单端反激开关电源方案
单端反激开关电源变压器方案设计书
单端反激开关电源变压器设计开关电源功率变压器的设计方法作者:编辑:admin 发布时间:2006-9-27 QQ群交流:查看群号|医药黄页|资料下载无忧新闻摘要:1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。
不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使1开关电源功率变压器的特性功率变压器开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。
不过在种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。
图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。
这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。
图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。
20W单端反激开关电源设计
辽宁工业大学电力电子技术课程设计(论文)题目:20W单端反激开关电源设计院(系):电气工程学院专业班级:学号:学生姓名:指导教师:(签字)起止时间:2010-12-27至2011-1-7课程设计(论文)任务及评语注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要近年来,随着电力电子技术的发展,开关稳压电源正朝着小型化、高频化﹑继承化的方向发展,高效率的开关电源已经得到了越来越广泛的应用,单端反激式电路以其简单,可以高效提供直流输出等诸多优点,特别适合设计小功率的开关电源。
本文介绍了一种单端反激式单片开关电源的设计方法。
该开关电源输入电压单相170~ 260V,输入交流电频率45~65HZ,输出直流电压12V恒定,输出直流电流2A,最大功率:25W,可获得高质量的稳压输出。
参照给定的该电源的技术参数,设计了该开关电源的滤波、整流、逆变等电路。
详细的给出了开关电源高频变压器的设计方法,并通过反复试验有了一定的心得,取得了高频变压器设计的宝贵经验。
文中给出了主电路图,通过基本计算,选择控制电路和保护电路的结构以及变压器的变比及容量。
本文重点介绍该电源的设计思想,工作原理及特点。
关键词:开关电源;反激电路;脉宽调制目录 TOC \o "1-3" \f \h \zHYPERLINK \L "_TOC282099721"第1章绪论PAGEREF _TOC282099721 \H 1HYPERLINK \L "_T OC282099722" 1.1 开关电源技术概况PAGEREF _T OC282099722 \H 1HYPERLINK \l "_Toc282099723" 1.1.1开关电源的基本概念PAGEREF _Toc282099723 \h 1HYPERLINK \l "_Toc282099724" 1.1.2开关电源的发展PAGEREF _Toc282099724 \h 1HYPERLINK \L "_T OC282099725" 1.2 本文设计内容PAGEREF _T OC282099725 \H 2HYPERLINK \L "_TOC282099726"第2章 20W单端反激开关电源电路设计PAGEREF _TOC282099726 \H 3HYPERLINK \L "_T OC282099727" 2.1 20W单端反激开关电源总体设计方案PAGEREF _T OC282099727 \H 3HYPERLINK \l "_Toc282099728" 2.1.1开关电源的种类选择PAGEREF _Toc282099728 \h 3HYPERLINK \l "_Toc282099729" 2.1.2单端反激式开关电源PAGEREF _Toc282099729 \h 3HYPERLINK \l "_Toc282099730" 2.1.3开关稳压电源的电路原理框图PAGEREF _Toc282099730 \h 4HYPERLINK \l "_Toc282099731"2.1.4调宽式开关稳压电源的基本原理PAGEREF _Toc282099731 \h 5HYPERLINK \l "_Toc282099732"2.1.5开关电源的两种工作模式PAGEREF _Toc282099732 \h 5HYPERLINK \L "_T OC282099733"2.2 具体电路设计PAGEREF _T OC282099733 \H 6HYPERLINK \l "_Toc282099734" 2.2.1主电路设计PAGEREF _Toc282099734 \h 6HYPERLINK \l "_Toc282099735" 2.2.2控制设计PAGEREF _Toc282099735 \h 9HYPERLINK \l "_Toc282099736" 2.2.3保护电路设计PAGEREF _Toc282099736 \h 12HYPERLINK \L "_T OC282099737" 2.3 元器件型号选择PAGEREF _T OC282099737 \H 14HYPERLINK \L "_T OC282099738" 2.4 系统调试或仿真、数据分析PAGEREF _T OC282099738 \H 15HYPERLINK \L "_TOC282099739"第3章课程设计总结PAGEREF _TOC282099739 \H 17HYPERLINK \L "_TOC282099740"参考文献PAGEREF _TOC282099740 \H 18绪论开关电源技术概况开关电源的基本概念电源是将各种能源转换成为用电设备所需电能的装置,是所有靠电能工作的装置的动力源泉。
(完整版)单端反激式开关电源的设计..
