续的数字信号处理提供了基础。
二、语音信号的预处理语音信号中可能存在噪声、回声等干扰,需要对其进行预处理。
常用的预处理方法有滤波和语音增强。
滤波是通过滤波器对语音信号进行去噪处理,常用的滤波器有陷波滤波器、带通滤波器等。
语音增强是通过增强语音信号中的有用信息,提高语音信号的质量。
常用的语音增强方法有谱减法、波束形成等。
三、语音信号的特征提取语音信号中包含了大量的特征信息,如频率、能量等。
为了方便后续的分析和处理,需要对语音信号进行特征提取。
常用的特征提取方法有短时能量、过零率、倒谱系数等。
这些特征可以用来描述语音信号的时域和频域特性,为语音识别等任务提供基础。
四、语音信号的压缩与编码语音信号具有较高的数据量,为了减少存储和传输的开销,需要对语音信号进行压缩与编码。
语音信号压缩是指通过一系列的算法和技术,将语音信号的冗余信息去除或减少,从而减小信号的数据量。
常用的语音信号压缩算法有线性预测编码(LPC)、矢量量化、自适应差分编码等。
五、语音信号的识别与合成语音识别是指将语音信号转换为对应的文字或命令,是语音信号处理的一个重要应用。
语音识别技术可以分为基于模型的方法和基于统计的方法。
基于模型的方法是指通过建立声学模型和语言模型,利用模型的匹配程度来进行识别。
基于统计的方法是指通过统计分析语音信号和文本之间的关系,利用统计模型进行识别。
通信工程专业本科毕业论文语音信号去噪——数字滤波器的设计

语音信号去噪 ——数字滤波器的设计摘要:在现代各种通信系统中,由于自然界中的各种各样的复杂噪声不免会掺杂在其中,数字信号处理这门经典学科恰好能够解决这个问题,其中最通用的方法就是利用滤波器来滤除这些杂波噪声,FIR 数字滤波器就是滤波器设计的基本部分。
本论文研究的主要内容就是基于Matlab 软件仿真设计一个数字滤波器,将掺杂在语音信号中的高频噪音消除,在此将分析消除高频噪音前后语音信号的时域及频域特性,对比分析即可验证滤波前后特性差别。
在本课题中,将利用简单的窗函数法来设计FIR 数字滤波器,通过Matlab 仿真说明所设计滤波器的正确性。
仿真说明所设计滤波器的正确性。
通过这次毕业设计,通过这次毕业设计,将会进一步理解语音信号原理分析及滤波处理,为更好的设计滤波器打好基础。
波处理,为更好的设计滤波器打好基础。
关键词:Matlab ;窗函数法;FIR 数字滤波器数字滤波器 Remove noise in the speech signal ————the design of digital filter the design of digital filter Abstract :In modern communication systems, a variety of complex noise may mix in the nature of sounds. The classic disciplines of the digital signal processing can solve this problem, one of the most common method is to use a filter to filter those clutter noise. FIR digital filter is the basic part part of of of filter filter filter design. design. The The main main main research research research content content content of of of this this this paper paper paper is is is based based based on on on Matlab Matlab Matlab software software software simulation simulation simulation to to design a digital filter, in which to cancel the high frequency noise of the speech signal, then it will eliminate the high high frequency frequency frequency noise noise noise and and and the the the speech speech speech signals signals signals from from from time time time domain domain domain and and and frequency frequency frequency domain domain domain characteristics characteristics characteristics in in in this this analysis analysis before before before and and and after, after, after, and and and analysis analysis