精品 九年级数学 反比例函数同步讲义+同步综合练习
精品 九年级数学下册 反比例函数综合练习题
(3)过原点 O 的另一条直线 l 交双曲线 y
顶点组成的四边形面积为 24,求点 P 的坐标.
14.如图,点 A(m,m+1) ,B(m+3,m-1)都在反比例函数 y
k (k 0) 的图象上. x
(1)求 m,k 的值; (2)如果 M 为 x 轴上一点,N 为 y 轴上一点, 以点 A,B,M,N 为顶点的四边形 是平行四边形,试求直线 MN 的函数表达式.
3 的图象交点依次为 Q1 ( x1 ' , y1 ' ) 、 Q2 ( x 2 ' , y 2 ' ) 、 …、 x
5.如图,在 x 轴的正半轴上依次截取 OA1 A1 A2 A2 A3 A3 A4 A4 A5 ,过点 A1、A2、A3、A4、A5 分 别作 x 轴的垂线与反比例函数 y
2 x 0 的 图 象 相 交 于 点 P1、P2、P3、P4、P5 , 得 直 角 三 角 形 x
OP 并设其面积分别为 S1、S 2、S3、S 4、S5, 则 S5 的值为 1A 1、A 1P 2 A2、A2 P 3 A3、A3 P 4 A4、A4 P 5 A5,
6.已知反比例函数 y
12 的图象和一次函数 y=kx—7 的图象都经过点 P(m,2). x (1)求这个一次函数的解析式; (2)如果等腰梯形 ABCD 的顶点 A、B 在这个一次函数的图象上,顶点 C、D 在这个反比例函数的图象上, 两底 AD、BC 与 y 轴平行,且 A 和 B 的横坐标分别为 a 和 a+2,求 a 的值.
k ( x 0) 在第一象限内的交点面积为 R,与 x 轴的交点为 P, x
与 y 轴的交点为 Q;作 RM⊥x 轴于点 M,若△OPQ 与△PRM 的面积是 4:1,则 k=
北师大版九年级数学上册第六章《反比例函数》6.3反比例函数的应用同步练习(典型题含讲解)
6.3反比例函数的应用同步练习1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)2.能利用反比例函数解决实际问题.(难点)一、情景导入我们都知道,气球内可以充满一定质量的气体.如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?二、合作探究探究点一:实际问题与反比例函数做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:(1)写出y与S之间的函数表达式;(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,∴32=k4,∴k=128.∴y 与S 之间的函数表达式为y =128S (S >0);(2)把S =1.6代入y =128S 中,得y =1281.6=80.∴当面条的横截面积为1.6mm 2时,面条的总长度是80m ; (3)把S =1.28代入y =128S,得y =100.由图象可知,要使面条的横截面积不多于1.28mm 2,面条的总长度至少应为100m. 方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.探究点二:反比例函数与其他学科知识的综合某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p (Pa )是木板面积S (m 2)的反比例函数,其图象如图所示.(1)请直接写出这一函数表达式和自变量的取值范围; (2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?解析:由于木板对地面的压强p (P a )是木板面积S (m 2)的反比例函数,而图象经过点A ,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.解:(1)设木板对地面的压强p (Pa )与木板面积S (m 2)的反比例函数关系式为p =kS (S >0).因为反比例函数的图象经过点A (1.5,400),所以有k =600.所以反比例函数的关系式为p =600S(S >0);(2)当S =0.2时,p =6000.2=3000,即压强是3000Pa ;(3)由题意知600S≤6000,所以S ≥0.1,即木板面积至少要有0.1m 2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p =错误!,当压力F 一定时,p 与S 成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用⎩⎨⎧实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.6.3 反比例函数的应用教学目标:(一)教学知识点1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。
北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)
北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。
中考数学《反比例函数》专项复习综合练习题-附含答案
中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。
北师大版九年级数学上册第六章反比例函数 6.1反比例函数同步练习及答案
1 反比例函数知识点 1 反比例函数的概念1.下列函数中,为反比例函数的是( ) A .y =-x3B .y =-1xC .y =8-3xD .y =-x 2+12.下列问题情景中的两个变量成反比例的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径rC .圆的面积S 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U3.在反比例函数y =2x中,自变量x 的取值范围是( )A .x =0B .x ≠0C .x =2D .任何实数 4.若函数y =x 2m -1为反比例函数,则m 的值是( )A .-1B .0 C.12D .1 5.有下列函数:①y =-5x ,②y =-25x ,③y =x2,④xy =2.其中,y 是x 的反比例函数的是________(填序号),它们的k 值分别是____________.知识点 2 反比例函数的表达式6.已知反比例函数y =k x ,当x =2时,y =-12,那么k 等于( )A .1B .-1C .-4D .-147.小华要看一部400页的小说,所需的天数y 是平均每天看的页数x 的________函数,表达式为________.8.下列各选项中所列举的两个变量之间的关系是反比例函数关系的是( ) A .直角三角形中,30°角所对的直角边y 与斜边x 之间的关系 B .等腰三角形中顶角与底角之间的关系 C .圆的面积S 与它的直径d 之间的关系D .面积为20 cm 2的菱形,其中一条对角线长y 与另一条对角线长x 之间的关系 9.函数y =m (m -3)x是反比例函数,则m 必须满足( ) A .m ≠3 B .m ≠0或m ≠3 C .m ≠0 D .m ≠0且m ≠310.已知y 是x 的反比例函数,下面表格给出了x 与y 的一些值,则“☆”和“¤”所表示的数分别为( )A.6,2 B .-6,2 C .6,-2 D .-6,-411.已知y 与2x +1成反比例,且当x =1时,y =2,那么当x =0时,y =________. 12.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V =________.13.列出下列问题中的函数关系式,并判断它们是不是反比例函数.(1)某农场的粮食总产量为1500 t ,则该农场人数y (人)与平均每人占有粮食量x (t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y (元)与加油量x (L)的函数关系式;(3)小明完成100 m 赛跑时,跑步所用时间t (s)与他跑步的平均速度v (m/s)之间的函数关系式.14.