单端反激式直流变换器

合集下载

单端反激式变换器总结

单端反激式变换器总结

单端反激式变换器总结一、引言单端反激式变换器是一种常见的电源电路,广泛应用于家用电器、通信设备、计算机等领域。

本文将对单端反激式变换器进行详细的总结。

二、单端反激式变换器原理1. 变换器结构单端反激式变换器由输入滤波电容、开关管、变压器和输出滤波电容等组成。

2. 工作原理当开关管导通时,输入电压施加在变压器的一侧,输出电压为零;当开关管截止时,变压器另一侧的磁场崩塌,产生高电压并输出到负载上。

通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

三、单端反激式变换器特点1. 简单可靠单端反激式变换器结构简单,易于实现,并且具有较高的可靠性。

2. 输出稳定性好通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

3. 效率高由于没有二次侧谐振环节,在工作频率较低时具有较高的效率。

4. 适用范围广单端反激式变换器适用于各种负载类型,具有广泛的应用领域。

四、单端反激式变换器设计要点1. 选取合适的变压器变压器是单端反激式变换器中最重要的元件之一,需要根据输入电压、输出电压和负载等参数来选择合适的变压器。

2. 控制开关管的导通和截止时间通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。

需要根据具体情况来确定导通和截止时间。

3. 合理设计滤波电容滤波电容对输出稳定性有很大影响,需要根据负载情况来合理设计滤波电容。

五、单端反激式变换器应用案例1. 家用电器单端反激式变换器广泛应用于家用电器中,如空调、冰箱、洗衣机等。

2. 通信设备单端反激式变换器在通信设备中也有应用,如交换机、路由器等。

3. 计算机单端反激式变换器还被广泛应用于计算机领域,如电源模块、显示器等。

六、总结单端反激式变换器是一种简单可靠、输出稳定性好、效率高、适用范围广的电源电路。

在家用电器、通信设备、计算机等领域有着广泛的应用。

在设计单端反激式变换器时需要注意选择合适的变压器、控制开关管的导通和截止时间以及合理设计滤波电容等要点。

单端反激式变换器总结

单端反激式变换器总结

单端反激式变换器总结一、什么是单端反激式变换器单端反激式变换器是一种常见的功率电子转换器,用于将直流电源转换为交流电源。

它由一个开关管、一个变压器和一个输出滤波电容组成。

单端反激式变换器的特点是具有简单的电路结构、低成本、高效率等优势。

二、单端反激式变换器原理单端反激式变换器的工作原理如下:1.开关管导通:当开关管导通时,直流电源通过变压器的一段输入,储存在变压器中。

2.开关管关断:当开关管关断时,变压器中储存的电能通过互感作用传递给输出负载。

3.输出滤波:通过输出滤波电容对输出信号进行滤波,得到所需的交流电源。

三、单端反激式变换器的优势和应用单端反激式变换器具有以下优势:1.低成本:由于电路结构简单,所需元器件较少,降低了制造成本。

2.高效率:在正常工作情况下,能量的传输效率较高,能够有效地转换电源。

3.功率密度高:相比其他转换器,单端反激式变换器具有更高的功率密度。

单端反激式变换器在电子设备中有广泛的应用,如电源适配器、电子变压器等。

四、单端反激式变换器的设计要点设计一个稳定工作的单端反激式变换器需要考虑以下要点:1.开关管的选取:选择合适的开关管能够提高整个电路的效率和可靠性。

2.变压器的设计:合理选择变压器的参数,以满足输出电压和电流的需求。

3.输出滤波电容的选取:根据负载的需求选择合适的输出滤波电容。

4.控制电路的设计:设计一个合适的控制电路,以确保开关管的正常工作。

五、单端反激式变换器的工作稳定性问题单端反激式变换器在工作过程中可能面临以下问题:1.开关管损坏:如果开关管不能正常导通或关断,会导致整个电路停止工作。

2.变压器失谐:如果变压器参数设计不合理,可能会导致变压器失谐,进而影响电路的工作稳定性。

3.输出电压波动:由于负载变化或其他因素,可能会导致输出电压出现波动,影响设备的正常工作。

为了解决这些问题,需要结合实际情况进行合理的电路设计和参数选择。

六、常见的单端反激式变换器故障及排除方法在实际应用中,常见的故障包括开关管损坏、变压器短路等。

开关电源拓扑结构概述(降压,升压,反激、正激)

开关电源拓扑结构概述(降压,升压,反激、正激)

