开关电源设计(正激式)ppt课件

合集下载

开关电源的设计资料ppt课件

开关电源的设计资料ppt课件

dBpW
dBpW
dBpW
平均值 dBpW
准峰值 dBpW
平均值 dBpW
45~55
35~55
45~55
35~45
49~59
39~49
55~65
45~55
随频率线性增大
• 4.2.4 谐波电流发射限值
奇次谐波(n) 3 5 7 9 11 13
15≤n≤39
最大允许谐波电流(A) 2.3 1.14 0.77 0.4 0.33 0.21
4.1 开关电源EMC引见 EMC (电磁兼容性),包括EMI(电磁骚扰)和EMS(电磁抗扰度)
4.1.1开关电源的EMI主要有以下几项 1)0.15~30MHZ的交流电源线传导骚扰 2)30~300MHZ(家电类要求)或30~1000MHZ的辐射骚扰 3)0~2KHZ的工频谐波电流
4.1.2 开关电源的EMS主要有以下几项 1) ESD 静电放电 2) EFT 电快速瞬变脉冲群 3) 雷击浪涌 4) 电压跌落或中断 5)高频辐射电磁场 6)由射频场感应所引起的高频传导
90V.单电压230V输入时,取240V
• 3.3.7 Vmax的值由以下公式确定 • 3.3.8 输入电压波形图如下
• 3.4 Dmax 由以下公式确定
• 3.5 电流波形参数Kip确实定 • 3.5.1 当Kip≤1时,Kip=Krp=Ir/Ip 如以下图
• 3.5.2 当Kip≥1时, 图
• 4.3.2 EMS判别规范 • 1) ESD 静电放电 B级 • 2) EFT 电快速瞬变脉冲群别 B级 • 3) 雷击浪涌 B级 • 4) 电压跌落或中断 C级 • 5)高频辐射电磁场 A级 • 6)由射频场感应所引起的高频传导 A级

开关电源基础知识讲解 ppt课件

开关电源基础知识讲解 ppt课件

6
开关电源
开关电源基础知识讲解
7
开关电源主要类型
按照开关管的开关条件,DC/DC转换器又可以分为硬开(HardSwitching) 开关电源和软开关(Soft Switching)两种。硬开关DC/DC转换器的开关器件 是 在承受电压或流过电流的情况下,开通或关断电路的,因此在开通或关断过程中 将会产生较大的交叠损耗,即所谓的开关损耗(Switching loss)。当转换器的 工作状态一定时开关也是一定的,而且开关频率越高,开关损耗越大,同时在开 关过程中还会激起电路分布电感和寄生 电容的振荡,带来附加损耗,因此,硬 开关DC/DC转换器的开关频率不能太高。软开关DC/DC转换器的开关管,在开 通或关断过程中,或是加于 其上的电压为零,即零电压开关(Zero-VoltageSwitching,ZVS),或是通过开关管的电流为零,即零电流开关(ZeroCurrent·Switching,ZCS)。这种软开关方式可以显着地减小开关损耗,以及开 关过程中激起的振荡,使开关频率可以大幅度提高,为转换器的小型化和模块化 创造 了条件。功率场效应管(MOSFET)是应用较多的开关器件,它有较高的 开关速度,但同时也有较大的寄生电容。它关断时,在外电压的作用下, 其寄 生电容充满电,如果在其开通前不将这一部分电荷放掉,则将消耗于器件内部, 这就是容性开通损耗。为了减小或消除这种损耗,功率场 效应管宜采用零电压 开通方式(ZVS)。
信息产业飞速发展不可缺少的一种电源方式。
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模
式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态
,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,