analysis the the the differences differences differences test test test the the the filtering filtering filtering characteristics. characteristics. characteristics. In In In this this this issue, issue, issue, using using using a a simple simple window window window function function function method method method to to to design design design a a a FIR FIR FIR digital digital digital filter, filter, filter, Matlab Matlab Matlab simulation simulation simulation shows shows shows the the the correct correct correct of of of the the designed filter. Through the design of this graduation design, we will understand the principle of speech signal analysis and filtering, and lay the foundation for the filter design.Key words: Matlab; window function method; FIR digital filter 作 者指导教师目录1 引言................................................................................................................................................ 31.1 课题研究现状课题研究现状 ....................................................................................................................... 31.2 课题研究目的课题研究目的 ....................................................................................................................... 31.3 课题研究内容课题研究内容 ....................................................................................................................... 31.4 MA TLAB软件设计平台简介 .............................................................................................. 4 2 原始语音信号采集与处理原始语音信号采集与处理 .............................................................................................................. 52.1 课题设计步骤及流程图课题设计步骤及流程图 ...................................................................................................... 52.2 语音信号处理语音信号处理 ....................................................................................................................... 52.2.1 语音信号的采集语音信号的采集 .......................................................................................................... 52.2.2 语音信号的时域频谱分析语音信号的时域频谱分析 .......................................................................................... 62.2.3 语音信号加噪与频谱分析语音信号加噪与频谱分析 .......................................................................................... 