CCHP_冷热电三联供技术[行业严选]

合集下载

冷热电三联产系统发展现状探究

冷热电三联产系统发展现状探究

冷热电三联产系统发展现状探究冷热电三联产系统(Combined Cooling, Heating and Power System,简称CCHP系统)是一种集合供热、供冷和供电功能于一体的节能环保系统。

它通过利用燃气发电机组产生的余热来供热和供冷,同时发电,实现多能源的有效利用。

CCHP系统在能源利用效率、节约能源和减少环境排放等方面具有显著优势,因此越来越受到人们的重视和普及。

CCHP系统的发展可以追溯到20世纪70年代初,当时美国开始探索利用余热的可能性。

1980年代,该技术逐渐应用于高层建筑和大型商业空调系统中。

1990年代,CCHP系统成为节能环保领域的研究热点,世界各国纷纷投入研发和应用。

进入21世纪,CCHP系统取得了突破性进展,应用领域逐渐扩大,成为能源领域的热点之一。

目前,CCHP系统已经在全球范围内得到广泛应用。

特别是在一些高能耗和能量集中的领域,如大型工业企业、办公楼、酒店、医院和大型商场等。

欧洲一些国家和地区的建筑能源标准中要求使用CCHP系统,以提高能源利用效率和减少温室气体排放。

在中国,CCHP系统的发展也取得了长足的进步。

中国是世界上能源消耗最大的国家之一,大量的能源被浪费掉。

CCHP系统在中国的应用前景非常广阔。

根据统计数据,截至2019年底,中国已经有超过300座城市实施了CCHP系统。

并且这个数字还在迅速增长中。

出于能源管制和环境保护的需要,中国政府鼓励和支持CCHP系统的推广和应用。

尽管CCHP系统的发展前景广阔,但仍然面临一些挑战。

该系统需要较高的投资成本,这对于一些中小型企业来说可能是一个难以承受的负担。

该系统的设计和运维需要专业的技术人员,这对于一些地区技术人才短缺的情况来说也是一个问题。

一些法律法规对CCHP 系统的支持力度还不够,缺乏相关政策的制定和实施。

分布式冷热电三联供技术解读

分布式冷热电三联供技术解读

1. 冷热电三联供技术概述
基本概念
与其它能源技术有机融合,组成多元化供能系统
1. 冷热电三联供技术概述
设备组成
辅 助 系 统
余热 利用 系统
?冰蓄冷装置 · 电制冷机 ?蓄热装置 · 燃气锅炉 ? 热泵 ? 余热锅炉 ?吸收式制冷机
? 换热装置


? 燃气轮机
· 斯特林机

? 燃气内燃机 · 燃料电池
1. 冷热电三联供技术概述
微燃机-性能特点
微型燃气轮机叶片心透平,冷热电联供系统所使用的微型燃气轮机的功率在 30kW~300kW之间。
微燃机的特点是废气余热回收为热水; 运动部件少,重量轻,振动小,没有必要设置特殊的防振设施; 输出功率受环境温度影响;罩外噪声小; 100 kW以下可切网运行。另外, 小叶片的冷却问题使透平进口温度受到限制,使目前的微型燃气轮机简单循 环的效率很难超过20 % ,带回热器的可以接近 30 %。发电效率低、发电功率小

? 微燃机
1. 冷热电三联供技术概述
动力系统
目前三联供系统常用的发电机有燃气内燃机、燃气轮机、微燃机 等不同形式,各种发电机的三联供系统的一些参数比较如下表
容量( kW ) 发电效率 (%) 综合效率 (%)
燃料 启动时间 燃料供应压力
噪音 NOX 含量 (ppm)
燃气内燃机 20-5000 22-40 70-90 天然气 10s 低压 高(中) 较高
1 冷热电三联供技术概述 2 冷热电三联供系统基本类型 3 冷热电三联供设计、选型与优化 4 影响冷热电三联供经济性因素 5 冷热电三联供相关政策及前景
2. 冷热电三联供系统基本类型
采用燃气轮机,为充分利用烟气余热和烟气中的含氧量,宜采用:

冷热电三联产方案

冷热电三联产方案

冷热电联产(CCHP)技术方案1.概述项目所在地无法提供外部电源供电系统,因此业主决定采用燃气发电机组孤岛运行,作为全厂电力供应。

本项目考虑配套余热锅炉,以回收燃气发电机组高温烟气余热,副产低压蒸汽作为工艺装置热源(脱酸单元再沸器、脱水再生气蒸汽加热器);同时配套溴冷机组回收燃气发电机组缸套水热量,并为工艺装置提供冷源(原料气预冷、冷剂压缩机段间冷却)的冷热电联产(CCHP)方案。

根据工艺装置所需的冷、热、电消耗,优选与之相配套的燃气发电机组、余热锅炉和溴冷机组,以达到最大程度的回收利用发电机组烟气余热,优化主体工艺装置设备选型以及降低运行能耗的目的。

2.设计范围该方案为燃气机组冷热电联产系统,即利用管输天然气及工艺装置所产BOG,通过燃气机组(燃气内燃机或燃气轮机)发电,机组高温尾气配套余热锅炉副产低压饱和蒸汽供工艺装置使用,机组冷却循环生成热水配套溴化锂机组副产7℃空调水供工艺装置制冷。

电、蒸汽、空调水全部自用,实现冷热电联产,提高能源利用率,获得最高的系统效率,减少大气污染。

3.设计基础甲方供气≤50×104Nm3/d,经20km长输管线进入厂区附近,降压至0.8MPaG,分为三部分:一部分(15×104Nm3/d)进入公司原有天然气液化工厂作原料气;一部分(30×104Nm3/d)加压后进入本次新建天然气液化工厂作原料气,剩余部分(3.6×104Nm3/d,折~1500Nm3/h)与BOG之间的关系进入燃气机组发电,配套余热锅炉副产低压蒸汽,同时配套热水溴化锂机组副产空调水,均供工艺装置使用。

1)电规格:10kV(±7%),50Hz(±1%),三相三线。

30×104Nm3/d天然气液化工厂全厂有功负荷~5.4MW(已考虑照明、空调、锅炉系统、发电机组自用电以及溴化锂机组用电,~0.6MW)。

2)低压蒸汽规格:0.6MPaG饱和蒸汽(~165℃)液化工厂脱酸单元共需蒸汽~1.6t/h。

冷热电三联供CCHP陕建五建何亮陕西百卓天工东胜实业唐涵雪

冷热电三联供CCHP陕建五建何亮陕西百卓天工东胜实业唐涵雪

冷热电三联供CCHP陕建五建何亮陕西百卓天工东胜实业唐涵雪冷热电三联供CCHP陕建五建集团公司何亮陕西百卓天工建设工程公司渭南东胜实业冷热电新能源研发中心唐涵雪2020年8月22日冷热电三联供CCHP(Combined Cooling, Heating and Power)是指以天然气为主要燃料带动燃气轮机、微燃机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,系统发电后排出的余热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户供热、供冷。

通过这种方式大大提高整个系统的一次能源利用率,实现了能源的梯级利用。

还可以提供并网电力作能源互补,整个系统的经济收益及效率均相应增加。

冷热电三联供是分布式能源的一种,具有节约能源、改善环境,增加电力供应等综合效益,是城市治理大气污染和提高能源综合利用率的必要手段之一,符合国家可持续发展战略。

1998年1月1日起实施的《中华人民共和国节约能源法》第三十九条就明确指出“国家鼓励发展下列通用节能技术:发展热能梯级利用技术,热、电,冷联产技术,提高热能综合利用率”。

2004年9月,国家发改委颁布《国家发展改革委关于分布式能源系统有关问题的报告》,支持小型分布能源系统发展,促进我国分布式能源系统的发展。

2006年国家发展改革委会同财政部、建设部等有关部门编制了《“十一五”十大重点节能工程实施意见》,明确提出“建设分布式热电联产和热电冷联供;研究并完善有关天然气分布式热电联产的标准和政策”。

三联供系统能充分利用天然气的热能,综合用能效率可达90%以上。

同时可降低以天然气为燃料的供热成本,把一部分成本摊到电费上,减轻运营成本负担,与常规系统相比超出的初投资费用靠节省运行费5年内便可收回。

由于三联供在能源转换效率方面所具有的突出优势,使得其在世界各国的能源领域大都具有显著地位。

冷热电三联供系统是以燃气为能源,通过对其产生的热水和高温废气的利用,以达到冷-热-电需求的一个能源供应系统,通常由发电机组、溴化锂制冷装置、热交换装置组成,三联供使得燃气的热能被充分利用,大大提高了能源的综合利用功效。