《开关电源基本原理》PPT课件

《开关电源基本原理》PPT课件

当电感较小或负载较小或周期 T 较大时,buc k 变化器会工作在电感电流不连续工作模式,将造成整 体功耗的增加和整体性能变差,因此应避免变换器工作 在电感电流不连续工作模式。buck 变换器工作在电感电 流连续工作模式和不连续工作模式之间有个临界状态, 其发生条件为: 连续工作模式:
临界工作模式:
• 开关电源的主要元器件:
1. 开关:开关电源中的开关要求开关速度快,损耗小,快速渡过线性放大区。目前 主要使用的是三极管,MOS管,他们各有特点。
2. 电感:是电路的储能器件,一般与电容组成滤波电路;电感的电流不会突变;是 磁性元件,会出现饱和现象。
3. 电容:和电感一样都是储存和传递电能的器件,主要吸收电路纹波,使输出的电 压平滑稳定。电容的串联电阻ESR越大,发热越严重,寿命越短。下图是各种电 容的ESR比较,
30V。过电流能力Imax>iLmax 二极管的耐压Vd>Vimax,电流Id>Io。
一般取fc为主频f的1/10以下,计算出电容值。 (5)纹波电压可根据以下式求出:
也可以从已知要求的纹波电压反求出电容的ESR,然后再验证,以上 的数据都是理论计算,作为设计的依据,根据实际电路需要在中调试 验证中作相应改变。
2.基本原理图如下图5所示:
图5 反激变换器基
反激变换器基本原理图由变压器、开关管、整流 二极管和PWM芯片等元器件组成。
3. 工作原理:
如上图所示,开关管导通期间,变压器进行电能存储 阶段,这是相当于电感。如下图6所示:
图6a 能量存储阶段 电路图
图6b 能量存储阶段原边电流波形 和磁化现象
由图6可知,当Tr导通期间,原边绕组的电流I的值为LC =
一般实际电路的电感值取Lc值的5-10倍。 另外一种计算实际电感中L的计算方法:

开关电源原理简介PPT课件

开关电源原理简介PPT课件

hold up time
保持时间. 其目的在于当AC市电不见后 ,需有一段时间给后级使用者作备份动作.
rise time
上升时间. DC电压从无(10%)到正常输出(95%)所花费的时间.
fall time
下降时间.与rise time相反. 也就是95%到10%所花费的时间.
over shoot
SMPS在第一次开机时,会因回授的反应速度太慢,导致输出电压会超出一般正常范围. 一般规格是110%.
PFC(Power Factor Correction) 的角度缩小,以减少虚功的损耗,亦即节省市电的需求===>减少发电厂的数量.
•3
二.开关电源的TOP结构
分类方法
类别
按激励方式划分
按DC/DC变换器 的工作方式划分
按控制信号的隔 离方式划分
他激式(开关器件控制信号由专门的控制电路产生)﹑自激 式(借助于变换器本身的正反馈信号实现开关管自持周期 性开关的变换器)
efficiency
效率当然是越高越好.一般规格在85%左右.
OVP(Over Voltage Protection) 过电压保护
OCP(Over Current Protection) 过电流保护
SCP(Short Circuit Protection) 短路保护
CC mode(Constant Current mode) 定电流模式
现软件关机、键盘开机、 网络远程唤醒等功能。
ATX 12V: 20Pin+4Pin ATX 12V LN (Low Noise):24Pin+4Pin
为了满足大功率CPU 的要求,ATX 12V对 CPU供电的4PIN +12V

《开关电源设计》课件

《开关电源设计》课件

电感的计算
根据电路要求计算合适的电 感值,需要考虑输入输出电 压、电流、开关频率等参数 。
电阻的选择与计算
根据电路要求选择合适的电 阻,需要考虑其阻值、功率 、精度等参数,并根据电路 参数计算出所需的阻值。
开关电源的优化设计方法
提高效率
采用低损耗元件、优化电路结构、降低热损 耗等方法提高效率。
降低噪音
3
AFR(年度故障率)
设备在单位时间内发生故障的概率。
影响开关电源可靠性的因素
元器件质量
元器件的品质和可靠性直接影响开关电源的寿命和稳定性。
电路设计
合理的电路设计能够提高开关电源的稳定性和可靠性。
制造工艺
制造工艺的精细程度和质量控制影响产品的可靠性和稳定性。
环境因素
温度、湿度、灰尘等环境因素对开关电源的可靠性产生影响。
全桥式开关电源
适用于大功率、要求输出电压 较高的场合。具有输出电压高
、效率高的特点。
开关电源的元件选择与计算
开关管的选择
根据电路要求选择合适的开 关管,如MOSFET、IGBT等 ,需要考虑其额定电压、电 流、开关频率等参数。
滤波电容的选择
根据输出电压的要求选择合 适的滤波电容,需要考虑其 容量、耐压、温度系数等参 数。
详细描述
开关电源是一种将电能进行高效转换的设备,通过控制开关管的工作状态,实 现电压和电流的调节。它具有高效率、高可靠性、体积小、重量轻等特点,因 此在许多领域得到广泛应用。
开关电源的应用领域
总结词
开关电源广泛应用于通信、计算机、工业控制、医疗器械等 领域。
详细描述
开关电源具有高效率、高可靠性、体积小、重量轻等特点, 因此在许多领域得到广泛应用。它广泛应用于通信、计算机 、工业控制、医疗器械等领域,为各种电子设备提供稳定的 电源供应。