开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

单端反激DC_DC电路仿真

单端反激DC_DC电路仿真

单端反激DC/DC电路仿真一、设计要求▪利用simpowersystems建立单端反激电路的仿真模型。

输入直流电压源,电压28V,电压纹波小于10%,输出电压5V,电压纹波小于2%,输出额定功率30W。

电路开关频率10KHz,整流二极管通态压降0.8V,计算功率管的工作占空比,并选择开关管(选择MOSFET)及二极管。

▪ 1.满负载的仿真。

DC/DC变换器输出功率30w,R=0.68欧姆,C=4700uf,仿真时间0.2s。

观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。

▪ 2.小负载的仿真。

DC/DC变换器输出功率0.5w,R=50欧姆, C=4700uf仿真时间0.2s。

观察并记录MOSFET的工作波形(电压,电流波形),输出整流二极管的工作波形(电压,电流波形),输出波形。

▪仿真分析,选择合适的功率管,整流二极管(电压,电流参数),设计合适的占空比(由合适输入输出电压决定)。

二、实验电路与仿真1.满负载的仿真。

R=0.68欧姆,C=4700uF。

MOSFET的工作波形(电压,电流波形),输出整流二极管的电压工作波形输出整流二极管的电流工作波形输出波形由图,磁化电流为连续2、小负载的仿真。

R=50欧姆, C=4700uF。

MOSFET的工作波形(电压,电流波形)输出整流二极管的电压工作波形输出整流二极管的电流工作波形输出波形由图知,磁化电流为不连续三、实验结果分析当开关管S 导通时,输入电压Uin 加到变压器的原边绕组N1上,由于变压器对应端的极性,副边绕组N2 为下正上负,二极管D 截至,副边绕组N2没有电流通过。

当S 截止时,副边绕组N2极性上正下负,二极管D 导通,此时S 导通期间储存在变压器中的能量便通过二极管D 向负载释放。

在工作过程中,变压器起了储能电感的作用。

当满负载时,磁化电流连续。

当S 截止时间较小时,在截止时间结束时,副边电流将大于0,在这种状态下,下一周期开始S 重新导通,原边绕组电流则不会从0开始。

基于UC3845的单端反激DC-DC变换器

基于UC3845的单端反激DC-DC变换器

基于UC3845的单端反激DC/DC变换器
 直流-直流(DC/DC)变换是将固定的直流电压变换成可变的直流电压,
也称为直流斩波。

本文为介绍基于UC3845的单端反激DC/DC变换器。

 驱动电路设计
 驱动电路原理图如下图所示电路的工作频率由4脚外接的电阻R,和电容CP决定。

UC 3845的电流采样用回路串阻R把采样电压接至3脚当3脚的采样电压小于1V时脉宽调制器能正常工作;当脚3的电压等于或大于IV时,电流采样比较器输出高电平使PWM锁存器置0而使输出封锁。

若故障消失下
一个时钟脉冲到来将使PWM锁存器自动位。

 驱动电路原理图
 电容C17 取为4700PF。

电容C18作用是进行滤波,则C18取为0.1PF.稳乐管VZ2和电阻R3是为了防止脉冲信号电压
 过高而造成开关管的损坏,对电路进行稳压,考虑到开关所能承受的电压,选取15V 的稳压管,电阻R3=20k 电阻RI5 和电容C13组成RC滤波器对
6脚输出的脉冲电压进行滤波,所以R15=150.C13=4700pF 通过电容C414。

单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图单端反激式功率变换器开关稳压电源并非是只能由一只晶体管组成,而由两只晶体管仍然可以组成单端变换器形式的开关稳压电源。

单端反激式开关稳压电源与推挽、全桥、半桥双端变换的开关稳压电源的根本区别在于高频变压器的磁心仅工作在磁滞回线的一侧(第一象限)。

典型的单端反激变换式开关稳压电源的原理图如图所示。

所谓单端,即指转换电路的磁心仅工作在其磁滞回线的一侧。

所谓反激,系指当晶体管导通时,在初级电感线圈中储存能量,当晶体管截止时,初级线圈中储存的能量再通过次级线圈释放给负载。

当开关管VT1被控制脉冲激励而导通时,输入电压Ui便施加到高频变压器T1的原边绕组N1上。

由于变压器T1副边的整流二极管VD反接,因此副边绕组N2没有电流流过;当VT1截止时,绕组N2上的电压极性颠倒,VD被正偏,VTl导通期间储存在T1中的能量便通过VD负载释放。