已知y 与x 成反比例,并且当x =12时,y =12.求:(1)反比例函数的表达式; (2)当x =3时y 的值; (3)当y =2时x 的值.15.在物理学中,压力F(牛顿)不变,压强p(牛顿/米2)与面积S(米2)成反比例,当面积S =5平方米时,压强p =2牛顿/米2.(1)求p 与S 之间的函数表达式;(2)当压强p =0.5牛顿/米2时,求面积S 的值.16.下表反映了x 与y 之间存在的某种函数关系,现给出了几种可能的函数表达式:y =x +7,y =x -5,y =-6x ,y =13x -1.(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式:____________; (2)请说明你选择这个函数表达式的理由.17.将x =23代入反比例函数y =-1x 中,所得函数值记为y 1,又将x =y 1+1代入反比例函数y =-1x 中,所得函数值记为y 2,再把x =y 2+1代入反比例函数y =-1x 中,所得函数值记为y 3,…,如此继续下去,求y 2018的值.18.已知函数的表达式为y =1+10x .(1)在下表的两个空格中分别填入适当的数;(2)观察上表可知,当x 的值越来越大时,对应的y 值越来越接近于一个常数,这个常数是什么?详解1.B 2.A3.B [解析] 要使反比例函数y =2x 有意义,分母x ≠0,所以在反比例函数y =2x中,自变量x 的取值范围是x ≠0.故选B.4.B [解析] 因为函数y =x 2m -1为反比例函数,所以指数2m -1=-1,所以m =0.5.①②④ -5,-25,2[解析] 注意②的系数是-25,④要先化为一般形式.6.B [解析] ∵当x =2时,y =-12,∴-12=k2,∴k =-1.故选B.7.反比例 y =400x[解析] ∵总页数400一定,∴所需的天数y 是平均每天看的页数x 的反比例函数,表达式为y =400x.8.D 9.D10.D [解析] 因为y 是x 的反比例函数,观察图表可知,每对x ,y 的对应值的积是常数-2,所以“☆”所表示的数为-6,“¤”所表示的数为-4.11.6 12.[全品导学号:52652207]400 13.解:(1)由题意,得x =1500y ,即y =1500x,是反比例函数.(2)由单价乘油量等于总价,得y =4.75x ,不是反比例函数. (3)由路程与时间的关系,得t =100v,是反比例函数.14.[解析] 已知一对x ,y 的对应值,即可确定反比例函数的表达式,进而确定函数值. 解:(1)∵y 与x 成反比例, ∴设y =kx(k ≠0).∵当x =12时,y =12,∴12= k 12,∴k =6,∴y =6x .(2)把x =3代入y =6x ,得y =63=2 3.(3)把y =2代入y =6x ,得2=6x,∴x =3.15.解:(1)设p 与S 之间的函数表达式为p =F S.则2=F5,∴F =10(牛顿).∴p =10S.(2)当p =0.5牛顿/米2时,S =10p =100.5=20(米2).故面积S 的值为20平方米. 16.解:(1)y =-6x(2)∵xy =(-6)×1=(-5)×1.2=3×(-2)=4×(-1.5)=-6, ∴所给出的几个式子中只有y =-6x符合条件.17.解:由题意,知y 1=-1x =-123=-32,此时x =-32+1=-12;y 2=-1x =-1-12=2,此时x =2+1=3; y 3=-1x =-13,此时x =-13+1=23;y 4=-1x =-123=-32,此时x =-32+1=-12;y 5=-1x =-1-12=2,此时x =2+1=3; …可见每3个数为一个循环. 又∵2018=672×3+2, ∴y 2018=y 2=2.18.解:(1)当x =5时,y =3;当y =1.2时,x =50; 填写表格如下:(2)由上表可知,当x 的值越来越大时,对应的y 值越来越接近于常数1.。
北师大版九年级上册数学《反比例函数》综合练习题
《反比例函数》综合练习题一、选择题(共10小题)1.如图,点A 在反比例函数(0)ky k x=≠的图象上,过点A 作AB x ⊥轴于点B ,若OAB ∆的面积为3,则k 的值为( )A .6-B .6C .3-D .32.已知x 与y 成反比例,z 与x 成正比例,则y 与z 的关系是( ) A .成正比例B .成反比例C .既成正比例也成反比例D .以上都不是3.已知反比例函数(0)ky k x =≠,当21x --时,y 的最大值是3,则当6x 时,y 有()A .最大值12-B .最大值1-C .最小值12-D .最小值1-4.在同一坐标系中(水平方向是x 轴),函数ky x=和3y kx =+的图象大致是( ) A . B .C .D .5.点(2,5)A -在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .10B .5C .5-D .10-6.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是( )A .2B .4C .6D .87.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()P kPa 是气体体积3()V m 的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .小于31.25mB .大于31.25mC .不小于30.8mD .大于30.8m8.已知水池的容量为50米3,每时灌水量为n 米3,灌满水所需时间为t (时),那么t 与n 之间的函数关系式是( ) A .50t n =B .50t n =-C .50t n=D .50t n =+9.如图,正比例函数11y k x =和反比例函数22k y x=的图象交于(1,2)A -、(1,2)B -两点,若12y y <,则x 的取值范围是( )A .1x <-或1x >B .1x <-或01x <<C .10x -<<或01x <<D .10x -<<或1x >10.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .5(0)y x x=->B .5(0)y x x=>C .6(0)y x x=->D .6(0)y x x=>二、填空题(共6小题)11.如图,在平面直角坐标系中,O 为坐标原点,ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将AOD ∆沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)ky k x=≠图象经过点C ,且1BEF S ∆=,则k 的值为 .12.已知A ,B 两点分别在反比例函数3(0)m y m x =≠和255()2m y m x -=≠的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 13.反比例函数22(21)my m x -=-,0x >时,y 随着x 的增大而增大,则m 的值是 .14.已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(1,2)-,则另一个交点的坐标为 .15.点P 在反比例函数(0)ky k x=≠的图象上,点(2,4)Q 与点P 关于y 轴对称,则反比例函数的解析式为 . 16.已知函数25(1)ky k x -=+是反比例函数,且正比例函数y kx =的图象经过第一、三象限,则k 的值为 .三、解答题(共8小题)17.如图,直线y x =和双曲线(0)ky k x=≠交于A ,B 两点,AE x ⊥轴,垂足为E ,射线AC AD ⊥,AC 交y 轴于点C ,AD 交x 轴于点D ,且四边形ACOD 的面积为1.