开关电源设计与应用--自激式开关电源 ppt课件

开关电源设计与应用--自激式开关电源  ppt课件
图2-5 降压比增大电路
2.2.2 自激电源的同步控制
图2-6 TC-29CX电源电路
2.3 自激式降压型集成电源
2.3.1 直接取样电源电路
图2-7 直接取样开关电源电路
2.3.2 间接取样电源电路
图2-8 间接取样开关电源电路
2.4 升压式自激电源
升压式开关电源是不隔离型开关电源的另一种应用较多的开关电源,尤其 在目前的移动通信、移动视频显示器中更得到广泛应用。
图2-12 正反馈脉冲钳位电路
图2-13所示为恒流驱动电路,电路中设有两路正反馈支 路。
图2-13 恒流驱动电路
2.5.3 双PWM控制 为了提高稳压效果,自激式开关电源可以采用双路或多
路PWM控制,采用两只脉宽控制管或两路独立的控制电路, 扩大脉宽调制器的控制能力。因为两路PWM电路同时出现 故障的机会极小,所以不仅提高了控制能力,可靠性也大为 提高。
采用双路控制的自激式开关电源属故障前保护,常设以下保护电路。
(1) 软启动电路。在开关电源启动时,开关管振荡过程中的振荡脉宽不是 突然进入额定脉宽,而是有一段启动过程。以图2-11的电路为例,开机瞬间, C312两端取样电压达到额定值需有一定时间,在C312充电过程中,误差放大器检 出的取样电压偏低,因而脉宽控制电路减小了对开关管基极的分流,使振荡电 路脉宽增大,形成开机冲击电流。脉宽的增大,使开关管在开机瞬间有一较大 的冲击电流。为了避免这种硬启动过程带来的危害,需要在取样分压电路中加 入软启动电路。
1.双路PWM电路 图2-14为双路PWM控制的基本电路。
1.双路PWM电路
图2-14 双路PWM控制的基本电路
2.隔离开关电源保护电路
开关电源保护电路设置的作用是:保护开关电源本身,尽量减少 故障率,或者在偶然发生故障时减小其损坏范围;设置输出过压保护, 避免损坏负载电路。

正激电路设计

正激电路设计

时磊5说-正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。

1-6-1 .正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。

图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。

在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。

如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。

我们从(1-76 )和(1-77 )两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。

因此, 正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。

图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。

其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。

关于电压平均值输出滤波电路的详细工作原理,请参看“1-2 •串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。

正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。

因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3, 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对布磊5『彳 电源进行充电;另一方面,流过反馈线圈 N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场 强度恢复到初始状态。

开关电源培训 ppt课件

开关电源培训  ppt课件

1-4:反激变换器(Flyback)工作原理 (电流断续模式)
Vin
n:1
Vo
D
Io
Lm
Vgs
Co
D G
S
根据变压器的伏秒平衡:
Vo Vin * D n *(1 D)
Vo' Vo
Vd s Im
ID
根据能量守恒:
1 2
LmI
2 p

Vo2 R
T
VL
Ip

VinDT Lm
Vo RT Vin
LkIp 2
Vr Lk * Ip Cds
Vgs
Vd s Im
ID
T
D 1-
V
D
Vin+nV
r
o
Ip
ID-p
VL
9
Vin -nVo
Vin Io ppt课件
1-4:反激变换器(Flyback)工作原理(2)
Vin
n:1
Vo
D
Io
R Lm
Vc
Co
Vc
Lk
D G
S
Ploss=(Vc-Vin)2/R
14
ppt课件
反激电源简化电路
15
ppt课件
3-2:变压器设计
参数设定:初级匝数-Np,次级匝数Ns,输入母线直流电压为Vin, 匝比为n,VDf为续流二极管反向耐压,Vo为输出电压,Vor为反射电 压,D为MOS开通占空比,Ton为MOS导通时间,Vleg为变压器漏 感产生的尖峰电压
N=Np/Ns
3-1
Vds=Vinmax+Vleg+Vor
3-2
Vin*Ton=Vor*Toff