由于这种电路在开关管导通期间储存能量,因此在开关管截止期间才向负载传递能量。

高频变压器在工作中除了起变压作用外,还相当于一个储能用的电感,因此也有人称之为“电感储能式变换器”或“电感变换器”。

单端反激式开关电源电路是成本最低的一种。

它可以达到输入与输出部分隔离,还可以同时输出几路不同的电压,有较好的电压调整率。

但其输出纹波电压较大,负载调整率较差,适用于相对固定的负载。

在单端反激式开关电源电路中,开关三极管承受的最大反峰值电压是线路工作电压峰值的2倍以上。

为了降低开关管的耐压,需要对集射电压进行限幅,因此常用的单端反激式开关电源有三种形式。

单端反激变换器的很重要的特色是变压器充当了电感的作用,即在开关开通时变压器储能,开关关断时变压器将能量释放到副边,因此单端反激变换器的变压器工作在电感类型的工作区,在功率过大时变压器储能也大造成其负荷太重,但并不是说不能工作在100W以上,更不会有100W左右可靠性比正激更好的说法,只是在电源设计中是否合算的问题,而且单端反激变换器在多输出时的电压调整率不如正激.对于经常烧管子的问题,一是看选择的Mosfet的耐压定额够否:反激变换器的开关管的最大电压是输入电压加上输出电压与变比的乘积,考虑到漏感影响,电压定额要比这个值大至少20%(当然看漏感的大小和Clamp电路或Snubber的性能了);二看变压器设计的工作点要求远离饱和区,而且要留足够的裕量,在严重的情况下(最大占空比时)不至于饱和.只要计算正确,设计合理,出现这种问题的机会就比较少,所以一定要先在理论上把握住精髓,掌握必要的知识,在加上多学习多动手多思考,各种问题都会解决的.其实看正激还是反激很简单在电路上的区别主要有两点:1.看次级何时导通--次级一般接有二极管之类的单向导通器件, 在初级通时,次级可以导通,是正激的表现;在初级导通时,次级不导通,则时反激的表现2.看初级有没有为反激准备的回路--反激变换器在晶体管关闭时发生能量转换,由磁能变为电能,所以,一定要有电流流动的回路,没有回路则不可能是反激.反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激式变换器原理设计与实用

反激式变换器原理设计与实用

反激式变换器原理设计与实用1、引言反激式转换器又称单端反激式或“BUCK-BOOST”转换器,因其输出端在原边绕组关断时获得能量故而得名。

在反激变换器拓扑中,开关管导时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。

其优点如下:a、电路简单,能高效提供多路直流输出,因此适合多组输出要求;b、输入电压在很大的范围内波动时,仍可有较稳定的输出,目前己可实理交流输入85-265V间,无需切换而达到稳定输出的要求;c、转换效率高,损失小;d、变压器匝数比值小。

2、反激变换器工作原理以隔离反激式转换器为例(如右图),简要说明其工作原理:当开关管VT 导通时,变压器T初级Np有电流Ip,并将能量储存于其中(E=Lp*Ip²/2)。

由于初级Np与次级Ns极性相反,此时次级输出整流二极管D反向偏压而止,无能量传送到负载。

当开关管VT关断时,由楞次定律:(感应电动势E=—N Δ∮/ΔT)可知,变压器原边绕组将产生一反向电动势,此时输出整流二极管D正向导通,负载有电流Il流通。

由图可知,开关管Q导通时间Ton的大小将决定IP、Vds的幅值为Vds(max)=Vin/1-Dmax。

(其中Vin:输入直流电压;Dmax:最大占空比Dmax=Ton/T)。

由此可知,想要得到低的漏极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应有中通常取Dmax=0.45,以限制Vds(max)≦2Vin。

开关管VT导通时的漏极工作电流Id,也就是原边峰值电流Ip,根据能量守恒原则即原副边安匝数相等NpIp=NsIs可导出等式:Id=Ip=Il/n。

因Il=Io,故当Io一定时,匝比N的大小即决定了Id的大小。

原边峰值电流Ip也可用下面公式表示:Ip=2Po/(n*Vin*Dmax)(n转换器的效率)。

推导过程如下:∵一个工作周期内T输出功率可表示为:Po=Lp* Ip²*n/2T。

PWM单端反激式变换器电路原理分析

PWM单端反激式变换器电路原理分析
Vin
L2 01 SD R050 4-22 0 D2 02
1 +
KB L08
AC 2
输 入 交 流电 压
3
C2 01 68 6/45 0V
4
-
AC
C2 92 22 2/2K V
T2
203/2W R201
9 4N
D2 01 R2 33 10 03 C2 24 10 4 C2 25 D2 36 1N 4746 R2 38 20 R
R2 03 20 4/2W
UC2845D8和开关电源设计资料及电源维修方法
③ 作用:1:降低没用的反冲电压。 2:消除高频振荡(可以有效地保护开关功率管不受损)。 ④ 反冲电压:是指在断开有电流的电感电路时,产生的自感电压,吸 收回路是消耗能量的。 ⑤ 高电压常用的几种吸收回路分析
高电压常用的几种吸收回路
R1
T1
+ _
C2
V 0
V dc
Q1 FQPF4N90
V in
Np
_
Ns
+
D1 MUR1100E
C1
G nd
Ip To n
Is To f
单 端 反 激 式 变 换 器 工 作 原 理 1
一、调制 1.定义: 利用某一种电压或波形的改变,去控制另一种电压或波形 发生某种形式的改变。 2.调制方式:利用电压的改变,去控制另一种波形的改变,最后达到能 控制输出电压的改变,同时能控制输出电压稳定的一种技术措施。 3.脉冲宽度调制方式(PWM:(Pulse Width Modulation):
3 00 V
高 压 在 初 级 绕 组 的 几 种 吸 收 回 路
T
C1 R1 C1 初级 D1