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。

美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。

2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。

相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。

以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。

相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。

3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。

楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。

单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。

因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。

区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。

冷热电三联供

冷热电三联供

冷热电三联供
冷热电联产是指使用一种燃料,在发电的同时将产生的余热回收利用,做到能源阶梯级利用;
与传统的击中式供电相比,这种小型化、分布式的供能方式。

可以使能源的综台使用率提高到85%以上。

一般情况可以节约能源成本的30—50%以上;
由于使用天然气等清洁能源,降低了二氧化硫、氨氧化物和二氧化碳等温室气体的排放量,从而实现了能源的高效利用与环保的统一,减低了碳排放。

冷热电三联供技术优点
1、系统整体能源利用效率非常高;
2、自行笈电,提高了用电的可靠性;
3、减少了电同的投资;
4、降低了输配电网的输配电负荷;
5、减少了长途输电的输电损失;
6、节能环保、经济高效、安全可靠。

冷热电联供系统与传统制冷技术的对比优势
1、使用热力运行,利用了低价的”多余能源”;
2、吸收式冷水机组内没有移动件,节省了维修成本;
3、冰水机组运行无噪音;
4、运行和使用周期成本低;
5、采用水为冷却介质,没有使用对大气层有害的物质。

浅谈天然气冷热电三联供

浅谈天然气冷热电三联供

浅谈天然气冷热电三联供摘要:分析了天然气三联供方式的主要技术特征、介绍了国外的应用情况同时对应用情况的综合效率进行了技术经济分析。

关键词:天然气;冷热电三联供;技术经济分析0、引言天然气冷热电三联供,又称CCHP(CombinedCooling,HeatingPower),它主要是利用十分先进的燃气轮机或燃气内燃机燃烧洁净的天然气进行发电,对发电做功后的余热进一步进行回收,用来制冷、供暖和供应生活热水。

这是一种高效节能环保的新型能源利用方案,在欧美已有约二十年的发展时期,并方兴未艾,被确认是能源将来的发展方向。

冷热电三联供主要由两部分组成发电系统和余热回收系统,发电部分以燃气内燃机、燃气轮机或微燃机为主,近年来还发展有外燃机和燃料电池。

余热回收部分包括余热锅炉和余热直燃机等。

小型冷热电三联供系统中的燃气轮机或其他发电装置燃烧天然气做功,首先是将其中约35%的能量转化为电能,这部分自发电和市电同时向自身用户供电;其余大部分能量是在烟气余热和缸套水介质中,这些热量被余热系统回收用来产生所需冷和热。

系统可由高度智能化的控制系统集中控制,实现发电机组和余热回收系统的连锁运行,对不同的冷热电负荷情况下按不同的运行方式运行,同时还可接入楼栋控制系统;也可实现无人值守,通过电话线与远程控制站相连,实现远程控制。

1、国外应用情况介绍美国是全球发展新型能源系统的先锋,1978年开始提倡发展小型热电联产,目前除了继续坚持发展小型热电联产之外,正在走向高效利用能源的小型冷热电联产。

美国能源部已经提出了小型冷热电联供规划。

根据这项规划,2010年20%的新建商用、写字楼类建筑物使用小型冷热电联产;2020年50%新建商用、写字楼建筑采用小型冷热电联产。

三联供系统主要应用在医院、超级市场、办公大楼、机场、体育中心、酒店等场所。

目前冷热电联供系统主要的燃烧动力装置以燃气轮机、燃气涡轮机为主。

燃气轮机在装机容量为30~100KW的机组型号和市场方面占绝对优势;100KW~1MW的市场方面,以燃气轮机为主,燃气涡轮机占较小比例;1MW~5MW方面,燃气轮机和燃气涡轮机各占一半的比例;装机容量超过5MW的机组,以燃气涡轮机为主。

燃气冷热电三联供技术及其应用情况

燃气冷热电三联供技术及其应用情况

燃气冷热电三联供技术及其应用情况信息来源:互联网更新日期:09-05-25分布式能源系统(DistributedEnergySystem)在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。

分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(CombinedCoolingheatingandpowe r,简称CCHP)是其中一种十分重要的方式。

燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。

它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。

提高到80%左右,大量节省了一次能源。

燃气气冷热电三联供系统按照供应范围,可以分为区域型和楼宇型两种。

区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。

设备一般采用容量较大的机组,往往需要建设独立的能源供应中心,还要考虑冷热电供应的外网设备。

楼宇型系统则是针对具有特定功能的建筑物,如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。

燃气热电冷三联供的特点1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80~90%,且没有输电损耗。

热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。

天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。

冷热电三联供

冷热电三联供

热电冷联供(CCHP: combined cooling, heating and power) 系统是以燃料作为能源.同时满足小区域或建筑物内的供热(冷)和供电需求的分布式能源供应系统。

节能、削峰填谷、安全、环保和平衡能源消费是热电冷联供系统的主要优点。

由于热电冷联供系统可实现对能源的梯级利用.高品位能源用于发电.然后利用发电机组排放的低品位能源(烟气余热、热水余热)来制冷(供热).能源综合利用率高达80%以上(最高可达90%).对节约能源和促进国民经济可持续发展具有重要意义.用户也可大幅度节省能源费用。

热电冷联供系统中的主要设备从实现同时供热(冷)和供电需求的功能来说.热电冷联供系统中的主要设备有发电机组、制冷机组和供热机组。

其中.制冷机组多采用溴化锂吸收式制冷机。

因能量转换和余热利用方式的不同.有的系统中还需在发电机组和溴化锂吸收式制冷机之间配置余热锅炉.将发电机组排放的高温烟气热量转换成蒸汽热量或热水热量。

但在实际应用中.受负荷(空调负荷和电负荷)大小、负荷比例、负荷变化模式、运行控制目标、设备投资回收期等因素的影响.系统中还需要同时或分别配置直燃型溴化锂吸收式冷热水机组、电力螺杆式冷水机组、电力离心式冷水机组、燃油/燃气锅炉等冷(热)负荷调节设备才能使系统的综合经济性能达到最佳。

结论:1)在热电冷联供系统中配置溴化锂吸收式制冷机,可充分发挥其利用低品位能源的优势,有效提高系统的能源综合利用率,节约能源,提高系统经济性。

2)设计热电冷联供系统前,应进行必要的经济性分析,合理确定设备配置方案和配置容量,使系统达到节能、经济和高效的运行目的。

3)以燃气轮机发电机组和烟气型溴化锂吸收式冷热水机组为主要设备组成的热电冷联供系统,烟气系统的设计和安装连接是关键,烟气系统的烟气流动阻力必须小于等于燃气轮机的允许排烟背压,烟气系统控制部件的运行必须满足系统的控制要求,满足燃气轮机及烟气型溴化锂吸收式冷热水机组的安全运行要求。

基于新能源的冷热电三联供技术研究

基于新能源的冷热电三联供技术研究

基于新能源的冷热电三联供技术研究随着全球气候变化日益显著,新能源技术愈加成为人们探索的方向。

在绿色能源领域中,冷热电三联供技术是一项已经成熟的技术,他将制冷、供暖和电力供应有机的结合在一起,形成一个集中供给的系统。

它能够减少碳排放,提高能源效率,成为当下积极推广的绿色能源技术,本文旨在探讨基于新能源的冷热电三联供技术的研究现状和未来发展方向。

一、冷热电三联供技术简介冷热电三联供技术是一项能够将三种独立系统(制冷、供暖和电力系统)有机结合,形成一个综合性的系统来满足能源需求的技术。

其核心思想是高效利用能源,减少碳排放。

同时,其通过集成物理和化学过程,实现了在使用过程中能源的互相转化,从而提高能源利用效率。

冷热电三联供技术包括制冷系统、供热系统和发电系统三个部分。

制冷系统通过与供热系统结合,这个系统利用废热产生冷气,同时向供暖系统发出优质的废热,提高了整体供暖的效率。

发电系统可利用蒸汽或气体,产生电能,同时,废热可以被利用提供给热水或是供暖系统。

通过整个系统的互相结合,冷热电三联供技术可以满足不同承载能力的能源需求,使能源消耗更为合理,同时节约资源,降低环境污染。

二、冷热电三联供技术的优点1、能源利用率高冷热电三联供系统中,废热可以被充分的利用,提高了热能效益,同时废气和废水也得以被回收利用,实现了资源的最大利用,从而达到高效节能的效果。