8 3 FIR数字滤波器的设计数字滤波器的设计 (10)3.1 数字滤波器基本概念数字滤波器基本概念 (10)3.2 常用窗函数介绍常用窗函数介绍 (10)3.3 FIR数字滤波器概述数字滤波器概述 (10)3.4 FIR滤波器的窗函数设计滤波器的窗函数设计 (11)3.5 滤波器的编程实现滤波器的编程实现 (13)3.6 用滤波器对加噪语音信号进行滤波用滤波器对加噪语音信号进行滤波 (14)3.7 回放语音信号回放语音信号 (16)4 结论 (17)致谢 (18)参考文献 (19)参考文献20世纪60年代中期数字信号处理领域形成的诸多富有实践性的的理论和算法,如快速傅立叶变换(FFT )以及各种数字滤波器等是语音信号数字处理的各项理论和技术基础。
(完整word版)语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032实验一语音信号的低通滤波和短时分析综合实验一、实验要求1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号;2、辨别原始语音信号与滤波器输出信号有何区别,说明原因;3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因;4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响;5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。
二、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。
2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。
三、实验设备1.PC机;2。
MATLAB软件环境;四、实验内容1。
上机前用Matlab语言完成程序编写工作.2。
程序应具有加窗(分帧)、绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5。
改变滤波带宽,辨别与原始信号的区别。
6。
依据曲线对该语音段进行所需要的分析,并且作出结论。
7.改变窗的宽度(帧长),重复上面的分析内容。
五、实验原理及方法利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/T tan(w/2).接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
语音信号滤波去噪——使用汉宁窗设计的FIR滤波器要点

语音信号滤波去噪——使用汉宁窗设计的FIR滤波器学生姓名:指导老师:摘要本课程设计主要是对一段语音信号,加入噪声后,用汉宁窗设计出的FIR滤波器对加入噪声后的语音信号进行滤波去噪处理。
在此次课程设计中,系统操作平台为Windows XP,程序设计的操作软件为MATLAB 7.0。
此课程设计首先是用麦克风采集一段语音信号,加入噪声,然后采用汉宁窗函数法设计出FIR滤波器,再用设计出的滤波器对这段加噪后的语音信号进行滤波去噪,最后对前后时域和频域的波形图进行对比分析,从波形可以看出噪声被完全滤除,达到了语音不失真的效果,说明此次设计非常成功。
关键词程序设计;滤波去噪;FIR滤波器;汉宁窗;MATLAB 7.01 引言本课程设计主要是对一段语音信号,进行加噪后,用某种函数法设计出的FIR滤波器对加入噪声后的语音信号进行滤波去噪处理,并且分析对比前后时域和频域波形的程序设计。
1.1 课程设计目的在此次课程中主要的要求是用麦克风采集一段语音信号,绘制波形并观察其频谱,给定相应技术指标,用汉宁窗设计一个满足指标的FIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析,根据结果和学过的理论得出合理的结论。
与不同信源相同滤波方法的同学比较各种信源的特点,与相同信源不同滤波方法的同学比较各种滤波方法性能的优劣。
通过此次课程设计,我们能够学会如何综合运用这些知识,并把这些知识运用于实践当中,使所学知识在综合运用能力上以及分析问题、解决问题能力上得到进一步的发展,让自己对这些知识有更深的了解。
通过课程设计培养严谨的科学态度,认真的工作作风和团队协作精神。
1.2课程设计的要求(1)滤波器指标必须符合工程实际。
(2)设计完后应检查其频率响应曲线是否满足指标。
(3)处理结果和分析结论应该一致,而且应符合理论。
(4)独立完成课程设计并按要求编写课程设计报告书。
1.3 工作平台简介课程设计的主要设计平台式MATLAB 7.0。
数字信号处理及其在音频处理中的应用

数字信号处理及其在音频处理中的应用数字信号处理(Digital Signal Processing,DSP)是指将信号采样、量化、数字化后,通过数字电路进行处理、运算、变换等一系列操作,最终获得所需信号的技术。
该技术的应用领域广泛,包括通信、音频、医疗等。
本文将重点介绍数字信号处理在音频处理中的应用。
一、数字信号处理的基本概念1. 采样与量化采样是指将连续的信号在时间上离散化,即在一定的时间间隔内取样。