单端反激变换器分析及仿真_赵敏

单端反激变换器分析及仿真_赵敏

科技信息2014年第1期SCIENCE&TECHNOLOGYINFORMATION0引言开关稳压电源核心部分是直流变换器,以内部功率损耗小、转换效率高、体积小、重量轻的优点被广泛应用。

高频功率场效应管的采用,以及新型拓扑技术和集成更多控制和监视功能的小型PWM 集成芯片的出现大大减小了电源的体积。

开关稳压电源工作频率基本在50KHZ 以上,是线性稳压电源工作频率的1000倍以上,使得开关电源滤波效率大大提高。

随着电子技术和应用的迅速发展,开关稳压电源在仪器仪表、计算机、通信、医疗仪器等方面得到了越来越多的广泛应用,发挥了不可取代的巨大作用。

按功率开关的连接方式划分,开关稳压电源分为单端正激式开关电源电路、单端反激式开关电源电路、推挽式开关电源电路。

本文采用单端反激式开关稳压电源电路并在电感电流连续导电模式工作,同时采用高性能固定频率电流模式控制器UC3842驱动开关管,并通过电流电压反馈网络使得输出更精准。

在理论分析同时通过仿真软件saber 进行了验证。

1反激变换器工作原理图1反激变换器图2工作于连续模式原理图下的电感电流如图1所示电路的工作原理如下。

该电路输出接负反馈闭环的采样电压Vom 与参考电压比较,产生的误差信号控制Q1的导通时间,是输出采样电压在负载变化和输入电压变化时跟随参考电压变化。

图中所示变压器为反激变换器类型。

Q1导通时初级绕组就有电流通过,Np 的电压恒定,其电流线性上升,设二极管导通压降为1V,斜率为d i /d t =(V dc -1)/L p 。

在导通之前初级电流上升达到I p =(V dc -1)T on /L p ,L p 为初级励磁电感,整流二极管D1由于反向偏置而截止,因此次级绕组中没有电流I s 通过,初级绕组耦合到次级绕组的能量以磁能形式存在次级绕组中,能量为E =L p (I p )22°当Q1截止时变压器感应的电压与输入电压正好相反,使得二极管正向偏置导通,储存在次级绕组中的磁能以电能形式释放给负载电路,在Q1关断瞬间,次级电流幅值为I s =I p (N p /N m )。

单端反激式变换器拓扑结构

单端反激式变换器拓扑结构

单端反激式变换器拓扑结构
单端反激式变换器是一种常见的拓扑结构,广泛用于电源和电子设备中。

它是一种简单而有效的电路设计,可将直流电压转换为所需的交流电压。

单端反激式变换器的基本原理是通过切割输入电源的直流电压,经过变压器和开关器件的工作周期性地产生一个脉冲信号,然后经过滤波电路将其转换为平滑的交流电压输出。

在变换器的正常工作过程中,开关器件会周期性地开关。

当开关器件关闭时,电感储存了一定的能量,并将其释放到输出负载中。

这种反激作用使得输出电压能够稳定,且能够提供相当大的功率输出。

单端反激式变换器的拓扑结构相对简单,仅包含一个开关器件(通常为MOSFET或IGBT)、一个电感器件和一个滤波电容。

这使得单端反激式变换器具有较高的效率和可靠性。

与其他拓扑结构相比,单端反激式变换器的设计和调整较为简单。

它可以通过改变开关器件和电感器件的参数来调整输出电压和输出功率。

此外,它还具有较少的电磁干扰和较低的成本。

单端反激式变换器是一种常见且可靠的拓扑结构,适用于各种电源和电子设备。

它的简单性、高效性和可调性使其成为电力电子领域中的重要技术。

DCDC单端反激式变换电路设计实验

DCDC单端反激式变换电路设计实验

实验四十八DC/DC单端反激式变换电路设计实验(信号与系统一电力电子学一检测技术综合实验)实验原理1.单端反激变换电路基本原理在基本的直流/直流变换器中引入隔离变压器,可以实现变换器的输入端和负载端的电气隔离,从而提高运行的安全可靠性和电磁兼容性。

