电路计算机仿真实验报告

合集下载

计算机仿真实验报告

计算机仿真实验报告

计算机仿真技术作业一题目:转速反馈单闭环直流调速系统仿真直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。

本次仿真采用算法为ode45,仿真时间5s。

图1 直流电机模型一、开环仿真模型建立:其中Ud0=220V R=0.6,T l=0.00833,T m=0.045,Ce=0.1925其中0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A采用算法:ODE45:5秒前2.5秒:后2.5秒:空载转速:1143rpm负载转速:971rpm 空载静差率s=0 负载静差率s=0.1505仿真时有波动ODE23:整体:前2.5秒后2.5秒整体:前2.5秒后2.5秒整体:前2.5秒后2.5秒整体:前2.5秒后2.5秒算法分析比较:从上可以看出ODE45与ODE23算法较差,仿真结果与理论不符合,电机转速有纹波。

ODE23s ODE23t ODE23tb效果较好,基本满足仿真需要,波形基本符合理论。

原因在于:ODE45、与ODE23都是一步解法,即只要知道前一时间点的解y (tn-1 ) ,就可以立即计算当前时间点的方程解y (tn)。

后三种算法适用于刚性系统的解法,而前两种不可。

其中ODE23tb最适合电力电子系统仿真,它采用TR-BD F2算法,即在龙格.库塔法的第一阶段用梯形法,第二阶段用二阶的Backward Differentiation Formulas 算法。

2、闭环仿真模型建立:1、比例校正(K=5)转速指令为1130rpm为了便于比较不同k p值时转速波形,简便框图先进行模块封装:1、确定输入输出与变量K2.选中整个模块右键选择create subsystem即得:3、右键选择create mask得:定义变量名K,并使变量K与封装模块中的变量K相互对应。

4、此时点击该模块可得:即可更改变量K然后将多个模块集中在一起显示:仿真K=5,K=10,K=20三种,采用算法ODE23tb得:整体:(黄、红、绿分别代表K=5,K=10,K=20)我们可以看出,在一定范围内,K越大静态误差就越小,但是比例环节无法消除静态误差。

电子仿真报告总结范文模板

电子仿真报告总结范文模板

电子仿真报告总结范文模板电子仿真技术是现代电子工程中不可或缺的重要工具,通过建立电子电路的数学模型,利用计算机软件进行仿真计算和分析,可以大大提高电路设计的效率和准确性。