通常使用模拟-数字转换器(ADC)进行采样操作。
量化是指将模拟信号的幅度转换成离散的数值。
通常使用模数转换器(DAC)将数字信号转换回模拟信号输出。
2.数字滤波数字滤波是指通过数字信号处理器对数字信号进行滤波处理。
数字滤波器的组成部分包括滤波器传递函数、滤波器系统响应和滤波器误差。
数字滤波器按照滤波器类型可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
3.数字变换数字变换是指将信号从时域转换到另一个域,如频域或复数域。
典型的数字变换包括快速傅里叶变换(FFT)、离散余弦变换(DCT)和小波分析等。
二、数字信号处理在音频处理中的应用1.数字均衡器数字均衡器是数字信号处理常用的一种滤波器,其作用是调整频率响应以改善音质。
数字均衡器具有可调节的等化器频率和增益,可以调整音频输出频谱以改变声音的音质和性格。
2.降噪由于麦克风和扬声器等音频设备的限制,音频信号中常含有噪声。
降噪技术可以减少音频信号中噪声的干扰。
数字信号处理器主要通过对峰值检测和自适应滤波等算法来减少噪声。
3.压缩与限幅数字信号处理器还可以通过多种处理算法对音频信号进行压缩和限幅。
压缩过程可以对音频信号进行动态范围压缩,使声音更加平稳。
而限幅则可以限制噪声波峰的大小,保护音频设备的硬件。
4.混响混响是指向音频信号添加模拟空间的处理方法。
通过数字信号处理,可以模拟各种不同的混响效果,使音频信号更加逼真,听起来更加自然。
5.声音识别数字信号处理还可以应用于声音识别,如语音识别、语音合成、语音控制等。
iir数字滤波器处理实际案例

IIR数字滤波器处理实际案例I.概述数字信号处理作为一门重要的学科,其在工程领域中得到了广泛的应用。
数字滤波器作为数字信号处理的重要工具,常常用于对信号进行去噪、滤波等处理。
本文将以IIR数字滤波器处理实际案例为主题,探讨IIR数字滤波器的原理、应用以及实际案例分析。
II.IIR数字滤波器原理1. IIR数字滤波器概述IIR数字滤波器(Infinite Impulse Response)是一种常见的数字滤波器,其基本原理是根据输入信号的当前值和过去的输出值计算当前的输出值。
IIR数字滤波器具有反馈,可以实现很复杂的频率响应。
2. IIR数字滤波器结构IIR数字滤波器通常由系统函数和差分方程两部分组成。
系统函数是用来描述滤波器的频率响应特性,而差分方程则是描述滤波器的输入输出关系。
常见的IIR数字滤波器包括Butterworth、Chebyshev等。
III.IIR数字滤波器应用1. 语音信号处理在语音信号处理中,常常需要对信号进行降噪、滤波等处理。
IIR数字滤波器可以很好地满足这一需求,对语音信号进行有效处理。
2. 生物医学信号处理生物医学信号通常包含多种噪声和干扰,需要进行滤波处理以提取有效信息。
IIR数字滤波器在心电图、脑电图等生物医学信号处理中有着广泛的应用。
IV.IIR数字滤波器实际案例分析以一种生物医学信号处理为例,对IIR数字滤波器进行实际案例分析。
1.问题描述假设有一组心电图信号,该信号包含多种噪声和干扰,需要对其进行滤波处理,以提取有效的心电信号。
2.解决方案针对该问题,可以采用Butterworth低通滤波器进行处理。
利用Matlab等工具,设计并实现Butterworth低通滤波器,对心电图信号进行滤波处理。
3.实验结果经过Butterworth低通滤波器处理后,心电图信号的噪声和干扰得到了有效抑制,同时保留了有效的心电信号,达到了预期的滤波效果。
V.总结IIR数字滤波器作为数字信号处理领域中的重要工具,具有着广泛的应用前景。
语音信号的滤波与频谱分析

生物医学信号处理大作业题目:语音信号的滤波与频谱分析学生姓名学院名称精密仪器与光电子工程专业学号一、实验目的语音信号的滤波与频谱分析录制自己的一段语音:“天津大学精密仪器与光电子工程学院生物医学工程X班XXX, College of precision instrument and opto-electronics engineering, biomedical engineering”,时间控制在15秒到30秒左右;利用wavread 函数读入语言信号,记住采样频率。
二、实验过程(1)求原始语音信号的特征频带:可以分别对一定时间间隔内,求功率谱(傅里叶变换结果取模的平方)并画出功率谱。
(2)根据语音信号频谱特点,设计FIR或IIR滤波器,分别画出滤波器幅频和相频特性曲线。
说明滤波器特性参数。
用设计的滤波器对信号滤波,画出滤波后时域波形。
用sound 函数回放语音信号。
(3)求出特征频段语音信号随时间变化的曲线(每隔0.05秒求一次功率谱,连接成曲线)。
(4)选做:语谱图:横轴为时间,纵轴为频率,灰度值大小表示功率谱值的大小。
(提示,可以采用spectrogram函数)(1)读入语音文件并画出其时域波形和频域波形,实现加窗fft 并求出其功率谱。