同时当电源电压输出电压V o相差较大时,也不会导致占空比置多个二次绕组输出几个不同的直流电压。

D接近1或0。

而且引入变压器后,可以设图48-1 隔离式单端反激电路的原理图48-1是单端反激变换电路原理图。

电路仅有一个开关管,隔离变压器的磁通只能单方向变化。

当有正向偏压加在开关晶体管T的基极上时,T导通,当集电极一发射极间的电压达到饱和电压V C E ( sat )时,输入电压加在变压器的初级绕组上的电压。

同时,在变压器的次级绕组中感应岀反极性的电压,次极的二极管D中没有电流流过,次级绕组处于开路状态。

这时变压器内部并没有能量传递,电源提供给初级绕组的能量全部存储在变压器中。

开关管断开时,电源停止向初级绕组提供电能,同时变压器绕组产生反向电动势,次级电路的二极管D导通。

变压器内存储的能量向输出侧释放出来,给负载供电,因此该电路称为单端反激变换电路。

2.自激式单端反激变换器原理及其设计图48-2是一种常见的自激式单端反激变换电路,简称RCC电路(Ringing Choke Converter),广泛应用于50W以下的开关电源,它不需要专门的振荡电路,结构简单,由输入电压与输入、输岀电流改变频率。

(1)自激原理RCC电路的电压和电流波形如图48-3所示。

输入电压V1是输入交流电压经整流的直流电压。

当V1加到输入端时,V1通过电阻R B和晶体管VT1的基—射级给VT1的基极一个正的偏置电压,使VT1导通,变压器T1的初级绕组流过励磁电流,而此时感应到次级的电V s和负载所需的即为斜率为V i / L 的直线,如图 48-3(a)所示。

由于t on 期间能量全部积聚在变压器中,所以初级绕组电流持续增加,并激励磁通增 加。

CH3 F 直流变换器基本电路

CH3  F 直流变换器基本电路

13
B. 二极管D
参数:电流有效值:
I Drms
1 T
TOF

0
2 Io dt I o 1 D
电压定额 UDR≥2Uimax
14
C. 电感L
按临界连续电流值IQ,C设计(最小)电感值
由式(3-10):
U iTD(1 D) L 2 I o min
(3-11)
15
D. 电容(理想元件)
24
第三章 直流变换器基本电路
3.1 直流变换器概述 3.2 降压型直流变换器主电路 3.3 单端正激型(Forward)直流变换器 3.4 反相型(BUCK-BOOST)直流变换器 3.5 单端反激型直流变换器 3.6 升压型直流变换电路 3.7 Cuk型直流变换器 3.8 Sepic型直流变换器 3.9 推挽型直流变换器
38
第三章 直流变换器基本电路
3.1 直流变换器概述 3.2 降压型直流变换器主电路 3.3 单端正激型(Forward)直流变换器 3.4 反相型(BUCK-BOOST)直流变换器 3.5 单端反激型直流变换器 3.6 升压型直流变换电路 3.7 Cuk型直流变换器 3.8 Sepic型直流变换器 3.9 推挽型直流变换器
3.10 半桥型直流变换器
3.11 全桥型直流变换器 3.12 钳位、缓冲电路及软开关
39
Buck-Boost变换器 3.4 反相型直流变换器(升/降压Buck-Boost)
3.4.1 Buck-Boost变换器
40
Buck-Boost变换器
工作原理:电感电流连续模式(CCM)
Q on(导通)期间:
33
Boost变换器
(3) 电容

开关电源类型

开关电源类型

1.2 用高频变压器的开关电源结构概述
图5 高频变压器开关电源基本功能框 图 电路
这类电源的共同特点是具有高 频变压器、直流稳压是从变压 器次级绕组的高频脉冲电压整 流滤波而来。变压器原副方是 隔离的,或是部分隔离的,而 输入电压是直接从交流市电整 流得到的高压直流。
传输功 率 20~ 100W
50~ 200W 100~ 500W 100~ 5000W
(b) b)外接PNP管扩流式
图14 CW34063的Buck—Boost converter
4单端反激式开关电源 单端反激式开关电源
4.1 工作原理分析
(一)在开关VT导通期间: 在开关VT导通期间: VT导通期间 U iP (t on ) = in t on + I P min = I P max LP (二)在开关VT截止期间 在开关 截止期间
2.1 Buck converter
(一)在开关VT导通期间 在开关VT导通期间 VT U −U 0 i L1 = in t + I L min L U −U 0 I L max = in t on + I L min L 在开关VT VT截止期间 (二)在开关VT截止期间
iL 2 =
−U0 (t − t on ) + I L max L
I P min
TS 1 = U in t on [ − ] 2 2 RL n t off 2 LP
3 单端功率输出的直流变换器
(二)升压式电路 3.1 CW34063的工作原理
图11 CW34063的原理框图 8.3.2 CW34063的应用电路 (一)降压式电路
(a) (b) a) 直接升压式 b)外接NPN管扩流式 图13 CW34063的Boost converter