2、低碳排放冷热电三联供系统将热能和电能进行无缝集成,减少了能源转化中的热损失和传输损耗,从而降低了二氧化碳的排放,对于缓解全球气候变化有着重要的意义。

3、安全可靠性好冷热电三联供系统采用数字化控制和监控技术,确保能够在长时间和多次使用的情况下保持高效的工作条件。

同时,其还具备一定的自动控制和反应能力,保障了系统工作的安全性和稳定性。

4、变形能力强冷热电三联供技术采用分层设计,能够灵活的适应不同场合的要求,极其适用于城市中心区和高层建筑等小型而密集的区域。

三、冷热电三联供技术的未来发展冷热电三联供技术是一项依赖于高科技技术的绿色能源系统。

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。

美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。

2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。

相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。

以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。

相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。

3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。

楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。

单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。

因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。

区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。

热电冷三联供

热电冷三联供

热电冷三联供热电冷三联供项目一、热电冷三联供发展现状圾前景1、分布式能源系统(,,,,,,,,,,, ,n,,,, ,,,,,,)。

分布式能源系统在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。

分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(,,,,,,,, ,,,,,,, ,,,,,,, ,,, ,,,e,,简称,,,,)是其中一种十分重要的方式。

燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。

它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。

提高到80%左右,大量节省了一次能源。

燃气气冷热电三联供系统按照供应范围,可以分为区域型和楼宇型两种。

区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。

设备一般采用容量较大的机组,往往需要建设独立的能源供应中心,供应的外网设备。

楼宇型系统则是针对具有特定功能的建筑物,还要考虑冷热电如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。

2、燃气热电冷三联供的特点。

1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30,,40,;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80,90,,且没有输电损耗。

热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。

天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。

冷热电三联供基础知识

冷热电三联供基础知识

二、主要设备
目前国内主要余热锅炉厂家有: 703研究所(广州大学城); 杭州锅炉厂; 四川锅炉厂; 广州大学城采用中国船舶重工集团公司第七○三研
究所生产的两台中压和低压蒸汽带自除氧、尾部制热 水、卧式自然循环、无补燃型、露天布置的余热锅炉
二、主要设备
3、溴化锂制冷机组
二、主要设备
二、主要设备
自然循环方式的余热锅炉
1- 膨胀节;2-进口烟道;3-内部保温材料;4-锅筒;5-烟囱;6-出口烟道; 7-膨胀节;8-省煤器段;9-下降管;10-蒸发器;11-过热器段;12-人孔; 13-整体结构钢;14-上升管
二、主要设备
强制循环方式的余热锅炉
1-蒸发器和过热器; 2-省煤器 ; 3-上部过渡段; 4-烟囱 ; 5-锅筒 ; 6-钢架 ; 7-弯烟道(侧向进口); 8-进口段 ;
冷热电三联供基础知识
一、概述
燃气冷热电三联供系统(Gas-fired Combined Cooling, Heating and Power System ),简称CCHP 系统,是指布置在用户附近,以燃气为一次能源用于 发电,并利用发电余热制冷、供热,同时向用户输出 电能、热(冷)的分布式能源供应系统。实现一次能 源的梯级利用,系统的综合能源利用效率高达80%以上。
目前溴化锂技术成熟,口碑较好的厂家主要是: 江苏双良制冷设备厂; 远大制冷设备厂。
谢谢观赏!
2020/11/5
17
一 概述
燃气冷热电三联供实现了对天然气的梯级利用
二、主要设备
1、燃气发电机组 燃气发电机组主要类型有:燃气轮机、燃气内燃
气、燃气微燃机。
燃气内燃机
二、主要设备
燃气轮机内部构造
二、主要设备

冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施一、冷热电三联供的概念分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。

小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。

分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。

冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%〜80%,大量节约一次能源。

因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。

典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。

针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。

二、冷热电三联供的优点①提高能源綜合利用率传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。

②电力燃气消耗双重削峰填谷、改善城市能源结构在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。

CCHP_冷热电三联供技术[行业严选]

CCHP_冷热电三联供技术[行业严选]