clcclear all; close all;[x,Fs,bits]=wavread('C:\Users\刘冰\Desktop\数字信号处理\liubing');x0=x(:,1); %将采集来的语音信号转换为一个数组 sound(x0,Fs,bits); y=fft(x);figure;plot(x,’b’);title ('原始语音信号时域波形'); y1=fft(x0);y1=fftshift(y1); d = Fs/length(x);figure;plot([-Fs/2:d: Fs/2-d],abs(y1),’b’);title('原始语音信号的频域信号'); % 画出原始语音信号的频谱图123456789x 105-1-0.8-0.6-0.4-0.200.20.40.60.81原始语音信号时域波形N=length(x);w1 = window(@hann,N); w2 = window(@blackman,N); x1=x0.*w1; %对原始信号加汉宁窗处理 x2=x0.*w2; %对原始信号加布兰克曼窗处理 figure,plot(x1);title(加汉宁窗后的语音信号) %显示加窗后的时域语音信号 s=floor(length(x0)/Fs);%计算原始语音信号的时间长度,这里得到的结果是18秒,因为floor 是向下取整,所以信号的末尾一点会被去掉,但是因为最后一点没有声音信号,所以影响可以忽略。
数字信号处理(语音处理应用)1

语音信号的数字处理方法
• 声音信号的两个基本参数是幅度和频率。
– 幅度是指声波的振幅,通常用动态范围表示, 一般用分贝(dB)为单位来计量。 – 频率是指声波每秒钟变化的次数,用Hz表示。 – 人们把频率小于20Hz声波信号称为亚音信号 (也称次音信号) – 频率范围为20Hz~20kHz的声波信号称为音频信 号 – 高于20kHz的信号称为超音频信号(也称超声波)
Wavread例
[y, fs]=wavread('welcome.wav');
sound(y, fs); % 播放音频
time=(1:length(y))/fs; % 时间轴的向量
plot(time, y); % 画出时间轴上的波形
显示音频文件的信息
• fileName='welcome.wav'; • [y, fs, nbits]=wavread(fileName); • fprintf('音频文件"%s" 的信息:\n', fileName);
• En的应用:
– 1)区分清音段和浊音段 – 2)区分声母和韵母 – 3)区分无声和有声的分界(信噪比较高的信号) – 4)区分连字的边界 – 5)用于语音识别
短时能量分析
• En的缺点:
– 对高电平过于敏感,给加窗宽度的选择带来了 困难。扩大了振幅不相等的任何两个相邻取样 值(此处的取样值是指某语帧的短时平均能量值) 之间的幅度差别,必须用较宽的窗函数才能平 滑能量幅度的起伏。
wavplay(flipud(y), fs, 'sync');% 播放前后颠倒的音频波形
–
通常在使用 wavplay 播放音讯时,MATLAB 会停止进行 其它动作,直到音讯播放完毕后,才会再进行其它指令 的 运 算 , 此 种 运 作 方 式 称 为 「 同 步 式 」 ( Synchronous )。若需要一边播放、一边进行其它运 算,就必须使用「异步式」(Asynchronous)的播放方 式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)数字滤波器设计及其应用
1利用Windows下的录音机或其他软件,行语音信号的采集(*.wav);
2语音信号的频谱分析,画出采样后语音信号的时域波形和频谱图;
3产生噪声信号并加到语音信号中,得到被污染的语音信号,并回放语音信号;
4污染信号的频谱分析,画出被污染的语音信号时域波形和频谱;
根据语音信号的特点给出有关滤波器的性能指标,例如:1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB;2)高通滤波器性能指标,fc=2800 Hz,fp=3000 Hz,As=100dB,Ap=1dB;3)带通滤波器性能指标,fp1=1200 Hz,fp2=3000 Hz,fc1=1000 Hz,fc2=3200 Hz,As=100dB,Ap=1dB。
(1)《数字信号处理(第二版)》,丁玉美等,西安电子科技大学出版社;
(2)《数字信号处理试验指导书》王创新、文卉编长沙理工大学印刷(内部使用)
(3)《数字信号处理及其MATLAB实现》,陈怀琛等译,电子工业出版社;
(4)《MATLAB及在电子信息课程中的应用》,陈怀琛等,电子工业出版社。
(5)《数字信号处理》A.V.奥本海姆,R.W.谢弗著,北京:科学出版社
(6)《数字信号处理——理论、算法与实现(第二版)》胡广书编著,北京:电子工业出版社
同组设计者:
注:1、此任务书应由指导教师填写。
2、此任务书必须在课程设计开始前下达给学生。
学生送交成果日期
学生签名
4.回放语音信号
在Matlab中,函数sound可以对声音进行回放。其调用格式:sound(x,fs,bits);可以感觉滤波前后的声音有变化。
5.语音的反转
将女生的一段声音反转成男生,或者将男生的声音反转成女生。
三、设计思考
1.双线性变换法中Ω和ω之间的关系是非线性的,在设计中你注意到这种非线性关系了吗?从哪几种数字滤波器的幅频特性曲线中可以观察到这种非线性关系?