《开关电源培训》PPT课件

《开关电源培训》PPT课件
• 对于PWM回扫变换器,因周期TS是恒定的,不会 发生RCC的上述现象,然而,虽然设计到额定负 载时为DCM,若过负载,就变为CCM,即使TON的 最大时间已经设定,电流还会增大,有时会使变 压器饱和,故仍需要设OCP电路
整理ppt
35
OCP
• 图1中当Q1的电流增大时,IRS增大,若IRS 大于VZ,则比较器输出高电平,RS触发器 置位输出PWM闭锁脉冲,Vout输出低电平, 开关管截止,输出电压降低
电流限制图1
整理ppt
33
Q1
Rs VR
OCP
振荡器
+ A1
-
RS触发器
PWM闭锁脉冲输出 R
S
Q1的峰值电流=VR/Rs
电流限制图2
整理ppt
34
OCP
• 对于RCC变换器,开关管导通时流经开关管中的 电流必须从零开始升,若TON的最大时间已经确定, 就可防止发生过流
• 但是当输入电压下降较大时,绕组N12感应的正向 电压也下降,从而使开关管导通的时间变长而造 成变压器饱和
整理ppt
16
控制电路的工作过程
• 当因某种原因输出端的电压发生变化时,精密电 压基准TL431通过采样电阻R7,R8感知此一变化, 并通过PC1把此一变化反馈回初级侧的控制电路
• 具体的过程为当输出电压升高时,IR10增大,流 过TL431 AK端的电流增大,PC1中的发光二极管 发光强度增大,流过光敏三极管电流增大,A点 电位升高,Q2基极电压提前升到0.8V,Q2导通, Q1截止,TON减小,从面使电压保持稳定
• RCC的振荡频率一般选在20KHz以上
整理ppt
13
控制电路
• 开关电源的控制电路有间接控制电路和直 接控制电路两类

正激式开关电源设计

正激式开关电源设计

正激式开关电源设计卢 灿(中国兵器工业第214研究所 蚌埠 233042)摘 要 正激式变换器具有外围电路简单、电压和电流应力小、抗过载能力强、不易饱和、易于集成等许多优点,是中小功率降压式隔离DC /DC 变换器最常使用的拓朴之一。

本文将对其拓朴原理、磁复位电路选择、变换器设计、反馈电路设计、滤波电路设计等几个方面对其进行详细的介绍。

关键词 正激变换器 磁复位 DLC Snubber1 引 言正激式开关电源变换器在中小功率隔离降压型DC /DC 电源模块中有着广泛的应用。

其主变压器只是作为传递能量和电压变换的作用,启动电流﹑输出纹波和所需要的滤波电容均较小。

在开关转换过程中不存储能量,少量的剩余能量,可以通过简单的复位电路设计,就可以保证其在大动态重负载下不会磁饱和,电路工作稳定。

由于其磁芯不需要开气隙,因而漏感较小,具有小的电压尖峰。

另外,其峰值电流也较小,传输能量大,相同的传输功率所需要的磁芯较小,易于集成。

2 工作原理图1 原理框图 如图1所示,变换器由输入滤波、高频变压器、开关控制、吸收和复位电路、输出整流滤波和隔离反馈等六部分组成。

高频变压器和开关控制组成变换器的主体,实现能量的储存和传递以及电压的变换。

隔离反馈控制电路根据输出电压和负载的变化,动态调整变换器开关管的占空比,使输出电压保持稳定。

吸收和输入滤波电路对变换器产生的浪涌电流和尖峰电压进行吸收,以保证电路正常工作和降低纹波对输入和输出的影响。

输出整流滤波电路完成变换器输出能量的存储和第25卷第4期2007年12月 集成电路通讯J ICH EN GD I ANLU TON GXUN Vol .25 No .4Dec .2007输出电压的整型,保证恒定的直流输出。

3 变换器原理如图2所示为变换器原理图,T R1为变压器, V in为输入电压,Vcc是辅助供电电源,CS为电流采样输入端。

D2和D3为整流二极管,其与输出滤波电感和电容一起组成整流滤波电路。

正激式开关电源的设计讲解

正激式开关电源的设计讲解

7-3正激式开关电源的设计中山市技师学院曷中海由于反激式开关电源中的开关变压器起到储能电感的作用,因此反激式开关变压器类似于电感的设计,但需注意防止磁饱和的问题。