为了更好地总结电子仿真报告的特点和技巧,以下是一个电子仿真报告总结的范文模板。

一、实验目的本次仿真实验的目的是通过使用电子仿真软件,设计并分析一个特定的电子电路,在给定条件下得到所需的电路性能。

通过仿真实验,我们能够更好地了解电子电路的特性、性能和限制。

二、仿真步骤本次仿真实验的步骤如下:1. 制定仿真方案:根据实验要求,确定所需的电路拓扑结构、元器件参数和仿真参数。

2. 建立电路模型:利用仿真软件建立电子电路的数学模型,包括元器件的数学描述和连接关系。

3. 参数设定:根据实验要求,设定电路中各个元器件的参数,如电阻值、电容值、放大倍数等。

4. 仿真运行:通过运行仿真软件,对建立的电路模型进行仿真计算,得到电路的频率响应、电压波形、电流波形等结果。

5. 结果分析:对仿真结果进行深入分析,比较仿真结果与预期目标之间的差距,并确定可能的原因。

三、实验结果及分析根据仿真实验得到的结果,可以进行详细的分析和总结。

1. 频率响应:通过仿真计算得到电路的频率响应曲线,分析电路在不同频率下的增益、相位等参数变化情况。

2. 电压波形:通过仿真计算得到电路中关键节点的电压波形,分析电路在不同工作状态下的稳定性和波形畸变情况。

3. 电流波形:通过仿真计算得到电路中关键元器件的电流波形,分析电路中各个元器件的功耗、能效等性能指标。

四、实验结论通过本次仿真实验,我们得出了以下结论:1. 根据仿真结果,我们确认了所设计电路的性能目标是否达到,并对性能差距进行了分析和原因推测。

2. 仿真实验结果与理论预期相比较,可能存在的误差来源包括元器件参数的不确定性、仿真模型的简化以及仿真软件的计算误差等。

3. 基于本次仿真实验的结果和分析,可以对电子电路进行改进和优化,以达到更高的性能和更好的稳定性。

电路实验仿真实验报告

电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。

2. 掌握电路仿真软件(如Multisim)的使用方法。

3. 分析电路参数对电路性能的影响。

二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。

三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。

根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。

2. 当s = 0时,电路发生零输入响应。

3. 当s = jω时,电路发生零状态响应。

四、实验仪器与设备1. 电脑:用于运行电路仿真软件。

2. Multisim软件:用于搭建电路模型和进行仿真实验。

1. 打开Multisim软件,创建一个新的仿真项目。

2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。

3. 设置电路参数,如电阻R、电容C等。

4. 选择合适的激励信号,如正弦波、方波等。

5. 运行仿真实验,观察电路的响应波形。

6. 分析仿真结果,验证实验原理。

六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。

此时,电路的响应为电容的充电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。

(2)电容电流Ic先减小后增大,在t = 0时达到最大值。

(3)电路的时间常数τ = RC,表示电路响应的快慢。

2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。

此时,电路的响应为电容的放电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。

Multisim电路仿真实验报告

Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

2使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。

自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。

(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。

电力电子仿真实验实训报告

电力电子仿真实验实训报告

一、实验目的本次电力电子仿真实验实训旨在通过MATLAB/Simulink软件,对电力电子电路进行仿真分析,加深对电力电子电路工作原理、性能特点以及设计方法的了解,提高实际工程应用能力。

二、实验环境1. 软件环境:MATLAB R2020b、Simulink R2020b2. 硬件环境:计算机三、实验内容本次实验主要涉及以下内容:1. 单相桥式整流电路仿真2. 三相桥式整流电路仿真3. 逆变器电路仿真4. 直流斩波电路仿真四、实验步骤1. 单相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建单相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

2. 三相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建三相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

3. 逆变器电路仿真(1)建立仿真模型:在Simulink中搭建逆变器电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率因数等参数。

4. 直流斩波电路仿真(1)建立仿真模型:在Simulink中搭建直流斩波电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

五、实验结果与分析1. 单相桥式整流电路仿真结果通过仿真实验,我们得到了单相桥式整流电路的输出电压、电流、功率等参数。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

电力系统的短路计算仿真实验报告

电力系统的短路计算仿真实验报告

广州大学学生实验报告开课学院及实验室: 2014年 12 月11 日学院机械与电气工程年级、专业、班姓名学号实验课程名称电力系统分析实验成绩实验项目名称实验三电力系统的短路计算仿真指导老师一、实验目的了解PSCAD/EMTDC软件的基本使用方法,学会用其进行电力系统短路分析。

二、实验原理运用短路时电压电流的计算方法,结合PSCAD软件,进行电力系统短路分析。

三、使用仪器、材料计算机、PSCAD软件四、实验步骤1. 新建项目文件启动软件,选择File/New/Case,在项目窗口就出现一个默认为noname的例子,点保存,出现保存文件对话框,填好保存路径和文件名。

双击项目栏中的文件名,右侧显示空白工作区。

2. 构造电气主接线图1)在Master Library库中找到所需的元件或模型,复制到工作区,或从元件库栏直接选中元件到工作区。

所需元件有三相电压源、断路器和输电线(选用集中参数PI模型)。

双击元件出现参数设置对话框,在Graphics Display下拉框中有3 phase view和single line view选项,分别表示三相视图和单线视图,本例将系统画为三相视图,如图3所示:图3元件2)将元件正确地连接起来。

连线方法:鼠标在按钮上点一下,拿到工作区后变为铅笔状,点左键,移动鼠标画线,若再点左键可转向画,再点右键画线完成。

连好后将鼠标再在按钮上点一下则恢复原状了。

连接后如图4所示:(注:右端开路也可以无穷大电阻接地表示)图4元件连接图3. 设置元件参数(参照第二章方法)电源参数:容量400MV A,220KV,50Hz,相角0度,内阻1欧,其余用默认参数;输电线长度100Km,50Hz,其余参数采用默认值。