(1)求双曲线ky x=的解析式. (2)求A ,B 两点的坐标.18.小明根据学习函数的经验,对函数1y x x=+的图象与性质进行了探究. 下面是小明的探究过程,请补充完整: (1)函数1y x x=+的自变量x 的取值范围是 . (2)下表列出了y 与x 的几组对应值,请写出m ,n 的值:m = ,n = ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,请完成: ①当174y =-时,x = . ②写出该函数的一条性质 . ③若方程1x t x+=有两个不相等的实数根,则t 的取值范围是 . 19.已知矩形ABCD 的长2AB =,AB 边与x 轴重合,双曲线ky x=在第一象限内经过D 点以及BC 的中点E . (1)求A 点的横坐标;(2)连接ED ,若四边形ABED 的面积为6,求双曲线的函数关系式.20.如图,A ,B 是反比例函数(0)ky k x=>图象上的两个点,AC x ⊥轴,垂足为点C ,BD y ⊥轴,垂足为点D ,连接AD ,AB ,BC .比较ADB ∆与ACB ∆面积的大小.21.如图,点(3,1)A -是反比例函数3(0)y x x =-<图象上的一点,过点A 作//AB x 轴,交反比例函数1(0)y x x=>的图象于点B ,P 是x 轴上的一个动点,若PAB ∆为等腰三角形,求点P 的坐标.22.下列函数表达式中的y 是x 的反比例函数吗?如果是,把它写成ky x=的形式,并指出k 的值. (1)4xy =;(2)5x y=-23.在同一个平面直角坐标系中画出函数3y x =与3y x=-的图象.24.写出函数解析式表示下列关系,并指出它们各是什么函数: (1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地面积S (单位:2)hm ,该乡人均耕地面积y (单位:2/hm 人)与全乡总人口x 的关系.参考答案一、选择题 1.【解答】解:根据题意可知:1||32AOB S k ∆==, 又反比例函数的图象位于第二象限,0k <, 则6k =-. 故选:A . 2.【解答】解:x 与y 成反比例,z 与x 成正比例,∴设kx y=,z ax =, 故zx a=,则k z y a =,故yz ka =(常数),则y 与z 的关系是:成反比例. 故选:B . 3.【解答】解:当21x --时,y 的最大值是3, ∴反比例函数经过第二象限,0k ∴<,∴在21x --上,y 值随x 值的增大而增大, ∴当1x =-时,y 有最大值k -,y 的最大值是3,3k ∴-=, 3k ∴=-,3y x∴=-,当6x 时,3y x =-有最小值12-,故选:C . 4.【解答】解:A 、由函数ky x=的图象可知0k >与3y kx =+的图象0k >一致,故A 选项正确;B 、因为3y kx =+的图象交y 轴于正半轴,故B 选项错误;C 、因为3y kx =+的图象交y 轴于正半轴,故C 选项错误;D 、由函数ky x=的图象可知0k >与3y kx =+的图象0k <矛盾,故D 选项错误. 故选:A . 5.【解答】解:点(2,5)A -在反比例函数(0)ky k x=≠的图象上,k ∴的值是:2510k xy ==-⨯=-.故选:D . 6.【解答】解:阴影部分的面积是428⨯=. 故选:D . 7.【解答】解:设球内气体的气压()P kPa 和气体体积3()V m 的关系式为k P v=, 图象过点(1.6,60)96k ∴=即96P v=在第一象限内,P 随V 的增大而减小, ∴当120P 时,9640.85V p ==. 故选:C . 8.【解答】解:由于体积=流速⨯时间,t ∴与n 之间的函数关系式为:50t n=. 故选:C . 9.【解答】解:由图象可得,10x -<<或1x >时,12y y <. 故选:D .10.【解答】解:设反比例函数的解析式为(0)k y k x =≠,函数经过点3(4,)2P ',∴324k=,得6k =, ∴反比例函数解析式为6y x=. 故选:D . 二、填空题 11.【解答】解:连接OC ,BD ,将AOD ∆沿y 轴翻折,使点A 落在x 轴上的点E 处,OA OE ∴=,点B 恰好为OE 的中点,2OE OB ∴=, 2OA OB ∴=,设OB BE x ==,则2OA x =,3AB x ∴=,四边形ABCD 是平行四边形,3CD AB x ∴==, //CD AB , CDF BEF ∴∆∆∽,∴133BE EF x CD DF x ===, 1BEF S ∆=,3BDF S ∆∴=,9CDF S ∆=, 12BCD S ∆∴=, 12CDO BDC S S ∆∆∴==,k ∴的值224CDO S ∆==.12.【解答】解:设(,)A a b ,则(,)B a b -, 依题意得:325m b am b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以3250m m a+-=,即550m -=, 解得1m =. 故答案是:1. 13.【解答】解:反比例函22(21)m y m x -=-,0x >时,y 随着x 的增大而增大,221m ∴-=-, 21m ∴=,1m =±, 210m -<,12m ∴<, 1m ∴=-.故答案为:1-. 14.【解答】解:根据中心对称的性质可知另一个交点的坐标是:(1,2)-. 故答案为:(1,2)-. 15.【解答】解:点(2,4)Q 和点P 关于y 轴对称,P ∴点坐标为(2,4)-,将(2,4)-解析式ky x=得,248k xy ==-⨯=-,∴函数解析式为8y x=-. 故答案为:8y x=-. 16.【解答】解:25(1)k y k x -=+是反比例函数,∴25110k k ⎧-=-⎨+≠⎩, 解之得2k =±.又因为正比例函数y kx =的图象经过第一、三象限,所以0k >,所以k 的值只能为2.故答案为:2.三、解答题17.【解答】解:(1)作AF y ⊥轴于F ,点A 在直线y x =上,AF AE ∴=,90CAF DAF DAE DAF ∠+∠=∠+∠=︒,CAF DAE ∴∠=∠,在CAF ∆和DAE ∆中,90CAF DAE AFC AED AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()CAF DAE AAS ∴∆≅∆,1AFOE ACOD S S ∴==正方形四边形,1AFOE k S ∴==正方形,∴双曲线的解析式为1y x=;(2)解1y x y x =⎧⎪⎨=⎪⎩得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩, (1,1)A ∴,(1,1)B --.18.【解答】解:(1)x 在分母上,0x ∴≠. 故答案为:0x ≠.(2)当13x =时,1103y x x =+=; 当3x =时,1103y x x =+=. 故答案为:103;103. (3)连点成线,画出函数图象.(4)①当174y =-时,有1174x x +=-, 解得:14x =-,214x =-. 故答案为:4-或14-. ②观察函数图象,可知:函数图象在第一、三象限且关于原点对称. 故答案为:函数图象在第一、三象限且关于原点对称. ③1x t x+=有两个不相等的实数根, 2t ∴<-或2t >.故答案为:2t <-或2t >.19.【解答】解:(1)设(,0)A a ,则(2,0)B a +,(2,)C a b +,(,)D a b , E 设BC 的中点.1(2,)2E a b ∴+, 双曲线k y x=在第一象限内经过D 点以及BC 的中点E , 1(2)2ab a b ∴=+⨯, 2a ∴=,(2,0)A ∴;(2)AD b =,12BE b =,2AB =,四边形ABED 的面积为6, 112622ABEDS b b ⎛⎫∴=⨯+= ⎪⎝⎭四边形, 4b ∴=, (2,4)D ∴, 双曲线k y x=在第一象限内经过D 点, 248k ∴=⨯=,∴双曲线的函数关系式为8y x =. 20.【解答】解:如图,过A 作AE y ⊥轴于E ,过B 作BF x ⊥轴于F ,根据题意得AEOC BFOD S S =矩形矩形, AEDP BFCP S S ∴=矩形矩形,APD BPC S S ∆∆∴=,APB APD BPC APB S S S S ∆∆∆∆∴+=+, 即ADB ACB S S ∆∆=.21.【解答】解:(3,1)A -,//AB x 轴,(1,1)B ∴, P 是x 轴上的一个动点, ∴设(,0)P b ,当PAB ∆为等腰三角形时,分三种情况:(1)当AB AP =时,13+3b =,(3P ∴,0);(2)当AB PB =时,13+1b =,(1P ∴,0);(3)当AP PB =1b =-, (1,0)P ∴-;综上所述,若PAB ∆为等腰三角形,则点P 的坐标为(3,0),(1,0),(1,0)-. 22.【解答】解:(1)4xy =是反比例函数,4y x=,4k =;(2)5xy=-是反比例函数,5yx=-,5k=-.23.【解答】解:如图所示,24.【解答】解:(1)由题意可得:VSh =;(2)由题意可得:Syx =.。