《电力电子技术》课程设计报告题目:单端反激式开关电源的设计学院:信息与控制工程学院一、课程设计目的(1)熟悉Power MosFET的使用;(2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用;(3)增强设计、制作和调试电力电子电路的能力;二、课程设计的要求与内容本课程设计要求根据所提供的元器件设计并制作一个小功率的反激式开关电源。
我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。
有条件的可以用protel99 SE进行PCB电路板的印制。
三、设计原理1、开关型稳压电源的电路结构(1)按驱动方式分,有自激式和他激式。
(2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。
(3)按电路组成分,有谐振型和非谐振型。
(4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式;③PWM与PFM混合式。
DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。
这时必须采用变压器进行隔离,称为隔离变换器。
这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。
因此,这类变换器又称为逆变整流型变换器。
DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。
图1 电路结构图电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。
M1导通与截止的等效拓扑如图2所示。
图2 M1导通与截止的等效拓扑2、反激变换器工作原理基本反激变换器如图3所示。
单端反激式开关电源设计UC3842
基于UC3842的开关电源设计摘要电源是实现电能变换和功率传递的主要设备。
在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。
这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。
开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。
UC3842是一种性能优良的电流控制型脉宽调制器。
假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。
UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。
由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。
设计思路,并附有详细的电路图。
关键词:开关电源,uc3842,脉宽调制,功率,IGBT前言 (1)第1章开关电源的简介 (2)1.1 开关电源概述 (2)1.1.1 开关电源的工作原理 (2)1.1.2 开关电源的组成 (3)1.1.3 开关电源的特点 (4)1.2 开关器件 (4)1.2.1开关器件的特征 (4)1.2.2器件TL431. (5)1.2.3电力二极管 (5)1.2.4光耦PC817 (6)1.2.5电力场效应晶体管MOSFET (7)第2章主要开关变换电路 (8)2.1 滤波电路 (8)2.2 反馈电路 (8)2.2.1电流反馈电路 (8)2.2.2电压反馈电路 (9)2.3电压保护电路 (9)第3章UC3842 .................................................. 错误!未定义书签。
3.1 UC3842简介 (10)3.1.1 UC3842的引脚及其功能 (11)3.1.2 UC3842的内部结构 (11)3.1.3 UC3842的使用特点 (13)3.2 UC3842的典型应用电路 (14)3.2.1反激式开关电源 (14)3.2.2 UC3842控制的同步整流电路 (15)3.2.3升压型开关电源 (17)第4章利用UC3842设计小功率电源 (18)4.1 电源设计指标 (18)4.1.1元件的选择 (19)4.1.2电路结构的选择 (20)4.2 启动电路 (21)4.3 PWM脉冲控制驱动电路 (22)4.4 直流输出与反馈电路 (23)4.5 总体电路图分析 (24)结论 (24)参考文献 ............................................................. 错误!未定义书签。
单端反激式开关电源原理与设计
单端反激式开关电源原理与设计2008-11-7 10:45:00 来源:中国自动化网网友评论0条点击查看0 引言近年来随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、继承化的方向发展,高效率的开关电源已经得到越来越广泛的应用。
单端反激式变换器以其电路简单、可以高效提供直流输出等许多优点,特别适合设计小功率的开关电源。
本文简要介绍了Unitorde公司生产的电流型脉宽调制器UC3842,介绍了该芯片在单端反激式开关电源中的应用,对电源电路进行了具体分析。
利用本文所述的方法设计的小功率开关电源已经应用在国电南瑞科技股份有限公司工业控制分公司自主研发的分散控制系统GKS-9000中,运行状况良好,各项指标均符合实际工程的要求。
1 反激式开关电源基本原理单端反激开关电源采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。
这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。
反激电路适应于小功率开关电源,其原理图如图1所示。
下面分析在理想空载的情况下电流型PWM的工作情况。
与电压型的PWM比较,电流型PWM又增加了一个电感电流反馈环节。