4. 设置故障假设在线路末端出口处发生三相接地故障,按照第二章中的故障设置方法,如图5所示。

图5故障接线图5. 设置输出量和断路器状态短路器闭合,分别输出显示故障相电压和电流。

完整的仿真图如图6所示。

数字电路实验报告5. 组合逻辑电路的仿真

数字电路实验报告5. 组合逻辑电路的仿真

组合逻辑电路的仿真1.实验目的➢掌握全加器、译码器、数据选择器电路的特点及设计方法;➢学会应用全加器、译码器及数据选择器设计组合逻辑电路;➢掌握各种组合逻辑电路的仿真。

2.实验器材3.实验内容3.1全加器的EDA仿真a)在Multisim软件中,按照如图1.1所示电路,从TTL库中调74LS00D、74LS86N,从基本库中调VCC、GND、J1、J2、J3,从指示库中调X1、X2等元件,连线构成1位全加器仿真电路,图中J1、J2和J3依次控制两个输入的1位二进制数A、B及低位的二进制数相加向本位的进位C,指示灯X1、X2i分别表示本位输出F和向高位的进位C。

按照功能表分别拨动J1、J2和J3,o即改变输入状态,观察输出的状态变化。

图1.1 一位全加器仿真图b) 按照图1.2及1.3连线进行全加器74LS283及CD4008的功能仿真实验。

图1.2 74LS283功能仿真电路X1X2X3X4X5图1.3 CD4008功能仿真电路c) 利用四位全加器CD4008和四异或门CC4070设计四位无符号数二进制加/减法器,画出仿真图。

解: 分析:二进制加法器可以使用CD4008实现;二进制减法可以转换为补码运算,因为正数补码与原码相同,对负数先求补码,再进行加法运算,最后再对输出求补码,即可得到减法结果。

因为补码=反码+1,反码可以让输入与1异或,+1运算可以通过进位输入端实现。

因此,可以列出真值表如下X1X2X3X4X5上图中,淡黄色为加法运算,橙色为减法运算;绿色为加法结果,其中淡绿色部分与深绿色部分相同;蓝色为加法结果,其中淡蓝色部分与深蓝色部分相同。

因为输入与高电平异或得到负数的反码,与低电平异或得到正数的反码(与原码相同),因此,可以绘制下图所示电路图实现功能:3.2 译码器的EDA 仿真a) 变量译码器变量译码器(又称二进制译码器),用于表示输入变量的状态,如2-4线、3-8线和4-16线译码器。

模拟电路仿真实验报告

模拟电路仿真实验报告

腹有诗书气自华一、实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。

②依照电路图修改各个电阻与电容的参数。

③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。

④修改晶体管参数,放大倍数为40,。

(2)电路调试,主要调节晶体管的静态工作点。

若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。

(3)仿真腹有诗书气自华(↑图1)(↓图2)腹有诗书气自华2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。

信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。

满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1仿真图如图3图1-2腹有诗书气自华图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。

电路图如图1-4,仿真结果如图4.腹有诗书气自华图1-4 调幅波检波电路图4 调幅波检波电路仿真结果腹有诗书气自华三、结果分析参数不同所得的波形不同,太大或太小都会失真。

四、仿真中遇到的问题仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。

五、使用Multisim的体会我觉得Multisim这个软件主要有以下优点:1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。

2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。

multisim实验四实验报告

multisim实验四实验报告

multisim实验四实验报告仲恺农业⼯程学院实验报告纸__⾃动化学院_(院、系)__⼯业⾃动化__专业__144_班_电⼦线路计算机仿真课程实验四:触发器及其应⽤仿真实验⼀、实验⽬的1.掌握集成JK触发器和D触发器的逻辑功能及其使⽤⽅法。

2.熟悉触发器之间相互转换的设计⽅法。

3.熟悉Multisim中逻辑分析仪的使⽤⽅法。

⼆、实验设备PC机、Multisim仿真软件。

三、实验内容1.双JK触发器74LS112逻辑功能测试(1)创建电路创建如下图所⽰电路,并设置电路参数。

图4-1 74LS112逻辑功能测试(2)仿真测试①J1和J5分别74LS112的异步复位端输⼊,J2和J4分别为J、K数据端输⼊,J3为时钟端输⼊,X1和X2指⽰74LS112的输出端Q和Q_的状态。