26.1.1 反比例函数 人教版数学九年级下册同步练习(含答案)
第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数基础过关全练知识点1 反比例函数的定义1.【新独家原创】下列函数中,属于反比例函数的是( )A.y =-x2 023 B.y =2 023x -1C.y =-x 2 023D.y =x -2 0232.【新独家原创】若y =m ―2mx 是反比例函数,则m 满足的条件是( )A.m ≠0B.m =2C.m =2或m =0D.m ≠2且m ≠03.在函数y =-2(m +1)x -m 中,y 是x 的反比例函数,则比例系数为( )A.-2B.2C.-4D.04.关于正比例函数y =-13x 和反比例函数y =―13x 的说法,正确的是( )A.自变量x 的指数相同B.比例系数相同C.自变量x 的取值范围相同D.函数值y 的取值范围相同5.下列问题中,两个变量成反比例函数关系的是( )A.矩形面积S 一定,长x 和宽y 的关系B.矩形周长l 一定,长x 和宽y 的关系C.正方形面积S 和边长a 之间的关系D.正方形周长C 和边长a 之间的关系6.【新独家原创】若y 与-x 成反比例,x 与2z 成正比例,则y 与z 成 比例.7.【教材变式·P3T2变式】在下列函数关系式中,x 均表示自变量,那么哪些是关于x 的反比例函数?若是反比例函数,相应的比例系数k 是多少?(1)y =52x ;(2)y =x 2;(3)y =7x -1;(4)xy =2;(5)y =0.4x ―1.知识点2 用反比例函数刻画实际问题中的数量关系8.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A.y =10xB.y =5x C.y =20x D.y =x 209.已知每个工人一天能做某种型号的防护服x 件,若该厂接到一个生产10 000件的订单,需要y 名工人5天完成,则y 关于x 的函数解析式为 .10.【新独家原创】计划修建一块面积为40 m 2的菱形试验田,试验田的对角线长分别为x m ,y m ,则y 与x 的函数解析式为 . 11.某公司推出一新款折叠屏手机,该手机功能强大,深受消费者推崇,但价格不菲.某电子商场推出分期付款购买手机的活动,一部售价为17 500元的该款手机,前期付款5 000元,后期每个月付相同的金额(不计算利息),则每个月的付款金额y (元)与付款月数x (x 为正整数)之间的函数关系式是 .知识点3 用待定系数法求反比例函数解析式12.【一题多变】(2022四川成都金牛期中)已知y 与x 成反比例,且当x =-1时,y =2,则反比例函数的表达式为( )A.y =-2xB.y =2x C.y =―12x D.y =12x [变式]在反比例函数y =kx 中,当x =2时,y =3,则当y =12时,x = .13.【教材变式·P3T3变式】已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =-1时,y =-4;当x =3时,y =4.(1)求y 关于x 的函数解析式;(2)当x =-2时,求y 的值.能力提升全练14.(2022山东德州陵城期末,2,)下列函数中,y 是x 的反比例函数的是( )A.y =2x 2 B.y =2―xxC.y =-1x +1D.y =-2x -115.【跨学科·物理】(2019浙江温州中考,6,)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的2002504005001 000度数y(度)镜片焦距x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x40016.(2021湖南邵阳邵东期末,13,)函数y=(m+1)·x m2―m―3是y关于x的反比例函数,则m= .17.(2022山东潍坊高密期末,13,)已知y与x-2成反比例,且比例系数k≠0,当x=3时,y=4,则k= .素养探究全练18.【推理能力】定义:[a,b]为反比例函数y=abx(ab≠0,a,b为实数)的“关联数”.反比例函数y=k1x 的“关联数”为[m,m+2],反比例函数y=k2x的“关联数”为[m+1,m+3],若m>0,则k1与k2的大小关系为 .19.【模型观念】已知y=(m2+2m)x m2+m―1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?答案全解全析基础过关全练1.B y=x-2 023即为y=1x2 023,y=2 023x-1即为y=2 023x,根据反比例函数的定义知y=-x2 023,y=-x2 023,y=x-2 023都不是反比例函数,y=2 023x-1是反比例函数.故选B.2.D 由题意得m―2m≠0,解得m≠0且m≠2.故选D.3.C 由题意得m=1,则比例系数为-2×(1+1)=-4.故选C.4.B 两个函数的比例系数都是-13.故选B.5.A 选项A,∵S=xy,∴y=Sx,y是x的反比例函数;选项B,∵l=2(x+y),∴y=l2-x,y是x的一次函数;选项C,∵S=a2,∴S是a的二次函数;选项D,∵C=4a,∴C是a的正比例函数.故选A.6.反解析 ∵y与-x成反比例,∴设y=m―x(m≠0).∵x与2z成正比例,∴设x=n·2z(n≠0),∴y=m―2nz =m―2n·1z,∴y与z成反比例.7.解析 (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)y=7x-1是反比例函数,k=7.(4)xy=2是反比例函数,k=2.(5)y=0.4x―1不是反比例函数.8.C ∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,∴12xy =10,∴y 与x 的函数关系式为y =20x .故选C .9.y =2 000x解析 由题意得5xy =10 000,∴y =2 000x.10.y =80x解析 由菱形面积公式可得12xy =40,∴y =80x ,即y 与x 的函数解析式为y =80x .11.y =12 500x解析 由题意得y =17 500―5 000x,即y =12 500x.12.A 设y =kx ,根据题意得2=k―1,解得k =-2,∴y 与x 的函数表达式为y =-2x .故选A.[变式]12解析 将x =2,y =3代入反比例函数y =k x ,得k =6,∴y =6x ,当y =12时,12=6x ,解得x =12.13.解析 (1)∵y 1与x 成正比例,∴设y 1=mx (m ≠0),∵y 2与x 成反比例,∴设y 2=nx (n ≠0),∴y =mx +nx ,把x =-1,y =-4及x =3,y =4代入y =mx +nx 得―m ―n =―4,3m +n3=4,解得m =1,n =3.∴y 与x 的函数解析式为y =x +3x .(2)把x =-2代入y =x +3x ,得y =-2+3―2=―72.