要求利用windows下的录音机(开始—程序—附件—娱乐—录音机,文件—属性—立即转换—8000Hz,8位,单声道)录制一段自己的话音,或者采用Windows自带的声音文件(默认为22050Hz),时间控制在几秒左右。然后在MATLAB软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。通过wavread函数的使用,要求理解采样频率、采样位数等概念。
a.滤波器类型:hanning窗(低通、带通、高通)
b.总体要求:Matlab原程序+仿真波形+技术指标+窗函数
7用自己设计的这些滤波器分别对被不同噪声污染的信号进行滤波;
8分析得到信号的频谱,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;
9回放语音信号。
二、设计提示
1.语音信号的采集
2分别动态演示两个序列进行线性卷积x1(n)﹡x2(n)和圆周卷积x1(n)⊙x2 (n)的过程;要求分别动态演示翻转、移位、乘积、求和的过程;
3圆周卷积默认使用两个序列中的最大长度,但卷积前可以指定卷积长度N用以进行混叠分析;
4改变圆周卷积长度N,根据实验结果分析2类卷积的关系。
5在计算机操作系统下选一段声音文件(XP系统在“C:\WINDOWS\Media”),读取文件取10ms的声音数据产生时域序列x1(n),序列内容自定义。利用x2(n)= {1, 2.43, 6.17,12.93,22.17,32.25,40.88, 45.87, 45.87, 40.88, 32.25, 22.17, 12.93, 6.17, 2.43,1}。利用FFT实现快速卷积,验证时域卷积定理,并与直接卷积进行效率对比(验证时采用matlab子函数)。
1可输入任意两个序列x1(n)、x2(n),指定x1(n)为自己的学号,例如x1(n)={2,0,0,7,8,4,2,5,0,1,2,3}。
x2(n)的内容和长度自选。例如x2(n)={ 1, 2.43, 6.17,12.93,22.17,32.25,40.88, 45.87, 45.87, 40.88, 32.25, 22.17, 12.93, 6.17, 2.43,1.0000}。
2、课程设计报告
(1)本课程设计目的
(2)设计基本原理(可按滤波器种类分别叙述)
(3)设计的步骤和过程(可按滤波器种类分别叙述)
(4)设计程序的调试和运行结果(可按滤波器种类分别叙述,注意图文并茂)
(5)课程设计的思考与体会
(6)参考文献
3、附录
MATLAB程序代码;
主要参考文献:(由指导老师选定)
wavread函数调用格式:
y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(Hz),nbits表示采样位数。
y=wavread(file,N),读取前N点的采样值放在向量y中。
(2)编写程序演示采样定理(时域采样、频谱周期延拓),同时演示采样频率小于2fc时,产生的混叠效应:
①对下面连续信号进行采样:
,A为幅度因子,a为衰减因子, 为模拟角频率,其中n为学号(例如,王墨同学n=23)
②要求输入采样频率fs(根据程序处理需要指定范围)后,在时域演示信号波形、采样脉冲及采样后信号;在频域演示不同采样频率下对应信号的频谱。
6.掌握滤波器的网络结构。
7.掌握MATLAB设计IIR、FIR数字滤波器的方法和对信号进行滤波的方法。
五、考核方式
课程考核分三部分,一部分是上机率,占20%;第二部分是检查成绩,最后两次上机为检查时间,占50%;第三部分为课程设计报告,占30%。
课题完成后应提交的文件和图表(或设计图纸):
1、课程设计的任务书
y=wavread(file,[N1,N2]),读取从N1点到N2点的采样值放在向量y中。
2.语音信号的频谱分析
要求首先画出语音信号的时域波形;然后对语音信号进行频谱分析,在MATLAB中,可以利用函数fft对信号进行快速付立叶变换,得到信号的频谱特性;从而加深对频谱特性的理解。
3.设计数字滤波器和画出频率响应
课程设计任务书
课程:信号处理综合设计
题目:语音信号的数字滤波处理(一)
——巴特沃斯(hanning窗)滤波器
电子信息工程系电子信息工程专业
任务起止日期:2014年12月27日至2014年12月31日
学生姓名
学号______________
指导教师
课题内容及要求:
一设计内容
第一部分:预习题
(1)设计卷积运算的演示程序:
2.能否利用公式完成脉冲响应不变法的数字滤波器设计?为什么?
四、设计要求:
1.掌握数字信号处理的基本概念,基本理论和基本方法。
2.熟悉离散信号和系统的时域特性。
3.掌握序列快速傅里叶变换方法。
4.学会MATLAB的使用,掌握MATLAB的程序设计方法。
5.掌握利用MATLAB对语音信号进行频谱分析。
5根据有关的频谱特性,采用间接法设计IIR数字滤波器,并画出相应滤波器的幅频、相频图(设计3个IIR滤波器)
a.模拟滤波器类型:巴特沃思滤波器(低通、带通、高通)
b.总体要求:Matlab原程序+仿真波形+技术指标
6根据有关的频谱特性,采用直接法设计FIR数字滤波器,并画出相应滤波器的幅频、相频图(设计3个FIR滤波器)