②异步置位和异步复位功能测试。

闭合仿真开关拨动J1为“0”、J5为“1”,其他开关⽆论为何值,则74LS112被异步置“1”,指⽰灯X1亮,X2灭。

理解异步置位的功能。

拨动J1为“1”、J5为“0”,其他开关⽆论为何值,则74LS112被异步清“0”,指⽰灯X1灭,X2灭,理解异步复位的功能。

③74LS112逻辑功能测试⾸先拨动J1和J5,设定触发器的初态。

接着,拨动J1和J5均为“1”,使74LS112处于触发器⼯作状态。

然后,拨动J2-J4,观察指⽰灯X1和X2亮灭的变化,尤其注意观察指⽰灯令亮灭变化发⽣的时刻,即J3由“1”到“0”变化的时刻,从⽽掌握下降沿触发的集成边沿JK触发器的逻辑功能。

如下图所⽰:图4-2 JK触发器逻辑功能测试设定触发器的初态为Q = 1。

将J2置1后,再将J3置1,可以观察到此时触发器状态并⽆改变。

将J3清0,观察到输出Q = 1。

同样的,将J2清0,同时将J4置1,在J3由1->0的时刻,可以观察到Q = 0。

2.JK触发器构成T触发器(1)创建电路创建如图所⽰电路,并设置电路参数。

图4-3 74LS112构成T触发器(2)仿真测试①闭合仿真开关。

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文模拟电子技术课程一、目的2.19利用multiim分析图P2.5所示电路中Rb、Rc和晶体管参数变化对Q点、Au、Ri、Ro和Uom的影响。

二、仿真电路晶体管采用虚拟晶体管,VCC12V。

1、当Rc5k,Rb510k和Rb1M时电路图如下(图1):图12、当Rb510k,Rc5k和Rc10k时电路图如下(图2)图23、当Rb1M时,Rc5k和Rc10k时的电路图如下(图3)图34、当Rb510k,Rc5k时,=80,和=100时的电路图如下(图4)图4三、仿真内容1.当Rc5k时,分别测量Rb510k和Rb1M时的UCEQ和Au。

由于输出电压很小,为1mV,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降UCEQ。

从示波器可读出输出电压的峰值。

2.当Rb510k时,分别测量Rc5k和Rc10k时的UCEQ和Au。

3.当Rb1M时,分别测量Rc5k和Rc10k时的UCEQ和Au。

4.当Rb510k,Rc5k时,分别测量β=80,和β=100时的UCEQ和Au。

四、仿真结果1、当Rc5k,Rb510k和Rb1M时的UCEQ和Au仿真结果如下表(表1仿真数据)表格1仿真数据2、当Rb510k时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表2仿真数据)表格2仿真数据3、当Rb1M时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表3仿真数据)表格3仿真数据4、当Rb510k,Rc5k时,分别测量=80,和=100时的UCEQ和Au的仿真结果如下表(表4仿真数据)。

表格4仿真数据五、结论及体会1.当Rc为定值时,Rb增大,ICQ减小,UCEQ增大,Au减小。

2.当Rb为定值时,若Rb的阻值过小,则电路容易产生饱和失真,此时当Rc增大,电路的放大倍数不会增大,电路没有放大作用。

3.当Rb、Rc为定值时,当增大时,Au的值也增大。

4.实验心得:本次仿真实验用到了以前没有用过的元件,元器件参数复杂,由于以前没有我终于将各参数的意思大致弄清楚了。

Multisim数字电路仿真实验报告

Multisim数字电路仿真实验报告

低频电子线路实验报告—基于Multisim的电子仿真设计班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验一基于Multisim数字电路仿真实验一、实验目的1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。

2.进一步了解Multisim仿真软件基本操作和分析方法。

二、实验内容用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。

三、实验原理实验原理图如图所示:四、实验步骤1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器;学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。

并按规定连好译码器的其他端口。

3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显示为二进制;点击逻辑分析仪设置频率为1KHz。

相关设置如下图学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:五、实验数据及结果逻辑分析仪显示图下图实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1六、实验总结通过本次实验,对Multisim的基本操作方法有了一个简单的了解。