一种单端反激式功率叠加DC/DC变换器的设计

一种单端反激式功率叠加DC/DC变换器的设计
( 。 f 。 因此 , 关 管 Q U +U ) 开 源 极 和漏 极 之 问 所 承 受 的 电压 为 : d =u +u u i =U +( + ) + i Nl (
21 0 2年 3月 2 日收到 7
U) 。单 端 反 激 变 换 器 必 须遵 循 磁 通 复 位 的原 则 , 也 就是说 变压 器 1 芯 中的 磁 通 在 Q 导 通 期 磁 ,
出二极 管 D 由于正偏 而 导通 , 时 在 Q 此 导 通期 间
存 储在 变压 器 中的能 量便 通 过输 出 二极 管 向 负 载释放 。这 时变压 器 绕组 Ⅳ 上 的 电压 幅值 为 输 出 '
电压 +u ( 出整 流二 极 管 的 正 向压 降 ) 这 输 ,
样变 压器绕 组 Ⅳ 感应 的 电动势 : =( + ) 上 U N. N2
之星 ” 外部 电源 规 范 ( 简称 E A 2 0 在 1 1版基 础 P . ) .
1 单端反激式 D / C变换器的原理简述l ] CD _ 2
单 端反 激式 D / C的工作 原理 图如 图 1所示 。 CD 当开关 管 Q :的 门极 输 入 电压 为 正 脉 冲 时 , 输 入 电压 u 加到 变压器 的主绕组 Ⅳ1 , i 便 上 由于 变 压 器 的 Ⅳ 和 Ⅳ 的 同名端 极性 相反 , 时输 出二 2 这 极管 D 由于 反偏 而截 止 , 时变 压器 Ⅳ 的绕 组 中 此 , 无 电流流 过 。当开关 管 Q :的 门极 输 入 电压 为 负 脉
第一作者简介 : 史琳 芸(9 3 ) 17 一 ,女 , 汉族 , 陕西宝鸡人 , 硕士 , 讲师
研 究 方 向 : _ 电 子技 术 。 电丁
1 9期
史琳芸 , : 等 一种单端反激式功率叠加 D / C变换器 的设计一 CD

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。

其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。

这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。

自动化毕业设计论文-基于单端反激式DCDC变换器的技术研究

自动化毕业设计论文-基于单端反激式DCDC变换器的技术研究

基于单端反激式DC/DC变换器的技术研究摘要本文研究了小功率稳压电源,论文主要工作包括几种主要电源拓扑的形式和工作原理的阐述;根据技术指标要求,选用单端反激式DC/DC变换器作为变换器,然后进行了主电路元器件参数的设计,其中包括拓扑电路的电感、电容以及变压器参数的设计。

论文以下的部分是来确定单端反激式DC/DC变换器主电路的设计方案,囊括控制电路以及保护等电路的设计,结尾在MATALB/SIMULINK中对单端反激式DC/DC变换器的进行了建模与仿真,仿真得出的结论表明,理论分析和参数计算完全符合理论的分析。

关键词:开关电源;单端反激式;DC/DC;变压器;AbstractThis paper studies the low-power power supply,The main work includes elaborate form of several major power topology and working principle;By the technical requirements,Optional single-ended flyback DC / DC converter as the converter,Then the programming parameters of the main circuit components,Including inductive circuit topology,Capacitors and transformer design parameters.Next, the paper identified a single-ended design flyback DC / DC converter main circuit,Includes the design of a control circuit and a protection circuit ,Finally MATALB / SIMULINK in single-ended flyback DC / DC converter has been modeling and simulation,The simulation concluded that the theoretical analysis and parameter calculation in full compliance with theoretical analysis.Keywords: switching power supply; single-ended flyback; DC / DC; transformer.目录第一章绪论 (1)1.1 开关电源的基本概念 (1)1.2 开关电源的发展 (1)第二章开关电源的原理介绍与选择 (3)2.1 开关电源的基本工作原理 (3)2.1.1 开关稳压电源的电路原理框图 (3)2.1.3 单片开关电源的两种工作模式 (4)2.2开关电源的种类选择 (5)第三章单端反激式DC/DC变换器的原理和参数设计 (11)3.1 单端反激式DC/DC变换器的基本工作原理 (11)3.2 反激式DC/DC变换器的工作模式 (12)3.2.1 电流连续工作模式 (12)3.2.2 电流断续工作模式 (13)第四章反激变换器的仿真及结果分析 (15)4.1 仿真系统模型及参数 (15)4.1.1 仿真原理图中的参数设置 (15)4.1.2 仿真原理图 (16)4.2 仿真的波形及结论分析 (17)4.3 结论分析 (23)第五章总结与心得 (24)5.1 设计心得 (24)5.2 总结与展望 (24)参考文献 (26)致谢 (27)第一章绪论电力电子电源在电子设备中起着举足轻重的地位,有人形象的把电源比作式电子设备的动力心脏,可见电源对于整个系统安全性以及可靠性的影响甚大。