能力提升全练14.D A 项,y =2x 2,y 不是x 的反比例函数,不合题意;B 项,y =2―xx,y 不是x 的反比例函数,不合题意;C项,y =-1x +1,y不是x 的反比例函数,不合题意;D 项,y =-2x -1,即y =-2x ,y 是x 的反比例函数,符合题意.故选D.15.A 因为200×0.50=250×0.40=400×0.25=500×0.20=1 000×0.10=100,所以y 是x 的反比例函数,且xy =100,所以y 关于x 的函数表达式为y =100x.故选A.16.2解析 ∵函数y =(m +1)·x m 2―m―3是y 关于x 的反比例函数,∴m +1≠0,m 2―m ―3=―1,解得m =2.17.4解析 由题意知y =kx ―2,∵当x =3时,y =4,∴4=k3―2,∴k =4×1=4.素养探究全练18.k 1<k 2解析 根据题意得k 1=mm +2,k 2=m +1m +3,∵m >0,∴k 1-k 2=mm +2―m +1m +3=m 2+3m ―m 2―3m ―2(m +2)(m +3)=-2(m +2)(m +3)<0,∴k 1<k 2.19.解析 (1)根据题意,得m 2+2m≠0,m2+m―1=1,解得m=1,故当m=1时,y是x的正比例函数.(2)根据题意,得m2+2m≠0,m2+m―1=2,解得m=―1±132,故当m=―1±132时,y是x的二次函数.(3)根据题意,得m2+2m≠0,m2+m―1=―1,解得m=-1,故当m=-1时,y是x的反比例函数.。
初三数学中考专题复习 反比例函数 综合练习题 含答案
反比例函数综合练习题1.下列函数关系中,不是反比例函数的是( ) A .xy =-5 B .y =-73x C .y =2x y D .=x42.下列各点中,在反比例函数y =8x 的图象上的是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若反比例函数y =2k -1x 的图象经过第二、四象限,则k 的取值范围是( )A .k>12B .k<12C .k =12D .不存在4. 为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( )5.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )6.若在同一坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<07.如图,点A 和点B 都在反比例函数y =4x的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为点C ,P 是线段OB 上的动点,连接CP.设△ACP 的面积为S ,则下列说法正确的是( )A .S >2B .S >4C .2<S <4D .2≤S ≤48.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A .4 B.143 C.163D .69. 若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 310. 已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )11. 已知反比例函数y =2x ,则自变量x 的取值范围是________.12. 已知y =(m +3)x |m|-4是反比例函数,则m =________.13.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为________.14.如图,已知点P(6,3),过点P 作PM⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k=________.15.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1,y 2的大小.16.如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k≠0)的图象都经过点A(m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y 1与y 2的大小.17.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min ).当该材料加热时,温度y 与时间x 成一次函数关系;当停止加热进行操作时,温度y 与时间x 成反比例关系(如图).若该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,停止操作,那么从开始加热到停止操作,共经历了多少时间?18.如图,四边形ABCD为正方形,点A,B的坐标分别为(0,2),(0,-3),反比例函数y=错误!的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案:1---10 DDBCB CDADB 11. x ≠0 12. 313. y =4x14. 615.(1)∵点P(-1,n)在直线y =-3x 上,∴n =3,∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2.(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 2.16.(1)∵一次函数y 1=x +1的图象经过点A(m ,2),∴2=m +1.解得m =1.∴点A 的坐标为A(1,2).∵反比例函数y 2=k x 的图象经过点A(1,2),∴2=k′1.解得k′=2,∴反比例函数的表达式为y 2=2x.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.17.(1)当0≤x<5时,为一次函数,设一次函数关系式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以⎩⎨⎧15=b ,60=5k +b ,解得⎩⎨⎧k =9,b =15.所以y =9x +15.当x≥5时,为反比例函数,设函数关系式为y =k′x,由于图象过点(5,60),所以k′=300.综上可知,y 与x 间的函数关系式为y =⎩⎨⎧9x +15(0≤x<5),300x (x≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20分钟.18.(1)由题意知,C 点坐标为(5,-3),把C(5,-3)代入y =k x 中,-3=k5,∴k =-15.∴反比例函数的表达式为y =-15x.把A(0,2),C(5,-3)两点坐标分别代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2. (2)设P 点坐标为(x ,y).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA·|x|,S 正方形ABCD =52=25,∴12×OA·|x|=25,12×2|x|=25,x 1=25,x 2=-25将其分别代入y =-15x 中,得y 1=-35,y 2=35.∴P 点坐标为⎝⎛⎭⎪⎫25,-35或⎝ ⎛⎭⎪⎫-25,35.。
人教版九年级数学下册《反比例函数》同步练习附答案【新审】
三、解答题( 18- 22 题每题 6 分,计 30 分, 23— 26 题每题 9 分计 36 分,共 66 分)
y 18.已知一次函数 y=kx+b 的图象与双曲线
求此一次函数的解析式。
2 x 交于点(1,m),且过点( 0,1),
y 19.关于 x 的一次函数 y=-2x+m 和反比例函数
1)
k y 16.二、四 因点( a,—2a)在 x 上,
k 2a
a
2
k 2a 0
双曲线在二、四象限
17. 1 一 因当 x>0 时,反比例函数的图象随 x 的减小而增大.