multisim仿真数电实验报告

multisim仿真数电实验报告

实验报告课程名称:数字电子技术实验姓名:学号:专业:开课学期:指导教师:实验课安全知识须知1.须知1:规范着装。

为保证实验操作过程安全、避免实验过程中意外发生,学生禁止穿拖鞋进入实验室,女生尽量避免穿裙子参加实验。

2.须知2:实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。

3.须知3:实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。

4.须知4:学生独立完成接线或改接线路后必须经指导教师检查和允许,并使组内其他同学引起注意后方可接通电源。

实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。

5.须知5:接通电源前应先检查功率表及电流表的电流量程是否符合要求,有否短路回路存在,以免损坏仪表或电源。

特别提醒:实验过程中违反以上任一须知,需再次进行预习后方可再来参加实验;课程中违反三次及以上,直接重修。

实验报告撰写要求1.要求1:预习报告部分列出该次实验使用组件名称或者设备额定参数;绘制实验线路图,并注明仪表量程、电阻器阻值、电源端编号等。

绘制数据记录表格,并注明相关的实验环境参数与要求。

2.要求2:分析报告部分一方面参考思考题要求,对实验数据进行分析和整理,说明实验结果与理论是否符合;另一方面根据实测数据和在实验中观察和发现的问题,经过自己研究或分析讨论后写出的心得体会。

3.要求3:在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线板连成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。

4.要求4:本课程实验结束后,将各次的实验报告按要求装订,并在首页写上序号(实验课上签到表对应的序号)。

请班长按照序号排序,并在课程结束后按要求上交实验报告。

温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。

实验报告课程名称:数字电子技术实验实验 5 : multisim多位计数器仿真实验日期:年月日地点:实验台号:专业班级:学号:姓名:评分:教师评语:教师签字:日期:一、实验目的二、实验设备及元器件Multisim仿真洁面三、实验原理(简述实验原理,画出原理图)这一部分的实验主要涉及改变计数进制的问题,我分为以下几个部分预习一、首先需要明确各个芯片的计数最大进制 161系列为16进制,160系列的为10进制。

模电仿真实验报告

模电仿真实验报告

模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。

二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。

它能够复制或放大这些信号,以便更好地进行研究和分析。

模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。

三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。

2. 根据实验要求,添加所需的电子元件和电源。

3. 连接各元件,构成完整的模拟电路。

4. 调整电源和各元件的参数,观察并记录电路的输出结果。

5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。

6. 记录实验数据和结果,分析电路的工作原理。

7. 完成实验报告,总结实验过程和结果。

四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。

通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。

实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。

2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。

当电流通过电阻和电容时,会产生一个随时间变化的电压。

该电压在电容两端累积,直到达到某个阈值,才会发生振荡。

通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。

此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。

这表明该电路具有较好的频率特性和波形质量。

五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。

通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。

建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。

同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。

Multisim10.0电子电路计算机仿真

Multisim10.0电子电路计算机仿真

Multisim10.0电子电路计算机仿真一.实验目的:1.熟悉并掌握Mulitisim10.0的仿真过程。

2.了解Mulitisim10.0的操作流程并掌握其基本操作。

3.学会使用Mnlitisim10.0绘制电路图,熟悉其基本界面和菜单栏,工具栏的功能。

4.通过Mulitisim10.0软件进一步加深对电路原理的理解。

5.学会电子电路计算机仿真的使用,尤其是示波器的连接与使用要求。

二.实验步骤:1.打开Multisim10.0,认识它的窗口界面,工具栏和菜单栏,熟悉掌握其基本功能,只有如此才能在设计电路原理图时做到手到擒来,熟练于心。

2.查找所需的元器件,修改参数,拖到合适的位置;3.对照原图连接电路,查看各元器件的参数是否正确;4.将示波器连接到输入与输出处,进行仿真,观察比较波形的状状;5.将原理图和波形图截取到文本文档中,填写实验报告。

三.实验目的:通过实习对课程所学内容有一个连贯性,综合性的认识,驼过实习可以加深对理论的理解,培养和提高独立动手能力和分析解决问题的能力。

在完成指定的实习任务后,应具备以下能力:(1)熟悉模块库使用(2)熟练掌握基本电力电子电路的仿真方法(3)掌握电力电子变流装置触发、主电路及驱动电路的构成及调试方法,能初步设计和应用这些电路(4)能够运用理论知识对实验现象、结果进行分析处理,解决实习中遇到的问题(5)能够综合实验数据,解释现象,编写实习报告四.实验内容:1.学会Mulitisim10.0的使用和操作。