单端反激式变换器简单应用

单端反激式变换器简单应用
D

D1
Vin VT1 NPN
NP NS
C1
RL
开关管VT1截止工作过 程,驱动脉冲下降为零。 开关管VT1进入截止状 态,其变压器二次侧感 应电压使整流管VD1正 偏,VD1导通,变压器 的储能通过导通的VD1 传送,一是给电容C1充 电,二是给负载提供输 出电流。
C B
单端正激式变换器电路
t1 VD1
L1
N3 Vin If
反馈控制
N1 N2
VD2
ห้องสมุดไป่ตู้
C1
RL
VT1
VD3
Uf
PWM驱动
D

Vin uf If
反馈控制
PWM驱动
Q1 NPN
单端反激变换器的电 路如左图,他是由Q1、 T1、D1、C1、及反馈 控制和PWM驱动等组 成。反激变换器的高 频变压器实际是一个 初级与次级紧耦合的 电感,因反激变换器 和正激变换器变压器 的工作原理上的差别, 其设计方法也不同。
C B
2
3
4
5


单端反激变换器与单端正激除工作原理不 同外,在电路结构上比单端正激变换器少 了一种继流二极管和一个电感储能滤波器。 没有磁复位绕组,这是因为在变换器反激 期间,二次侧绕组和整流二极管构成电流 回路,同时完成了磁复位功能
单端反激式电路
t1 D1 IN4004 N1 N2 C1 25V1000UF RL
6
开关管导通参考图
D

D1
Vin VT1 NPN
NP NS
C1
RL
开关管VT1导通工作过程, VT1加上正脉冲而导通,输 入电压加在一次绕组N1上, 因二次绕组同名端在电路 中所示下方,整流二级管 VD1反偏而截止,二次侧 无电流流动,负载由储能 滤波电容C1的放电提供电 流。

(完整word版)单端反激变换器的建模及应用仿真

(完整word版)单端反激变换器的建模及应用仿真

单端反激变换器的建模及应用仿真摘要:介绍一种单端反激式高压DC/DC变换器,叙述其工作原理,工作模式,波形的输出。

并对两种工作模式进行了分析。

通过对单端反激变换器的Matlab/Simulink建模与仿真,研究电路的输出特性,以及一些参数的选择设置方法。

关键词:单端反激变换器Matlab/Simulink 建模与仿真1.反激变换器概述换电路由于具有拓扑简单,输入输出电气隔离,升/降压范围广,多路输出负载自动均衡等优点,而广泛用于多路输出机内电源中。

在反激变换器中,变压器起着电感和变压器的双重作用,由于变压器磁芯处于直流偏磁状态,为防磁饱和要加入气隙,漏感较大。

当功率管关断时,会产生很高的关断电压尖峰,导致开关管的电压应力大,有可能损坏功率管;导通时,电感电流变化率大。

因此在很多情况下,必须在功率管两端加吸收电路。

反击变换器的特点:1、电路简单,能高效提供多路直流输出,因此适合多组输出要求。

反激变换器是输出与输入隔离的最简单的变换器。

输出滤波仅需要一个滤波电容,不需要体积、重量较大的电感,较低的成本。

尤其在高压输出时,避免高压电感和高压续流二极管。

功率晶体管零电流开通,开通损耗小。

而二极管零电流关断,可以不考虑反向恢复问题2、输入电压在很大的范围内波动时,仍可有较稳定的输出,无需切换而达到稳定输出的要求。

3、转换效率高,损失小。

4、变压器匝数比值较小。

5.小功率多组输出特别有效;6.变压器工作原理与其他类型的隔离变换器不同,隔离变压器还起到了存储能量的作用;7.变压器铁芯必须加气隙,以防磁饱和;2.反击变换器的工作原理反激变换器的原理图如图2-1 所示。

图2-1 反激变换器的原理图反激变换器工作原理是:主开关管导通时,二次侧二极管关断,变压器储能;主开关管关断时,二次侧二极管导通,变压器储能向负载释放。

它和正激变换器不同,正激变换器的变压器励磁电感储能一般很小,各绕组瞬时功率的代数和为零,变压器只起隔离、变压作用。

单端反激AC-DC-DC电源设计(电力电子装置课设)

单端反激AC-DC-DC电源设计(电力电子装置课设)