函数图象在一、三象限
m0 2m2 3m 6 1
由②得
m1 1
5
m2
2
因 m>0, m 1.
y 18.解:因点( 1,m)在
即点( 1,—2)
8
y 与 y 2x
24.在同一坐标系内,画出函数
x
的图象,并求出交点坐标.
25.已知矩形的面积是 4,矩形的长为 x,宽为 y. (1)写出 y 与 x 的函数关系式. (2)求出变量 x 的取值范围 ?
答案
1.B 2.B 3.C 4. A 5. D 6.C 7.B 8.C 9.C 10.C 11. k=2.或 k=3… 符合条件的 k 值较多,只要 k>0 即可
y 1Байду номын сангаас.
4 或y
x
8 ...
x k<0 即可
y 6 或y 13. x
24 ...
x 只要满足 m+n=5,如 m=2,n=3,
6
24
y ,m 3,n 8, y
则x
北师大版九年级数学上册 第六章 反比例函数 同步练习+两专题训练+单元测试(含参考答案)
第六章 反比例函数6.1 反比例函数基础题知识点1 反比例函数的概念1.下列函数是反比例函数的是( )A .y =xB .y =kx -1C .y =-8xD .y =8x22.反比例函数y =-25x 中,k 的值是( )A .2B .-2C .-25D .-523.若函数y =x 2m +1为反比例函数,则m 的值是( )A .1B .0 C.12D .-14.在函数y =1x -1中,自变量x 的取值范围是( )A .x ≠1B .x ≠0C .x<1D .一切实数5.若y =m (m -3)x是反比例函数,则满足的条件是( )A .m ≠0B .m =3C .m =0或m =3D .m ≠0且m≠3知识点2 判断反比例函数关系6.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( ) A .两条直角边成正比例 B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例7.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是( ) A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例8.下列问题中,两个变量间的函数关系式是反比例函数的是( ) A .小颖每分钟可以制作2朵花,x 分钟可以制作y 朵花B .体积为10 cm 3的长方体,高为h cm ,底面积为S cm 2C .用一根长50 cm 的铁丝弯成一个矩形,一边长为x cm ,面积为S cm 2D .汽车油箱中共有油50升,设平均每天用油5升,x 天后油箱中剩下的油量为y 升知识点3 建立反比例函数模型9.小华以每分钟x 个字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( ) A .y =x 300 B .y =300xC .y =300-xD .y =300-xx10.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为( )A .y =400xB .y =14xC .y =100xD .y =1400x11.若y 与x 成反比例,且x =3时,y =7,则y 与x 的函数关系式为________.12.计划修建铁路1 200 km ,试写出铺轨天数y(d)与每天铺轨量x(km/d)之间的函数关系式,并判断该函数是否是反比例函数.中档题13.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( ) A .成正比例 B .成反比例C .有可能成正比例,也有可能成反比例D .无法确定14.已知函数y =(n +2)xn 2+n -3(n 是常数),当n =________时,此函数是反比例函数. 15.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500 t ,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100 m 赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.16.已知函数y 与x +1成反比例,且当x =-3时,y =2. (1)求y 与x 的函数关系式;(2)当x =3时,求y 的值.17.已知函数y=(5m-3)x2-n+(n+m).(1)当m,n为何值时,为一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?综合题18.(丽水中考)如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.参考答案1.C 2.C 3.D 4.A 5.D 6.B 7.B 8.B 9.B 10.C 11.y =21x 12.∵铺轨天数=铁路长÷每天铺轨量,∴y=1 200x .∴y 是x 的反比例函数. 13.B 14.1 15.(1)y =1 500x,是反比例函数.(2)y =4.75x ,不是反比例函数.(3)t =100v ,是反比例函数. 16.(1)由题意,设y 与x +1的函数关系式为y =k x +1(k≠0),将x =-3,y =2代入,得k -3+1=2.解得k =-4.所以y 与x 的函数关系式为y =-4x +1.(2)将x =3代入,得y =-43+1=-1. 17.(1)由题意,得2-n =1,且5m -3≠0,解得n =1且m≠35.(2)由题意,得2-n =1,5m -3≠0,且m +n =0,解得n =1,m =-1.(3)由题意,得2-n =-1,5m -3≠0,且m +n =0,解得n =3,m =-3. 18.(1)由题意,得S矩形ABCD=AD·DC=xy ,故y =60x .(2)由y =60x ,且x ,y 都是正整数,可得x 可取1,2,3,4,5,6,10,12,15,20,30,60.∵2x +y≤26,0<y≤12,∴符合条件的围建方案为AD =5 m ,DC =12 m 或AD =6 m ,DC =10 m 或AD =10 m ,DC=6 m.第2课时 反比例函数的性质基础题知识点1 反比例函数图象的增减性1.反比例函数y =1x(x >0)的图象如图所示,随着x 值的增大,y 值( )A .减小B .增大C .不变D .先减小,后不变2.(随州中考)关于反比例函数y =2x 的图象,下列说法正确的是( )A .图象经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .当x <0时,y 随x 的增大而减小3.(宁夏中考)已知两点P 1(x 1,y 1),P 2(x 2,y 2)在函数y =5x 的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<04.(永州中考)已知点A(1,y 1),B(-2,y 2)在反比例函数y =kx (k >0)的图象上,则y 1_______y 2.(填“>”“<”或“=”)5.(上海中考)已知反比例函数y =kx (k 是常数,k ≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的表达式是________________(只需写一个).6.已知下列反比例函数:①y=1x ;②y=-1x ;③y=12x ;④y =1-2x ;⑤y=k 2+1x ,在其图象所在的每个象限内,y 随x 的值的增大而增大的函数有______________(填序号). 7.反比例函数y =(2m -1)xm 2-2,当x >0时,y 随x 的增大而增大,求m 的值.知识点2 反比例函数中k 的几何意义8.(宜昌中考)如图,点B 在反比例函数y =2x (x>0)的图象上,横坐标为1,过B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( ) A .1 B .2 C .3 D .49.如图,正方形ABOC 的边长为2,反比例函数y =kx 的图象经过点A ,则k 的值是( )A .2B .-2C .4D .-4中档题10.已知反比例函数y =-5x ,下列结论中不正确的是( )A .图象必经过点(1,-5)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则-5<y <011.