反激式在20〜100W的小功率开关电源方面比较有优势,因其电路简单,控制也比较容易。

而正激式开关电源中的高频变压器只起到传输能量的作用,其开关变压器可按正常的变压器设计方法,但需考虑磁复位、同步整流等问题。

正激式适合50〜250W之低压、大电流的开关电源。

这是二者的重要区别!7.3.1技术指标正激式开关电源的技术指标见表7-7所示。

7.3.2工作频率的确定工作频率对电源体积以及特性影响很大,必须很好选择。

工作频率高时,开关变压器和输出滤波器可小型化,过渡响应速度快。

但主开关元件的热损耗增大、噪声大,而且集成控制器、主开关元件、输出二极管、输出电容及变压器的磁芯、还有电路设计等受到限制。

这里基本工作频率f o选200kHz,则1 1T = 一 = ---------- 3 =5(isf0 200 "O3式中,T为周期,f0为基本工作频率。

7.3.3最大导通时间的确定对于正向激励开关电源,D选为40%〜45%较为适宜。

最大导通时间t O N m ax为t oNmax=T D max ( 7-24)D max是设计电路时的一个重要参数,它对主开关元件、输出二极管的耐压与输出保持时间、变压器以及和输出滤波器的大小、转换效率等都有很大影响。

此处,选D max =45%。

由式(7-24),则有电压V O更小。

图7-26 “等积变形”示意图根据式(7-25),次级最低输出电压V2min为V2 minV O V L V F Tt oN max0.5 5=I4V 2.25式中,V F取0.5V (肖特基二极管),V L取0.3V。