图中:A1为误差放大器;A2为电流检测比较器;U2为RS触发器;Uf为输出电压Uo的反馈取样,该反馈取样与基准电压Uref 通过误差放大器A1产生误差信号Ue(该信号也是A2的比较箝位电压)。
设场效应管Q1导通,则电感电流iL以斜率Ui/L线性增长,L为T1的原边电感,电感电流在无感电阻R1上采样u1=R1iL,该采样电压被送入电流检测比较器A2与来自误差放大器的Ue进行比较,当u1>Ue时,A2输出高电平,送到RS触发器U2的复位端,则两输入或非门U1输出低电平并关断Q1;当时钟输出高电平时,或非门U1始终输出低电平,封锁PWM,在振荡器输出时钟下降的同时,或非门U1的两输入均为低电平,则Q1被打开。
单端自激式反激型开关电源的启动电路_开关电源原理与应用设计_[共4页]
第2章 单端式开关电源实际电路
163║
图2-15 给功率开关变压器铁芯增加气隙的结构图(续)
6.功率开关变压器初级绕组匝数N p 的计算
功率开关变压器铁芯气隙的宽度L g 计算出来以后,
可以利用下式计算功率开关变压器初级绕组匝数N p :
4
max g p p 100.4πB L N I ⨯= (2-41)
将式(2-39)代入上式中,还可以得到功率开关变压器初级绕组匝数N p 的另外一个计算公式为
()4
p p p e max 10L I N A B ⨯= (2-42)
采用式(2-41)和式(2-42)都可以计算出功率开关变压器初级绕组的匝数N p ,结果是相同的。
因此,在设计实际应用电路时可根据已知条件进行灵活运用。
7.功率开关变压器次级绕组匝数N s 的计算
对于单端式反激型开关电源电路来说,一般功率开关变压器的次级绕组不只一组,有几路输出电压就有几组次级绕组,而每一组次级绕组的匝数N s 可由下式来计算:
()()
p o1d max s1i min max 1N U V D N U D +-= (2-43)
式中i min i 1.420U U =-,单位为V ;V d 为输出快速整流二极管的正向压降,单位为V ;U o1为第一路直流输出电压,单位为V 。
2.3.4 单端自激式反激型开关电源的启动电路
在开关电源电路的设计和调试中,单端自激式反激型开关电源中的启动电路常常被人们所忽视,这样就导致了设计出来的开关电源电路在实际调试或实际工作中常常出现不能起振或工作不可靠的问题。
因此,在这里我们将对单端自激式反激型开关电源中的启动电路进行较详细的分析。
单端反激式开关电源-主电路设计讲解
摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。
本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。
输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。
关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244YABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form.The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output.Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y目录前言 (3)1.反激式PWM高频开关电源的工作原理 (4)1.1 PWM开关电源 (5)1.1.1 开关电源简介 (5)1.1.2 PWM开关电源原理 (6)1.2 反激式变换器 (8)1.2.1 反激变换器的工作原理 (8)1.2.2 反激变换器的工作模式 (9)1.3 单相二极管整流桥 (9)1.4 缓冲电路(吸收电路) (10)2.TOPSwitch-GX芯片 (11)2.1 TOPSwitch-GX的性能 (12)2.2 TOPSwitch-GX的内部结构及引脚 (12)2.2.1 TOPSwitch-GX的内部结构 (12)2.2.2 TOPSwitch-GX的引脚功能 (14)3.反激式变换器的高频变压器设计 (15)3.1 开关电源变压器的绕线技术 (16)3.1.1 绕组符合安全规程 (16)3.1.2 低漏感的绕制方法 (17)3.1.3 变压器紧密耦合的绕制方法 (19)3.2 确定磁心的尺寸 (20)3.3 反激式变压器的设计 (22)4.单端反激式开关电源-主电路设计 (24)4.1 单端反激式开关电源主电路介绍 (25)4.2 单端反激式开关电源驱动电路介绍 (26)5.设计结果及分析 (27)5.1 设计输出电压及波形 (28)5.2 设计结果分析 (32)结论 (33)致谢 (34)参考文献 (34)附录 (35)前言本课题主要掌握反激式PWM高频开关电源的工作原理。
单端反激式开关电源课程设计
单端反激式开关电源课程设计单端反激式开关电源设计1.引⾔开关电源具有⼯频变压器所不具备的优点,新型、⾼效、节能的开关电源代表着稳压电源的发展⽅向。
因为开关电源内部⼯作于⾼频率状态,本⾝的功耗很低,电源效率就可做得较⾼,⼀般均可做到80%,甚⾄接近90%。
这样⾼的效率不是普通⼯频变压器稳压电源所能⽐拟的。
开关电源常⽤的单端或双端输出脉宽调制(PWM),省去了笨重的⼯频变压器,可制成⼏⽡⾄⼏千⽡的电源。
传统的开关电源普遍采⽤电压型脉宽调制(PWM)技术,⽽近年电流型PWM技术得到了飞速发展。
相⽐电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能⼒和并联均流能⼒使控制电路变得简单可靠。
电流型PWM 集成控制器已经产品化,极⼤的推动了⼩功率开关电源的发展和应⽤。
电流型PWM控制⼩功率电源已经取代电压型PWM控制⼩功率电源。
Unitrode公司推出的UC3843系列控制芯⽚是电流型PWM控制器的典型代表。
本次设计将⽤UC3843制作⼀个⼩功率开关电源。