首先我们在机器上安装Mulitisim10.0软件然后点击桌面上的Mulitisim10.0图标,由于软件比较大需要等待一定时间才会进入。

Mulitisim10.0界面和Office工作界面相似,标题栏、下拉菜单、项目窗口、快捷工具、状态栏等组成。

标题栏分为:文件工具按钮、器件工具按钮、调试工作按钮。

这些按钮下拉菜单中都,并经常用到。

现在放在下拉菜单中方便使用。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

计算机仿真技术实验报告

计算机仿真技术实验报告

《计算机仿真技术》实验指导书实验一 状态空间模型的仿真一、实验目的通过实验,学习4阶龙格-库塔法的基本思路和计算公式,加深理解4阶龙格-库塔法的原理和稳定域。

加深理解仿真的稳定性,仿真步长对仿真精度的影响。

二、实验内容1、线性定常系统[]1112223332010002001010060000600x x x x x u y x x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦&&&;)(1000)0()0()0(321t u x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2、非线性系统()()()()()()()()xt rx t ax t y t yt sx t bx t y t =-⎧⎨=-+⎩&& 其中:r=0.001, a=2⨯10-6, s=0.01, b=1⨯10-6, x(0)=12000, y(0)=600。

三、实验原理运用SIMULINK 仿真工具进行实验。

四、实验设备和仪器微型计算机、MATLAB 软件。

Sources(信号源),Sink(显示输出),Continuous(线性连续系统),Discrete(线性离散系统),Function & Table (函数与表格),Math(数学运算), Discontinuities (非线性),Demo (演示)五、实验方法运行MA TLAB ,在MA TLAB 窗口中按SimuLink 按钮,启动SimuLink 库浏览器,在浏览器窗口上选create a new modem 命令,得到一个空模型,从Library: SimuLink 窗口中找到需要的模块,将这些模块拖到空模型窗口中。

将空模型窗口中的排好,并按要求连接。

在保存好的模型窗口中,选Simulation\Paramters 命令设置各模块的参数和仿真参数。

计算机虚拟实验实验报告(3篇)

计算机虚拟实验实验报告(3篇)

第1篇一、实验目的1. 熟悉计算机虚拟实验的基本原理和方法。

2. 掌握虚拟实验平台的使用技巧,包括实验设置、数据采集、结果分析等。

3. 培养独立思考、分析问题和解决问题的能力。

4. 提高实验技能,为后续实验课程打下基础。

二、实验内容1. 实验平台:使用XX虚拟实验平台进行实验。

2. 实验项目:(1)物理实验:自由落体运动、单摆运动、抛体运动等。

(2)化学实验:酸碱滴定、反应速率、溶解度等。

(3)生物实验:细胞观察、光合作用、呼吸作用等。

(4)数学实验:函数图像、极限、微分方程等。

三、实验步骤1. 登录实验平台,选择实验项目。

2. 根据实验要求,设置实验参数。

3. 开始实验,观察实验现象。

4. 采集实验数据,包括时间、速度、温度、浓度等。

5. 分析实验数据,得出实验结论。

6. 撰写实验报告,总结实验过程和结果。

四、实验结果与分析1. 物理实验:(1)自由落体运动:通过实验,验证了自由落体运动的速度与时间成正比,加速度为g的结论。

(2)单摆运动:通过实验,研究了单摆周期与摆长、摆角的关系,验证了单摆周期公式。

(3)抛体运动:通过实验,分析了抛体运动的速度、加速度和轨迹,得出了抛体运动的规律。

2. 化学实验:(1)酸碱滴定:通过实验,掌握了酸碱滴定的原理和方法,学会了使用酸碱指示剂判断滴定终点。

(2)反应速率:通过实验,研究了反应速率与温度、浓度、催化剂等因素的关系。

(3)溶解度:通过实验,分析了不同温度下物质的溶解度,得出了溶解度与温度的关系。

3. 生物实验:(1)细胞观察:通过实验,掌握了显微镜的使用方法,观察了细胞的结构和功能。

(2)光合作用:通过实验,研究了光合作用过程中光能的转化和物质的合成。

(3)呼吸作用:通过实验,分析了呼吸作用过程中能量的释放和物质的转化。

4. 数学实验:(1)函数图像:通过实验,掌握了函数图像的绘制方法,分析了函数的性质。

(2)极限:通过实验,研究了极限的概念和性质,学会了求极限的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路计算机仿真分析实验报告实验一直流电路工作点分析和直流扫描分析一、实验目的1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。