2•变压器匝比的计算正激式开关电源中的开关变压器只起到传输能量|的作用,是真正意义上的变压器, 绕组的匝比N为V2根据交流输入电压的变动范围160V〜235V,则V I =200V〜350V, V|min=200V ,N =V|min= 200~ 14.3V2 min 14把式(7-25)、(7-25)整合,则变压器的匝比N为V im in D maxN =V O V L V F7.3.5变压器次级输出电压的计算变压器初级的匝数N!与最大工作磁通密度B m (高斯)之间的关系为max V|minB m S 104初、次级(7-26)所以有(7-27)(7-28)式中,S为磁芯的有效截面积(mm2), B m为最大工作磁通密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N2
U 2min tonmax Bm S
38.6 2.1 3.7 0.2 111
因而次级N2 = 4,式中Bm为磁心的磁通密度(T);S为磁心的有效截面积 (mm2)。初级线圈的匝数则是
N1
N2 N
4 0.193
21
确定 。次级线圈所需要的电压U2min一定要充分,因此要进行ton max的修 正计算。
Rd
2UO I L
2 15 2
15
则假设电阻 Rd 电耗为 Wrd
Wrd
Uo 2
Rd
152 15
15W
设计步骤
目录
12
复位电路计算
复位电路如图所示。开关功率管VT1接通时,变压器T1的磁通增加,磁能被 储存到T1,当VT1截止时,即放出这种受激磁的磁能下图复位线圈到T1上 以在VT1截止时通过VD1把磁能反馈到输入。
10
80
TO-3P(N)IS
典型值 Typ
导通最大电阻值RDS(ON)
最大值 正向降VGS 正向电流ID
Max
(V)
(A)
0.72
1.0
10
5
设计步骤
2SK2603
800
3
100 TO-220AB
3.0
3.6
10
1.5
2SK2883
800
3
75
TO-220FL/SM
3.0
3.6
10
1.5
2SK2605
目录
7
tonmax
Uomax U Lmax U f U 2 min
T
15.5 0.5 0.2 5 2.10
38.6
则有,Dmax源自tonmax T2.10 5
0.42
Dmax修正结果为0.42,仍然在0.4~0.45范围内,可以继续使用以下计算。
设计步骤
目录
8
输出滤波器设计
选用拓扑
功率开关和驱动 设计
高层功能设计
变压器设计
输出整流。滤波 设计
实验设计和结构 设计
目录
EMI/RFI测试
优化设计
测试
4
变压器设计
1、输出变压器次级电压U2计算
U2
UO UL U f ton
T
UL是输出扼流圈在内次级线圈的电压降,Uf是输出二极管的正向电压。 最低的次级电压U2min为:
目录
13
N3 28
则磁复位串接在N3的中二极管VD1承受最大电压为
UVD1
1
N3 N1
Vin max
1
28 21
220 1.1
2 795V
那么选择VD1额定电压为800V,这样基本符合要求的。
目录
14
功率开关管选择
右图为MOSFET型功率开关管,它主要具有驱动功率小,
器件功率容量大;第二个显著特点是开关速度快,工作 频率高,另外他的热稳定性优于GTR等优点,也是目前 开关变换器广泛应用的开关器件。 根据单端正激式变换器计开关管VT1承受最大电压公式 得:
用较多一种,并且它功率输出在50~200W是最合适的[2]。设计技术要求如下:
输入电压:交流220V±10% 输出电压UO:15V 输出电流IO:10A
纹波电压UP:0.5V 输出波动电流IP:±0.1A 占空比:D max=0.42
目录
3
开关电源设计步骤
开始
输出反馈设计
控制器设计
启动电路设计
保护电路设计
恒流开关电源设计
1
1、电源技术要求 2、设计步骤 3、变压器设计 4、输出滤波器设计 5、复位电路计算 6、功率开关管选择 7、输出二极管选择 8、恒流输出电路设计 9、缓冲吸收电路设计 10、控制电路设计 11、PCB板布线 12、电路仿真
2
电源技术要求
选用单端正激式开关电源拓扑图如下,因为它是一种小型、经济,也是开关电源应
N U2min 38.6 0.193 U1min 200
目录
6
根据输出容量磁心尺寸关系表3-4 [2] 选取EI-30。它的有效面积为S=111mm2 磁心材质相当于TDK的H7C4,最大工作磁道密度Bm可从图3-4中查得.实际使用 时的磁心温度约100℃,且要选择能保持线性范围的Bm,即0.3T以下。当磁心 温度有100℃,工作频率200KHz时,约减少0.1T而成为 。根据线圈计算公式 则,
VVT 1
1
N1 N3
Vinmax
1
21 28
220
1.1
2 597V
流过MOSFET开关管最大电流为
I ds
IO
N2 N1
10 4 1.90 A
21
目录
15
N3 28
型号
最大承受 电压VDS (V)
最大电 流ID (A)
最大功率 损耗PD (W)
封装型号
2SK34532
700
输出电容器的选定取决于输出脉动电压控制在多少毫伏。输出脉动电压 虽 要根据 和输出电容器的等效串联电阻 确定,但一般规定为输出电压的 0.3%~0.5%范围。
U 0.3 ~ 0.5UO 0.3 ~ 0.515 45 ~ 75mV
100
100
又因 U I RSE
RSE
U f I L
45 ~ 75 22.5 ~ 37.5m
在开关电源中带磁心的电感器,一般采用电感线圈Lf 与输出滤波电 容器Cf 构成的“L”型滤波器如下图。电感线圈对高频成分呈现很 高的感抗,而电容对高频成分呈现很小容抗,已达到在电路中抑制 纹波和平滑直流的作用。
目录
9
1、输出扼流圈的电感值设计
计算流入输出扼流圈电流
I U2min U f Uomax L
U2min
UOmax U Lmax U f ton max
T
目录
5
设 U Lmax 0.2V ,U f 0.5V (设定肖特基二极管),则
15.5 0.2 0.55
U2min
2.1
38.6V
2、初、次级线圈计算
输入直流电压U1的最小值使用按输出电路计算求得的U1min值。根据中国输 配电情况U1=200~253V,则变压比N为
2
就是在200HKz范围内,需要 值在37.5m 以下电容器的。所以可以选择
20V,8200 H,则 为31m ,容许脉动电流为2.9Ams.
流向电容器的纹波电流为
ICfms
I L 23
2 23
0.58
A
<2.9A,说明电容合适
目录
11
3、滤波器电阻设计
R 要想不是输出扼流圈的电流中断而直接使用时,可以假设电阻值为 d
L为输出扼流圈的电感(μH); 为输出电流的10%~30%。则有
I IO 0.2 100.2 2 A
电感L值为:
L U2min
U f Uo max I
tonmax
38.6 15.5 0.5
2
2.1 11.86H
由此可见,需要11.86μH,10A的扼流圈。
目录
10
2、输出滤波电容的确定
相关文档
最新文档