2.UC3843简介Unitrode公司的UC3843是⼀种⾼性能固定频率电流型控制器,包含误差放⼤器、PWM⽐较器器、PWM锁存器、振荡器、内部基准电源和⽋压锁定等单元,它具有功能全,⼯作频率⾼,引脚少外围元件简单等特点,它的电压调整率可达0.01%V,⾮常接近线性稳压电源的调整率。
⼯作频率可达500kHz,启动电流仅需1mA,所以它的启动电路⾮常简单。
其结构图和⼯作原理如下:1脚COMP是内部误差放⼤器的输出端,通常此脚与2脚之间接有反馈⽹络;2脚FEEDBACK是反馈电压输⼊端;3脚ISENSE 是电流传感端;4脚RT/CT是定时端;5脚GND是接地;6脚OUT是输出端;7脚Vcc是电源;8脚VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。
器件参数:UC3843的电压调整率可达0.01%,⼯作频率为500kHz,启动电流⼩于1mA,输⼊电压为10~30V,基准电压为4.9~5.1V。
单端反激式DC-DC开关电源变压器的设计全过程
单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。
其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。
这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。
一步一步精通单端反激式开关电源设计
一步一步精通单端反激式开关电源设计————————————————————————————————作者:————————————————————————————————日期:一步一步精通单端反激式开关电源设计目录■系统应用需求 (5)■步骤1_确定应用需求 (5)■步骤2_根据应用需求选择反馈电路和偏置电压VB (6)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (8)3.1、选择输入存储电容CIN的容量 (8)3.2、确定最小和最大直流输入电压VMIN和VMAX (11)■步骤4_输入整流桥的选择 (11)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (13)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (16)■步骤7_根据VMIN和VOR确定DMAX (18)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (18)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (20)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (20)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (20)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (20)■步骤13_计算初级电感量LP (21)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到,,和BW的参考值 (22)■步骤15_设定初级绕组的层数L以及次级绕组圈数(可能需要经过迭代的过程) (29)■步骤16_计算次级绕组圈数以及偏置绕组圈数 (29)■步骤17_确定初级绕组线径参数OD、DIA、AWG (29)■步骤18_步骤23-检查。
如果有必要可以通过改变L、或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (30)■步骤24 –确认4200高斯。
单端反激式开关电源设计及电磁兼容仿真
目录一、单端反激式开关电源设计 (3)1.电路参数设计及元器件选取 (3)2.电路拓扑结构 (5)3.负载输出波形 (5)二、部分单端反激式开关电源EMI产生原因及现象 (5)1.MOS管动作时产生的EMI (6)2.二级管动作时产生的EMI (8)三、部分单端反激式开关电源EMI抑制措施分析 (9)1.减缓开关管动作(上升沿、下降沿) (9)2.减小干扰源的大小(对变压器的漏感Le的处理) (13)3.开关管加RCD缓冲吸收电路 (14)4.二级管加RC吸收电路 (18)5.整体效果比较 (21)6.抖频消除Mos管两端电压尖峰 (22)四、EMI电源滤波器的设计 (24)1.电源设备中EMI滤波器的作用 (24)2.EMI干扰类型 (26)3.EMI滤波器的基本结构 (26)4.EMI滤波器的设计原则 (27)5.EMI滤波器结构设计 (28)6.共模和差模扼流圈磁芯和电感参数设计 (28)7.X、Y电容的选取 (29)8.EMI滤波器的正确安装 (30)五、EMI电源滤波器插入损耗测试 (30)1.T型低通滤波器 (30)2.π型低通滤波器 (32)3.实际电容滤波器 (34)4.实际电感滤波器 (35)5.三端电容器 (36)6.大容量电容与小容量电容并联对EMI插入损耗波形分析 (39)六、设计过程中遇到的问题及解决方案 (40)七、设计过程的收获与心得体会 (40)八、参考资料 (41)一、单端反激式开关电源设计1.电路参数设计及元器件选取:36V(1)输入直流电压Vin:12V(2)输出直流电压Vo(3)输出电流I:1.2A(4)电容C:300uF(5)电阻R:10Ω(6)PMOS管:图1.PMOS管参数(7)开关管频率f:50khz(8)占空比D=0.4PMOS管驱动电压参数图2.PMOS管驱动电压参数(9)变压器参数设计(漏感系数K=0.98)由V o V in =N PN S·D1−D得N PN S=2由U P=NU SN=N P N SU P=L P d ip d tU S=M d ip d tM2=L p L s 得L P L S =N P2N S2=4图3.线性变压器参数设计(10)二极管:ues7042.电路拓扑结构图4.单端反激电路拓扑图3.负载输出波形图5.单端反激电路负载输出波形二、部分单端反激式开关电源EMI产生原因及现象功率器件高频开通和关断的操作导致电压和电流快速的变化是产生EMI的主要原因。