2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。

二、原理与说明对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。

PSPICE软件是采用节点电压法对电路进行分析的。

使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE的元件符号库绘制电路图并进行编辑、存盘。

然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。

需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。

此外,一个元件为一条“支路”(branch),要注意支路(也就是元件)的参考方向。

对于二端元件的参考方向定义为正端子指向负端子。

三、示例实验应用PSPICE求解图1-1所示电路个节点电压和各支路电流。

图1-1 直流电路分析电路图R2图1-2 仿真结果四、选做实验1、实验电路图(1)直流工作点分析,即求各节点电压和各元件电压和电流。

(2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。

IPRINT图1-3 选做实验电路图2、仿真结果Is21Adc1.000AVs35Vdc3.200A R431.200A23.20VVs47Vdc1.200A 0VR142.800AIs32Adc 2.000A12Vdc2.800AIIPRINT3.200A10.60V 12.00V Is11Adc 1.000A18.80V 28.80V15.60V3.600VR222.800ARL13.200A18.80VVs210Vdc2.800A Is53Adc3.000AI42Adc图1-4 选做实验仿真结果3、直流扫描分析的输出波形图1-5 选做实验直流扫描分析的输出波形4、数据输出V_Vs1 I(V_PRINT2)0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+00从图1-3可以得到IRL与USI的函数关系为:I RL=1.4+(1.2/12)U S1=1.4+0.1U S1 (公式1-1)五、思考题与讨论:1、根据图1-1、1-3及所得仿真结果验证基尔霍夫定律。

答:根据图1-1、1-3及所得仿真结果图1-2、1-4的数据显示可以得出,回路的电压满足KVL方程,各个节点的电流满足KCL方程,验证了基儿霍夫定律。

2、怎样理解式(1-1)表示的电流I RL随U S1变化的函数关系?这个式子中的各项分别表示什么物理意义?答:式(1-1)I RL=1.4+(1.2/12)U S1=1.4+0.1U S1表示负载电阻R L中的电流I RL与电压源U S1的电压成线性关系。

式中1.4表示电压源U S1置零时其他激励在负载电阻R L上产生的电流响应,0.1U S1表示仅保留电压源U S1,其他电源置零(电流源开路,电压源短路)时,负载上产生的电流响应。

3、对图1-3的电路,若想确定节点电压UN1随US1变化的函数关系,如何使用Pspice 软件?操作分几步进行?答:1)、在节点n1处放置节点电压探针;2)、进行直流扫描分析:a、单击PSpice/Edit Simulation Profile,打开分析类型对话框,选择“DC Sweep”。

在“Sweep Var. Type”选择“Voltage Source”,在“Sweep Type”选择“Linear”,在“Name”选择“Vs1”,在“Start Value”输入“0”,“End Value”输入“12”,“Increment”输入“0.5”。

b、运行PSPICE的仿真计算程序,进行直流扫描分析,即得节点电压UN1随US1变化的函数关系。

4、对上述电路,若想确定负载电阻R L的电流I RL随负载电阻R L变化(设R L变化范围为0.1Ω-100Ω)的波形,又该如何使用Pspice软件进行仿真分析?答:应在图1-3负载电阻R L处放置电流探针,将负载电阻的阻值设置为全局变量var,添加PARAM,对其相应参数进行设置。

然后单击Pspice/Edit Simulation Profile,选择“Global parameter”,将“Parameter”设为“var”,”Sweep Type”选择“Linear”,“Start”设为”0.1”,“End”设为“100”,”Increment”设为“1”,然后运行仿真,即可得到负载电流随负载电阻变化的曲线。

实验二戴维南定理和诺顿定理的仿真一.实验目的1、进一步熟悉Pspice仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。

学习Probe窗口的简单设置。

2、加深对戴维南定理与诺顿定理的理解。

二.原理与说明戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压Us 等于原网络的开路电压Uoc ,电阻Ro 等于原网络的全部独立电源置零后的输入电阻Req 。

诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导并联的支路来代替,该电流源的饿电流Is 等于原网络的短路电流Isc ,其电导Go 等于原网络的全部独立电源置零后的输入电导Geq (Geq=1/Req )。