3)输入整流滤波
高频开关电源输入不用工频变压器,直接对交流电进行整流滤波。目前国际
上交流电网电压等级有两种:100v~115V 和 230V,频率为 50HZ 或 60HZ。整流滤
波电路要适应交流电网电压的状况,现在很多开关电源都能适应通用电网电压的
范围,即输入电压为 85V~265V。高频开关电源的输入整流电路一般采取桥式整
峰值电流控制模式简称为电流控制模式。主要用于能周期出现电流峰值的电
路,电流控制模式原理如图 2-5.
图 2-5 电流控制模式原理图
3)开关电源的保护
开关电源保护一般有过压、欠压、过流、过温及短路保护。根据功率和拓扑
结构的不同,采用不同的传感器和方法,适时采集电压、电流、温度数据,与设
定的给定值进行比较,如有超出,封锁 PWM 的脉冲输出,关断功率开关管,达到
(2) 控制方案设计;
(3) 给出具体滤波参数的设计过程;
(4) 在 MATLAB/Simulink 搭建闭环系统仿真模型,进行系统仿真;
(5) 分析仿真结果,验证设计方案的可行性。
2
武汉理工大学《电力电子装置及系统》课程设计说明书
2 设计原理
2.1 高频开关电源基本组成
高频开关电源主要由输入环节、功率变换电路以及控制驱动保护电路 3 大部
武汉理工大学《电力电子装置及系统》课程设计说明书
目录
1 设计要求..................................................................................................................... 2
3.2.3 LC 滤波电路 ........................................................................................ 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tVD期间:
u p nUo
()
nU nU o t o tVD Np Np
输出电压Uo
(1)磁化电流连续情况
根据变压器上平均电流为零的原则。 可以得到:
Uiton nUotoff
Uo
U iton Ui D ntoff n(1 D)
2013-12-4
输出电压Uo
up N p
+ -
d dt

up Np
dt
Uo
RL
ton期间:
u p Ui

Ui t 0 Np
Ui
Ci
C1Biblioteka ton期间,Φ按照线性关系增加,最大
VD1
R1
磁通为:
m Ui ton 0 Np
( )
Ui U t i ton Np Np
相等 磁通 复位
2013-12-4
驱动脉冲为低电平。开关管VT进 入截止状态,其变压器二次侧感
Ui
Ci
C1
应电压使整流管VD正偏,VD导
VD1
R1
通,变压器中的储能通过导通的 VD传送,一是给电容Co充电,
di d us N s Ls s U o dt dt
二是给负载提供输出电流。
is I sm
Uo t Ls
2013-12-4
Ls Lsc
toff期间,is按照指数规律下降。
I s min I sm Uo toff Ls
VT由截止变为导通,VD受反压 截止,高频变压器二次侧电流突 变为零,因变压器磁势丌能突变, 变压器一次电流变为初始电流。
I p0 I s min / n
相关电压的变化如图。
3.2.1 单端反激式直流变换器
+
Np T Ns VD Co
特性
当VT导通时,续流二极管VD截
+ -
Uo
RL
止,电源丌直接向负载传送能量 ,而由变压器储能;当VT变为截
Ui
Ci
C1
止时,VD导通,储存在变压器磁
VD1
R1
场中的能量释放出来供给负载RL 和输出滤波电容Co,因此称之为反 激式变换器。
-
2013-12-4
+
Np
T Ns
VD Co
VT导通期间
+ Uo
RL
开关管VT1导通工作过程,VT加 上正脉冲而导通,输入电压加在
Ui
Ci
C1
一次绕组Np上,因二次绕组同名
VD1
R1
端在电路中所示下方,整流二极 管VD反偏而截止,二次侧无电流
dip d up N p Lp Ui dt dt
2013-12-4
Ls Lsc
toff期间,is按照指数规律下降。
I s min I sm Uo ' toff 0 Ls
VT由截止变为导通,VD受反压 截止,变压器一次电流从零开始 上升。
I p0 0
相关电压的变化如图。
2013-12-4
变压器的磁通
+
Np T Ns VD Co
(1)磁化电流丌连续情况
根据电感中储存的能量守恒的原理。 可以得到:
L p的储能为: W p
U I pm i ton Lp
1 2 I pm L p 2
2 U i2ton Wp 2L p
2 U i2ton P T 2 L pT
Wp
2 Uo 负载功率为: o P RL
U o U i ton
流动,负载由储能滤波电容Co的 放电提供电流。
ip
Ui U dt i t I p0 Lp Lp Ui ton I p0 Lp
L p的储能为: W p 1 2 I pm L p 2
t ton时,I pm
2013-12-4
+
Np
T Ns
VD Co
VT截止期间
+ Uo
RL
RL 2 L pT
2013-12-4
1 2 1 I sm Ls W p I 2 Lp pm 2 2
变压器理想时, Ws
I sm nI pm
Ls
Lp n2
2013-12-4
临界电感
toff期间,is按照指数规律下降。
is I sm Uo t Ls
Ls 越小,is下降的越快,相反下
降的越慢,所以单端反激变换器 中同样存在临界电感值。
相关文档
最新文档