20W单端反激开关电源设计
20W单端反激开关电源设计在电子设备中,开关电源是一种高效率的电源供应器件,常用于电子设备中,如电视,电脑,手机等。
本文将详细介绍一个20W单端反激开关电源的设计。
首先,我们需要明确几个关键的设计参数:1.输入电压范围:通常开关电源的输入电压范围是广泛的,但本设计将限制在输入电压范围为85VAC-265VAC(即110VAC、220VAC两种标准市电)。
2.输出电压:输出电压为12VDC,电流为1.67A。
3.开关频率:选择合适的开关频率对于提高电源的效率和减小尺寸都是很重要的,本设计选择50kHz作为开关频率。
4.稳压与保护:开关电源需要稳定地输出电压,并具有过流保护、过压保护和短路保护等功能。
现在,我们可以开始进行开关电源的设计。
下面是本设计采用的主要电路元件及其功能:1.输入滤波器:用于滤除电网中的高频噪声和杂波。
2.整流电路:将交流输入电压转换为直流电压。
3.快速恢复二极管:用于输出短路时快速放电。
4.整流电容:稳定输出电压的波动。
5.反激变压器:将输入电压转换为合适的电压和电流输出。
6.控制芯片:用于调整开关管的工作频率和电流。
7.光耦隔离器:用于隔离控制芯片和开关管,以保护控制芯片免受开关管产生的高压脉冲的影响。
8.输出滤波器:用于去除开关管开关时产生的高频噪声。
9.稳压电路:通过调节开关管的工作状态,使输出电压保持在设定值。
10.保护电路:用于检测和处理过流、过压和短路等异常情况,以保护开关电源的安全运行。
然后,我们将根据上述电路元件和功能进行具体的电路设计:1.输入滤波器:本设计采用LC型电路进行输入滤波,用于滤除高频噪声和杂波。
选择合适的电感和电容值可以有效地滤波。
参数可根据实际情况进行调整。
2.整流电路:采用桥式整流电路将交流输入电压转换为直流电压。
可选择高效率和低压降的整流二极管。
3.快速恢复二极管:用于在输出短路时快速放电,以保护开关管和其他电路元件。
选择具有快速恢复时间和低反向电压的二极管。
单端反激式开关电源(毕业设计).
单端反激式开关电源(毕业设计).二、单端反激式开关电源的工作原理单端反激式开关电源的工作原理依靠开关管的开关动作来实现交流电到直流电的转换。
其基本原理如下:1、输入电压滤波单端反激式开关电源在工作之前,必须对输入电压进行滤波,以保证输入电压的平稳、稳定。
2、交流电输入输入电压通过电容滤波后,在交流电路中形成一定的电压波形,交流电通过变压器的原、次绕组的磁耦合作用,将输入电压变换成所需要的电压等级。
本设计选择220V交流电输入,变压器原、次绕组变比为1:26。
3、整流滤波变压器将220V交流电转换成24V直流电,然后通过扁平电容进行电压滤波,使直流电平滑化,得到更加稳定的直流电。
4、开关转换在直流电经过扁平电容滤波后,进入开关电路,在开关电路中,开关管CD4049B作为单向触发器,通过555定时器形成一定的工作周期,改变开关管的通断状态,使得直流电在开关管通断状态变化的控制下,进行输出电流的调整。
5、输出变压器通过输出变压器,将捕获后的直流电变压,以输出需要的电压级别。
三、单端反激式开关电源的电路设计本电路设计基于CD4049B和555定时器,整体电路如下所示。
(注:图中VCC为12V直流电源)1、输入电压滤波电路输入电压滤波电路通过电容电感联合滤波,能够有效抑制交流电中杂波的干扰,提高了直流电的稳定性和可靠性。
本设计采用C1、L1、C2的电容电感联合滤波电路。
2、交流电输入电路交流电输入电路采用变压器进行变压,将220V交流电输入变成24V交流电。
3、整流滤波电路整流滤波电路主要由二极管D1、扁平电容C3组成,二极管和扁平电容组合起来,实现对变压器的24V直流电进行滤波工作。
四、单端反激式开关电源的实验结果本设计所设计并实验验证的单端反激式开关电源,输出电压稳定在12V左右,基本符合设计要求,并成功实现正常工作。
实验中,对于开关管的选择,采用MOS管比较理想,名称为FDPF33N25B。
五、结论本文基于CD4049B和555定时器,设计了一种单端反激式开关电源方案,并在实验中验证了该设计方案的可行性,证明该方案具有开发简单、可靠的特点,可以用于一些小功率电子设备的电源供应。
多路输出单端反激式开关电源设计
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
单端反激式开关电源的工作原理与设计
单端反激式开关电源的工作原理与设计•电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。
•UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。
所谓电流型脉宽调制器是按反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。
•1 电路设计和原理1.1 UC3842工作原理•UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。
其中脚1外接阻容元件,用来补偿误差放大器的频率特性。
脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。
脚3是电流检测输入端,与电阻配合,构成过流保护电路。
脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。
输出电压将决定变压器的变压比。
由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。
UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。
多路输出单端反激式开关电源原理及设计
多路输出单端反激式开关电源原理及设计本文介绍了一种基于TOPSwith系列芯片设计的小功率多路输出AC/DC 的原理及设计办法。