三、示例实验1、实验电路图测量有源一端口网络(如图2-1)等效输入端电阻Req 和对外电路的伏安特性。

RL {v ar}RLn {v ar}RLd {v ar}PARAMETERS:测得I(RL)最大值即短路电流Isc=130mA,V(RL:2)最大值即Uoc为3.5455V。

则输入端电阻Req=3.5455/0.13=27.273 Ω。

块,数值列表中将显示相应坐标中的坐标值。

用鼠标拖动十字交叉线,可显示不同电压时的相应电流值。

三个电源对外伏安特性曲线完全相同,从而验证了戴维南定理和诺顿定理。

二、思考题与讨论1、戴维南定理和诺顿定理的使用条件分别是什么?答:戴维南定理和诺顿定理使用条件均要求等效替代网络为线性有源一端口网络。

2、如果图2-4出现渐增的波形,则是由于电流的正负不一致,但是并不影响实验的结果。

实验三正弦稳态电路分析和交流扫描分析一.实验目的1、学习用Pspice进行正弦稳态电路分析。

2、学习用Pspice进行正弦稳态电路的交流扫描分析。

3、熟悉含受控源电路的连接方式。

二.原理与说明在“电路”课中已学过,对于正弦稳态电路,可以用相量法列写电路方程(支路电流法、节点电压法、回路电流法),求解电路中各个电压和电流的振幅(有效值)和初相位(初相角)。

PSPICE软件是用相量形式的节点电压法对正弦稳态电路进行分析的。

三.示例实验(1)正弦稳态分析。

以图3-1的电路为例。

其中正弦电源的角频率为10Krad/s ,要求计算两个回路中的电流。

IPRINTC110uIPRINT图3-1(2)仿真计算的输出结果:FREQ IM(V_PRINT1)IP(V_PRINT1)IR(V_PRINT1)II(V_PRINT1) 1.592E+03 2.268E-03 8.987E+01 5.145E-06 2.268E-03 FREQIM(V_PRINT2)IP(V_PRINT2)IR(V_PRINT2)II(V_PRINT2) 1.592E+03 2.004E+00 8.987E+01 4.546E-03 2.004E+00由以上结果可知,电源回路中的电流振幅近似等于0,而负载回路中的电流振幅近似等于2A 。

四.选做实验1、实验电路图VOFF = 0C11000uF图3-2 选做实验的电路图2、各元件的电流如下图所示:图3-3 各元件电流源3、电流随电容变化的曲线:1.64A1.62A1.60A(14.340u,1.5773)1.58A1.56A10u11u12u13u14u15u16u17u18u19u20u I(V2)VAR图3-4 电流随电容变化曲线由图可明显看出电容对功率因素的影响为一抛物线图形,这与理论是相当吻合的,从图也得出电容为14.34μF时,电路发生并联谐振,此时电流最小,功率因数为1。

五、思考与讨论1、为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流之路,试问电路的总电流时增大还是减小,此时感性元件上的电流和功率是否改变?答:在感性负载上并联电容器后,电路的总电流可能增大也可能减小,具体的变化要看电容的大小,令电路发生谐振时的电容为μ0,则当μ<μ0时,电流随着电容的增大而减小,当μ>μ0时,电流随着电容的增大而增大,当μ=μ0时,电流最小.此时感性元件上的电流和功率不会改变.2、提高线路功率因数为什么只采用并联电容器法,而不用串联法?所并的电容器是否越大越好?答:并联电容的容性无功功率可以补偿感性负载的感性无功功率而不会改变负载的工作状态,如果采用串联电容法来提高功率因数,会导致负载的工作状态改变,故不用串联电容法来提高功率因数。

所并的电容并不是越来越好,太大可能导致过补偿。

实验四 一阶动态电路的研究一.实验目的1、掌握Pspice 编缉动态电路、设置动态元件的初始条件、掌握周期激励的属性及对动态电路仿真的方法。

2、理解一阶RC 电路在方波激励下逐步实现稳定充放电的过程。

3、理解一阶RL 电路在正弦激励下,全响应与激励接入角的关系。

二、原理与说明电路在一定条件下有一定的稳定状态,当条件改变,就要过度到新的稳定状态。

从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。

电路的过渡过程往往为时短暂,所以在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。

三、示例实验1.分析图4-1所示RC 串联电路在方波激励下的全响应。

电容初始电压为2V (电容Ic 设为2V )。

相关文档
最新文档