源利用率低。目前的建筑能耗80%属于低品位能量,目前多半采用电力和燃煤,
“高质低用”,属于浪费。CCHP可以实现能源梯级利用,提高整体能源利用
率,起到节能的作用。
一类特制
8
1.2 分布式燃气冷热电三联供系统构成与特点 分布式燃气冷热电三联供系统主要由燃机设备和余热利用设备构成,有多种
组织形式,在应用中有鲜明的优缺点,推广和规划时应予以充分考虑。
一类特制
12
分布式燃气冷热电联供系统的主要缺点包括:
1.对热负荷要求高。使用CCHP的先决条件是有较大的热负荷,同时要求冷热
负荷稳定。
虽然微型燃机发电效率己从17%-20%上升到当前的26%-30%,但以微型燃
气轮机作为动力的简单的分布式供电系统的热转功效率依然远小于大型集中供电
电站。三联供系统如果仅作为发电使用不考虑利用余热的效益,则发电成本高于
1.2.1 系统的基本组成 燃气冷热电联供系统由燃机设备和余热利用设备构成,其中燃机设备是系统
的核心,包括燃气轮机、内燃机等。余热利用设备包括余热锅炉、吸收式制冷机、 换热装置、电制冷机,燃气锅炉等。
燃机通过燃烧天然气发电后,产生的高温烟气送入余热利用设备,冬季可用 于取暖,夏季可用于供冷,还可生产生活热水,驱动热量不足部分可由补燃的燃 气进行供应。根据项目的条件,联供系统及其设备配置可作多种形式的变化,如 可采用冰蓄冷装置、蓄热装置、热泵等,提高系统的整体能源利用效率。
目前市电平均价格,单独发电是不经济的。对于热负荷变化较大的建筑物或者负
荷率很低的场所,能源综合利用效率一般很难达到期望的效果,并且发电机的使
用寿命也会受到影响。
2.系统成本的经济性受政府行为干预的影响大。
CCHP成本中燃料占67%~78%,其经济效益受市场燃料与用电价格(电价、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵观西方发达国家的能源产业的发展过程,可以发现:它经历了从分布式供电
到集中式供电,又到分布式供电方式的演变。造成这种现象不仅仅是由于生活水平 提高的需求,而且也是集中式供电方式自身所固有的缺陷造成的。因此,虽然从目 前能源产业的发展情况来看,集中式供电是我国能源系统发展的主要方向,但从长 远看,构造一个集中式供电与分布式供电相结合的合理能源系统,增加电网的质量 和可靠性,将为能源产业的发展打下坚实的基础。
一类特制
2
分布式燃气冷热电联供系统采用的燃气轮机和内燃机发电技术、 余热回收技术以及制冷技术多为成熟技术,以小规模(几kW至数MW) 分散布置的方式建在用户附近,配置灵活,便于按冷、热、电负荷的 实际需要进行调节,不仅满足了区域内用户的用能需求,还节省了大 量的城市供热管网建设和运行的费用,有助于电网和燃气供应的削峰 填谷,减少碳化物及有害气体的排放,产生良好的社会效益,符合可 持续发展战略,是未来能源技术发展的重要方向之一,在商业、建筑 能源系统中将得到广泛的应用。
一类特制
3
1 分布式燃气冷热电三联供技术概述
分布式燃气冷热电三联供(DES/CCHP)是最近几年发展起来的新兴 技术,有其特定的产生背景和技术经济特点。对其推广Байду номын сангаас应用,一方面要 合理使用,因地制宜,另一方面要提供良好的政策支持和专业可靠的技术 支持。
1.1 分布式燃气冷热电三联供技术的发展背景 分布式燃气冷热电三联供技术引起广泛应用与关注的时代背景是小型
分布式供电方式成为电力工业新的发展方向,天然气在能源结构中占有越 来越重要的位置,同时季节性缺电成为一种急需解决的能源供需矛盾,节 能成为时代发展的主题之一。
一类特制
4
1.1.1 供能系统分布化趋向 2003年8月18日的晚上,在纽约一片漆黑的夜空中,数以百计的点点亮光特别耀
眼。那是一些建筑物配置的分布式供能系统在美加大停电中留下令人印象深刻的一 幕。安全性是分布式功能最重要的特点之一,同时,分布式功能系统还具有节约联 网成本、环境污染少、调峰性好、调度灵活以及节约土地资源等诸多优点。