设计要求本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。
为了削减的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。
考虑10W的功率以及小体积的因素,选用单端反激电路。
单端反激电路的特点是:电路容易、体积小巧且成本低。
单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及组成)等组成。
本电源设计成表面贴装的模块电源,其详细参数要求如下:输出最大功率:10W 输入沟通:85~265V输出直流电压/:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件惟独一个脉冲调制信号功率输出端一漏极D。
反激式则指当功率导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,因为开关频率高达100kHz,使得高频变压器能够迅速存储、释放能量,经高频整流滤波后即可获得直流延续输出。
这也是反激式电路的基本工作原理。
而反馈回路通过控制TOPSwitch器件控制端的电流来调整占空比,以达到稳压的目的。
TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载与主电源相连,在启动状态下通过内部开关式高压电源第1页共7页。
单端反激开关电源
湖北工业大学研究生考试答题纸考试科目电力电子系统设计研究生姓名学号120141116任课教师席自强学院、专业成绩二0 一五年七月九日单端反激式开关电源一、方案设计1 图1所示,50Hz单相交流220V电压或三相交流220V/380V电压经EMI防电磁干扰电源滤波器,直接整流滤波,然后再将滤波后的直流电压经变换电路变换为数十或数百kHz的高频方波或准方波电压,通过高频变压器隔离并降压(或升压)后,再经高频整流、滤波电路,最后输出直流电压。
通过取样、比较、放大及控制、驱动电路,控制变换器中功率开关管的占空比,便能得到稳定的输出电压。
EMI 滤波器整流滤波变换电路高频变压器整流滤波控制驱动取样比较放大图1开关电源原理框图2 脉冲宽度调制型(PWM)开关电源输入整流滤波电路功率转换电路输出整流滤波电路辅助电源驱动电路过压过流保护时钟振荡器V/W电路检测放大~220V 50Hz+V-图2 PWM方式开关电源框图(1)原理结构采用PWM技术的开关电源原理结构如图2所示,从电网将能量传递给负载的回路称为主回路,其余为控制回路。
(2)工作原理工频电网交流电压经过输入整流滤波电路,得到高纹波未调直流电压,再经功率转换电路,变换成符合要求的矩形波脉动电压,最后经输出整流滤波电路将其平滑成连续的低纹波直流电压。
控制回路在提供高压开关T管基极驱动脉冲的同时,需要完成输出电压稳压的控制,而且还必须能对电源或负载提供保护。
它通常由检测比较放大电路、电压-脉冲宽度转换电路(V/W电路)、时钟振荡电路、基极驱动电路、过压过流保护电路,以及自用电压源等基本电路构成。
对于PWM方式而言,将频率固定的振荡源称为时钟振荡器,这种电源利用检测电路反映输出电压值,通过和给定参考电压比较产生误差信号,再经V/W 电路调制脉冲宽度以调节输出电压。
例如,由于某种原因(负载电流减小或电网电压上升)使高频变压器副边输出电压的平均值增大,电源输出电压也将随之提高,反馈检测电路将提高了的输出电压和基准电压进行比较,并产生负极性的误差电压,V/W 电路根据该误差电压及时减小输出脉宽,这样使输出电压平均值减小,接近原来的数值,从而实现稳压的作用。
基于TOPSwitch及PI Expert的单端反激式开关电源设计
基于TOPSwitch及PI Expert的单端反激式开关电源设计0 引言开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。
开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。
传统的单端反激电源一般由PWM控制芯片(如UC3842)和功率开关管(频率较高时一般使用MOSFET)组成,PWM芯片控制环路设计复杂,容易造成系统工作不稳定,功率开关管有时需要外加驱动电路。
另外,反激变压器的设计也是一个难点,其往往导致电源设计周期延长。
随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。
应用TOPSwitch设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,而且与之配套的软件设计平台Pl Expert使得变压器的设计也变得异常容易。
两者结合已成为一种高效的开关电源设计方案。
本文以一个具体的设计实例,洋细阐述了如何应用TOPSwitch及PI Expert进行开关电源没计,并通过试验进行了验证。
1 单端反激电源基本工作原理单端反激式开关电源的基本本作原理比较简单。
采用基本反馈电路的基于TOPSwitch的单端反激电路如图l所示,其中变压器T1具有能量存储、原副边隔离和电压转换三种作用。
TOPSwitch开通时副边整流二极管D2截止,此间输出负载的能量由C1提供;TOPSwitch关断后,变压器磁心中的磁通减少,副边绕组电压极性反向,整流二极管开始导通,存储在变压器中的能量输送给负载,同时补充C1先前减少的能量。
根据变压器原边电流是否减小到零,可以将单端反激式开关电源分为断续和连续两种工作模式。
不同工作模式对整个电源的效率以及相关参数的选择都有一定影响。
2 TOPSwithch及PI Expert简介TOPSwitch系列单片开关电源是美国Power Integrations(PI)公司开发的新型开关电源芯片,其将离线式开关电源所必需的各种功能模块都集成到一块芯片上,包括高压功率场效应管MOSFET、PWM控制器、高频振荡器、高压启动偏置电路、基准电压、误差放大器、用于环路补偿的并联偏置调整器以及各种保护电路等。