(贵州中考)如果点A(-2,y 1),B(-1,y 2),C(2,y 3)都在反比例函数y =kx (k>0)的图象上,那么y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 112.(黔东南中考)如图,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,B 两点,BC ⊥x 轴于点C ,则△ABC的面积为( )A .1B .2 C.32 D.5213.已知反比例函数y =2k +1x (k 为常数,k ≠-12).(1)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围;14.(柳州中考)如图,函数y =kx 的图象过点A(1,2).(1)求该函数的表达式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C ,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.综合题15.(苏州中考)如图,已知函数y =kx (x >0)的图象经过点A ,B ,点A 的坐标为(1,2),过点A 作AC∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD∥x 轴,与函数的图象交于点D ,过点B 作BE⊥CD,垂足E 在线段CD 上,连接OC ,OD.(1)求△OCD 的面积;(2)当BE =12AC 时,求CE 的长.参考答案1.A 2.D 3.A 4.> 5.y =-1x (不唯一,只要k <0即可) 6.②④ 7.根据题意,得m 2-2=-1,解得m =±1.∵当x >0时,y 随x 的值的增大而增大,∴2m -1<0.解得m <12.∴m =-1. 8.B 9.D 10.B 11.B 12.A 13.(1)∵在这个函数图象的每一分支上,y 随x 的增大而增大,∴2k +1<0.解得k<-12.(2)点M(3,-3)在这个函数的图象上.理由:∵当k =-5时,2k +1=-9,∴反比例函数的表达式为y =-9x .当x =3时,y =-3,∴点M(3,-3)在这个函数的图象上. 14.(1)∵函数y =k x 的图象过点A(1,2),∴将点A 的坐标代入反比例函数表达式,得2=k1.解得k =2.∴反比例函数的表达式为y =2x .(2)∵点A 是反比例函数上一点,∴矩形ABOC 的面积S =AC·AB=|xy|=|k|=2.(3)证明:设图象上任一点的坐标为(x ,y).∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2.∴矩形的面积为定值. 15.(1)∵y=kx (x >0)的图象经过点A(1,2),∴k =2.∵AC∥y 轴,AC =1,∴点C 的坐标为(1,1).∵CD ∥x 轴,点D 在函数图象上,∴点D 的坐标为(2,1).∴S △OCD =12×1×1=12.(2)∵BE=12AC ,∴BE =12.∵BE ⊥CD ,∴点B 的横坐标是43,纵坐标是32.∴CE =43-1=13.6.3 反比例函数的应用基础题知识点1 反比例函数的实际应用1.(临沂中考)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是( ) A .t =20v B .t =20v C .t =v 20 D .t =10v2.(河北中考)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20,则y 与x 的函数图象大致是( )3.某蓄水池的排水管每时排水8 m 3,6 h 可将满池水全部排空.如果增加排水管,使每时的排水量达到Q(m 3),那么将满池水排空所需的时间为t(h).写出t 与Q 之间的关系:________. 知识点2 反比例函数跨学科应用4.(台州中考)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V(单位:m 3)满足函数关系式ρ=k V (k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-45.水平地面上重1 500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)与地面的接触面积x(m 2)之间的函数关系可以表示为________.6.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示. (1)求这个反比例函数的表达式;(2)当R =10 Ω时,电流能是4 A 吗?为什么?知识点3 反比例函数与一次函数的综合应用7.(广安中考)如图,一次函数y 1=k 1x +b(k 1,b 为常数,且k 1≠0)的图象与反比例函数y 2=k 2x (k 2为常数,且k 2≠0)的图象都经过点A(2,3).则当x >2时,y 1与y 2的大小关系为( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .以上说法都不对8.(枣庄中考)已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为________.9.(黔南中考)如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象交于A ,B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是____________.中档题10.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该( ) A .不大于54 m 3 B .小于54 m 3C .不小于45 m 3D .小于45m 311.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当x≥10时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x 应该满足的范围是________.12.(益阳中考)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y =kx 的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18 ℃的时间有多少小时?(2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?综合题13.(玉林中考)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min 时,材料温度降为600 ℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃. (1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并且写出自变量x 的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?参考答案1.B 2.C 3.t =48Q 4.A 5.y =1 500x 6.(1)设I =k R (k≠0),把(4,9)代入,得k =4×9=36,∴I =36R .(2)当R=10 Ω时,I =3.6 A ≠4 A ,∴电流不可能是4 A . 7.A 8.(1,-2) 9.-1<x <0或x >1 10.C 11.0<x≤40 12.(1)恒温系统在这天保持大棚温度18 ℃的时间为10小时.(2)∵点B(12,18)在双曲线y =k x 上,∴18=k12.解得k =216.(3)当x =16时,y =21616=13.5,所以当x =16时,大棚内的温度约为13.5 ℃. 13.(1)停止加热时,设y=k x (k≠0),由题意得600=k 8.解得k =4 800.当y =800时,4 800x =800,解得x =6.∴点B 的坐标为(6,800).材料加热时,设y =ax +32(a≠0),由题意得800=6a +32,解得a =128.∴材料加热时,y 与x 的函数关系式为y =128x +32(0≤x≤6);停止加热进行操作时,y 与x 的函数关系式为y =4 800x (6<x≤150).(2)把y =480代入y =4 800x ,得x =10,故锻造的操作时间为10-6=4(分钟).专题训练 反比例函数中k 的几何意义1.