在能源利用效率方面,我国的万元GDP能耗与发达国家相比,存在巨大差
距。全国平均能源利用总效率为33.4%左右,与国际先进水平的50~55%相比,
一类特制
5
1.1.2 天然气使用推广 天然气作为一种清洁、便利的能源,其使用范围越来越广,利用规模也越
来越大。天然气发电是缓解能源紧缺、降低燃煤发电比例,减少环境污染的有 效途径,且从经济效益看,天然气发电的单位装机容量所需投资少,建设工期 短,调峰性能好。天然气大量用于化工工业,天然气是制造氮肥的最佳原料, 具有投资少、成本低、污染少等特点。天然气占氮肥生产原料的比重,世界平 均为80%左右。以天然气代替汽车用油,具有价格低、污染少等优点。随着石 油资源的相对紧张,开发潜力极大的天然气已成为现代能源结构中重要的组成 部分。目前世界各国都在加快进行开采和进口量,推广使用天然气。我国天然 气资源的开发和引进也已进入了一个快速发展的新阶段。如何高效、经济地利 用天然气已经成为天然气下游市场开拓的关键问题。
对目前世界能源产业面临亟待解决的四大问题:合理调整能源结构、进一步提
高能源利用效率、改善能源产业的安全性、解决环境污染,单一的大电网集中供电 解决 上述问题存在困难,而分布式供电系统恰好可以在提高能源利用率、改善安
全性与解决环境污染方面做出突出的贡献。因此,大电网与分散的小型分布式供电 方式的合理结合,被全球能源、电力专家认为是投资省、能耗低、可靠性高的灵活 能源系统,成为二十一世纪电力工业的发展方向。
1.1.3 电力和天然气的季节性峰谷差 随着经济快速发展和产业结构调整,我国能源、电力消费快速增长,电力供
应缺口逐年拉大,特别是季节峰谷性缺电明显。目前建筑耗能占社会总能耗的 20.7%,而供热与空调能耗占建筑能耗的65%。居民所用电空调比例几乎为 100%,商用空调约80%是电空调,电力高峰负荷出现在夏季,其中40%的电力 负荷是用于电制冷空调的。此时如果不高度重视节能以及改善能源消费结构,能 源、电力的供需矛盾将面临严峻挑战。
分布式燃气冷热电三联供技术
Mr.Z 2015-10-6
一类特制
1
0 前言
分布式燃气冷热电联供系统(DES/CCHP)是一种建立在能量梯 级利用概念基础上,以天然气为一次能源,同时产生电能和可用热 (冷)能的分布式供能系统。
作为能源集成系统(Integrated Energy Systems),冷热电联供 系统按照功能可分成三个子系统:动力系统(发电)、供热系统(供 暖、热水、通风等)和制冷系统(制冷、除湿等)。目前多采用燃气 轮机或燃气内燃机作为原动机,利用高品位的热能发电,低品位的热 能供热和制冷,从而大幅度提高系统的总能效率,降低了燃气供应冷 热电的成本。联供技术的具体应用取决于许多因素,包括:电负荷大 小,负荷的变化情况、空间的要求、冷热需求的种类及数量、对排放 的要求、采用的燃料、经济性和并网情况等。
一类特制
7
同时,我国城市冬季供暖多采用燃煤、燃气热水锅炉或蒸汽锅炉,生活热
水常采用燃气灶及燃气热水器制取。冬季气温较低,取暖和生活热水使用量增 大,造成了燃气需求量的季节性峰谷差,不利于燃气供应的稳定性。
分布式燃气冷热电三联供技术利用了燃气和电力季节性峰谷差互补的特点,将 夏季一部分电力高峰负荷转移到燃气上来,有利于季节调峰,改善能源供给结 构。 1.1.4 能源利用效率的要求
一类特制
6
在天然气气源充足的情况下,由于LNG、PNG的价格比气井天然气高出数 倍,因此用于化工业是不经济的。除了一部分提供给工业生产部门供燃烧外,绝 大部分(70%以上)须通过发电和民用燃料环节消耗。居民用城市燃气的数量不 大,且发展潜力往往是有限的,因此须通过建大规模天然气电厂和发展 DES/CCHP系统实现。由于目前煤电技术较为成熟,能源量稳定,发电成本较 低,天然气发电主要用于季节性的调峰。因此分布式燃气供能系统成为天然气推 广中重点发展的一个利用场合,它具有环保、社会、经济的三重效益。
相关文档
最新文档