单端反激AC-DC-DC电源设计(电力电子装置课设)
3)输入整流滤波
高频开关电源输入不用工频变压器,直接对交流电进行整流滤波。目前国际
上交流电网电压等级有两种:100v~115V 和 230V,频率为 50HZ 或 60HZ。整流滤
波电路要适应交流电网电压的状况,现在很多开关电源都能适应通用电网电压的
范围,即输入电压为 85V~265V。高频开关电源的输入整流电路一般采取桥式整
参考文献...................................................................................................................... 26
1
武汉理工大学《电力电子装置及系统》课程设计说明书
4.1 AC DC 整流滤波电路仿真 ....................................................................................... 18
4.2 开环系统仿真 .............................................................................................................. 19
武汉理工大学《电力电子装置及系统》课程设计说明书
目录
1 设计要求..................................................................................................................... 2
分组成。
2.1.1 开关电源的输入环节
1)输入浪涌电流和瞬态电压的抑制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式开关电源变压器的设计反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其的发热尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。
设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。
下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。
第一步,选定原边感应电压V OR这个值是由自己来设定的,这个值就决定了电源的占空比。
可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。
这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流:I 升=V S *Ton/L这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流:I降=V OR *T OFF /L这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有:V S *T ON /L=V OR *T OFF /L即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF。
移项可得:图一D= V OR /(V OR +V S )此即是最大占空比了。
比如说我设计的这个变压器,我选定感应电压为80V ,V S 为90V ,则D=80/(*80+90)=0.47第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示。
这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值I ,二是有效值I,三是其峰值I P ,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值:I =P O /(η*V S )因为输出功率除以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。
下一步求电流峰值。
为了求电流峰值我们还要设定一个参数,这个参数就是K RP ,所谓K RP ,就是指最大脉动电流△I M 和峰值电流I P 的比值(图二所示),K RP 的取值范围在0和1之间。
这个值很重要。
已知了K RP ,现在要解方程了,都会解方程吧,这是初一的应用题啊,我来解一下,已知这个波形一个周期的面积S=I *1,这个波形的面积S 等于:S=I M *K RP *D/2+ I M *(1-K RP )*D ,所以有电流平均值等于上式,解出来峰值电流:I M =I / [(1-0.5 K RP )*D]。
比如说我这个输出是10W ,设定效率是0.8 ,则输入的平均电流就是:I =10/0.8*90=0.138A,我设定K RP 的值是0.6,而最大值:I M =0.138/(1-0.5 K RP ).D=0.138/ (1-0.5*0.6)*0.47=0.419A.下面求电流的有效值I,电流有效值和平均值是不一样的,有效值的定义还记得吗,就是说把这个电流加在一个电阻上,若是其发热和另处一个直流电流加在这个电阻上发热效果一样的话,那么这个电流的有效值就等于这个直流的电流值.所以这个电流的有效值不等于其平均值,一般比其平均值要大.而且同样的平均△I MI PItiO图二值,可以对应很多个有效值,若是把K RP 的值选得越大,有效值就会越大,有效值还和占空比D 也有关系,总之.它这个电流波形的形状是息息相关的.我就直接给出有效值的电流公式,这个公式要用积分才能推得出来,我就不推了,只要大家区分开来有效值和平均值就可以了.I= I P )13/(2+-RP RP K K D如图一所示电路,电流有效值: I =0.419 )16,03/36.0(47.0+-=0.20A.所以对应于相同的功率,也就是有相同的输入电流时,其有效值和这些参数是有关的,适当的调整参数,使有效值最小,发热也就最小,损耗小.这便优化了设计.第三步,选定变压器磁芯这个就是凭经验了,如果你不会选,就估一个,计算就行了,若是不行,可以再换一个大一点的或是小一点的,不过有的资料上有如何根据功率去选磁芯的公式或是区线图,大家不妨也可以参考一下.我一般是凭经验来的.第四步,计算变压器的原边匝数原边使用的线径.计算原边匝数的时候,要选定一个磁芯的振幅B,即这个磁芯的磁感应强度的变化区间,因为加上方波电压后,这个磁感应强度是变化的,正是因为变化,所以其才有了变压的作用,N P =V S *T ON /S J *B这几个参数分别是原边匝数,,最小输入电压,导通时间,磁芯的横截面积和磁芯振幅,一般取B 的值是0.1到0.2之间,取得越小,变压器的铁损就越小,但相应变压器的体积会大些.这个公式来源于法拉第电磁感应定律,这个定律是说,在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,简单吧.我的这个N P =90*4.7μS/32mm 2*0.15==88.15,取整数为88匝。
算了匝数,再确定线径。
一般来说电流越大,导线越容易发热,所需要的导线就越粗,,需要的线径由电流有效值来确定,而不是平均值.上面已经计算了有效值,所以就来选线。
我用0.25的线就可以了,用0.25的线,其面积是0.049平方毫米,电流是0.2安,所以其电流密度是4.08。
一般选定电流密度是4~10A/mm 2.记住这一点很重要. 另外,因为高频电流有趋效应,若是电流很大,最好采用两股或是两股以上的线并绕,这样效果更好.第五步,确定次级绕组的参数圈数和线径记得原边感应电压吧,这就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电压为5V ,加上肖特基管的压降,就有 5.6V ,原边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢,当然其遵守变压器匝数和电压成正比的规律啦.所以副边匝数:N S =N P *(U O +U F )/V OR ,其中U F 为肖特基管压降.如我这个副边匝数等于88*5.6/80,得6.16,整取6匝. 要算副边的线径,首先要算出副边的有效值电流啦,副边电流的波形会画吗,我画给大家看一下吧,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其K RP 的值和原边相同的,这下知道了这个波形的有效值是怎么算的了吧?哦,再提醒一句,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍哦.第六,步确定反馈绕组的参数反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP 的电源电压是5.7到9V ,绕上7匝,那么其电压大概是6V 多,这就可以了,记得,反馈电压是反激的,其匝数比要和幅边对应,懂什么意思吗,至于线,因为流过其的电流很小,所以就用绕原边的线绕就可以了,无严格的要求.第七步,确定电感量记得原边的电流上升公式吗I 升 =V S *T ON /L.因为你已经从上面画出了原边电流的波形,这个I 升= I M *K RP ,所以:L=V S .T ON / (I M *K RP )知道了吗,从此就确定了原边电感的值.第八步,验证设计即验证一下最大磁感应强度是不是超过了磁芯的允许值,有B MAX =L*I P /S J *N P.这个五个参数分别表示磁通最大值,原边电感量,峰值电流,磁芯横截面积,原边匝数,这个公式是从电感量L 的概念公式推过来的,因为L=磁链/流过电感线圈的电流,磁链等于磁通乘以其匝数,而磁通就是磁感应强度乘以其截面积,分别代入到上面,即当原边线圈流过峰值电流时,此时磁芯达到最大磁感应强度,这个磁感应强度就用以上公式计算.B MAX 的值一般一要超过0.3T ,若是好的磁芯,可以大一些,若是超过了这个值,就可以增加原边匝数,或是换大的磁芯来调.总结一下:设计高频变压器,有几个参数要自己设定,这几个参数就决定了开关电源的工作方式,第一是要设定最大占空比D,这个占空比是由你自己设定的感应电压V OR 来确定的,再就是设定原边电流的波形,确定K RP 的值,设计变压器时,还要设定其磁芯振幅B,这又是一个设定,所有这些设定,就让这个开关电源工作在你设定的方式之下了.要不断的调整,工作在一个对你来说最好的状态之下,这就是高频变压器的设计任务.总结以下公式D=V OR /(V OR +V S )------------------------ (1)图三I =P O /(η*V S )------------------------------(2)I M =I / [(1-0.5 K RP )*D]----------------- --- (3)I= I M )13/(2+-RP RP K K D ---------------------- (4)N P =V S *T ON /S J *B ---------------------------- (5)N S =N P *(U O +U F )/V OR ----------------------- (6)L=V S .T ON / (I M *K RP ) ----------------------- (7)B MAX =L*I P /S J *N P. --------------------------- (8) 不过总的来说,高频变压器是一个比较复杂的东西,我短短的篇幅在此也不足以说明,该高频变压器设计,我苦搞了两个月。
才觉得有了头绪。
可能有些地方我说的不太清楚,大家就自己揣摩了,若是不懂,在群上问我好了,我会尽力解答。
学的时候注意各个参数之间的联系,因为本来这个东西就是一个整体,多分析,多思考,想来大家就会精通。
新摸索到的东西不妨来告诉我啊。
小生名叫唐天伊,做这一行时间也不长,来日或会让众位朋友帮忙,在此谢谢了。