如图,在平面直角坐标系中,点A 是双曲线y =3x (x >0)上的一个动点,过点A 作x 轴的垂线,交x 轴于点B ,点A 运动过程中△AOB 的面积将会( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .不变2.如图,过反比例函数y =2x (x >0)图象上任意两点A ,B 分别作x 轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,比较它们的大小,可得( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2D .S 1、S 2的大小关系不能确定3.(鄂州中考)点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .± 34.设P 是函数y =2x 在第一象限的图象上的任意一点,点P 关于原点的对称点为点P ′,过点P 作PA 平行于y 轴,过点P ′作P ′A 平行于x 轴,PA 与P ′A 交于A 点,则△PAP ′的面积( ) A .随P 点的变化而变化 B .等于1 C .等于2 D .等于45.如图,点A 是反比例函数y =kx 图象上的一点,过点A 作AB ⊥x 轴,垂足为点B ,点C 为y 轴上的一点,连接AC ,BC.若△ABC 的面积为3,则k 的值是( ) A .3 B .-3 C .6 D .-66.(黔西南中考)如图,点A 是反比例函数y =kx 图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =________.7.(陕西中考)如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴,y 轴的垂线与反比例函数y =4x 的图象交于A ,B 两点,则四边形MAOB 的面积为________.8.(临沂中考)如图,反比例函数y =4x 的图象经过直角△OAB 的顶点A ,D 为斜边OA 的中点,则过点D 的反比例函数的表达式为________.9.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y =6x (x >0)的图象上,则点C 的坐标为________.10.(铁岭中考)如图,点P 是正比例函数y =x 与反比例函数y =kx 在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA的面积为2,则k 的值是________.11.(资阳中考)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =8x (x >0)和y =kx(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为________.12.如图,已知反比例函数y =kx (k <0)的图象经过点A(-3,m),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 3.求k 和m 的值.13.反比例函数y =1x 和y =k x (k ≠0)在第一象限内的图象如图所示,点P 在y =kx 的图象上,PC ⊥x 轴,垂足为C ,交y =1x 的图象于点A ,PD ⊥y 轴,垂足为D ,交y =1x 的图象于点B.已知点A(m ,1)为线段PC 的中点. (1)求m 和k 的值;(2)求四边形OAPB 的面积.参考答案1.D 2.C 3.D 4.D 5.D 6.-4 7.10 8.y =1x 9.(3,6) 10.2 11.-20 12.设点A 的坐标为(x ,y).∵△AOB 的面积为3,∴12|x|·|y|=12|k|= 3.解得|k|=2 3.又∵k <0,∴k =-2 3.∴反比例函数表达式为y =-23x .∵反比例函数图象经过点A(-3,m),∴m =-23-3.解得m =2.综上可知:k =-23,m =2. 13.(1)把A(m ,1)代入y =1x ,得m =1,∴A 点坐标为(1,1).∵点A(1,1)为线段PC 的中点,∴点P 坐标为(1,2).把(1,2)代入y =k x ,得k =1×2=2.(2)∵点P 坐标为(1,2),∴四边形OCPD 的面积为1×2=2.又∵△ODB 的面积为12,△OAC 的面积为12,∴四边形O APB 的面积为2-12-12=1.专题训练 反比例函数与一次函数综合1.(益阳中考)正比例函数y =6x 的图象与反比例函数y =6x 的图象的交点位于( )A .第一象限B .第二象限C .第三象限D .第一、三象限2.若在同一坐标系中,直线y =k 1x(k 1≠0)与双曲线y =k 2x 无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<03.(怀化中考)已知一次函数y =kx +b 的图象如图,那么正比例函数y =kx 和反比例函数y =kx 在同一坐标系中的图象大致是( )4.(菏泽中考)如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A(1,0),与反比例函数y =mx (x>0)的图象相交于点B(2,1). (1)求m 的值和一次函数的表达式;(2)结合图象直接写出:当x>0时,不等式kx +b>mx 的解集.5.(宜昌中考)下表中,y 是x 的一次函数.x -2 1 2 5(2)已知该函数图象上一点M(1,-3)也在反比例函数y =mx 图象上,求这两个函数图象的另一交点N 的坐标.6.(成都中考)如图,一次函数y =kx +5(k 为常数,且k≠0)的图象与反比例函数y =-8x 的函数交于A(-2,b),B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移m(m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.7.(自贡中考)如图,一次函数y =kx +b 与反比例函数y =6x (x >0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的表达式;(2)根据图象直接写出kx +b -6x <0的x 的取值范围;参考答案1.D 2.D 3.B 4.(1)反比例函数y =mx (x>0)的图象经过点B(2,1),则m =1×2=2.∵一次函数y =kx +b 的图象经过点A(1,0),B(2,1)两点,∴一次函数的表达式为y =x -1.(2)x>2. 5.(1)4 -6 设该一次函数为y =kx +b(k≠0).∵当x =-2时,y =6,当x =1时,y =-3,∴⎩⎪⎨⎪⎧-2k +b =6,k +b =-3.解得⎩⎪⎨⎪⎧k =-3,b =0.∴一次函数的表达式为y =-3x.当x =2时,y =-6;当y =-12时,x =4.(2)∵点M(1,-3)在反比例函数y =m x (m≠0)上,∴-3=m1.∴m =-3.∴反比例函数表达式为y =-3x .∵⎩⎪⎨⎪⎧y =-3x ,y =-3x .解得⎩⎪⎨⎪⎧x =1,y =-3或⎩⎪⎨⎪⎧x =-1,y =3.∴另一交点坐标为(-1,3). 6.(1)把A(-2,b)代入y =-8x ,得b =4.∴A 点坐标为(-2,4).把A(-2,4)代入y =kx +5,得-2k +5=4.解得k =12.∴一次函数表达式为y =12x +5.(2)将直线AB 向下平移m(m >0)个单位长度得直线表达式为y =12x+5-m.根据题意方程组⎩⎪⎨⎪⎧y =-8x ,y =12x +5-m只有一组解,消去y 得-8x =12x +5-m ,整理得12x 2-(m -5)x +8=0.Δ=(m-5)2-4×12×8=0.解得m 1=9,m 2=1,即m 的值为1或9. 7.(1)∵A(m,6),B(3,n)两点在反比例函数y =6x(x>0)图象上.∴m=1,n =2,即A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 图象上,∴⎩⎪⎨⎪⎧6=k +b ,2=3k +b.解得⎩⎪⎨⎪⎧k =-2,b =8.∴一次函数表达式为y =-2x +8.(2)根据图象可知kx +b -6x <0的x 的取值范围是0<x <1或x >3.(3)分别过A ,B 点作AE⊥x 轴,BC ⊥x 轴,垂足分别为E ,C 点,直线AB 交x 轴于D 点.令y =-2x +8=0,得x =4,即D(4,0).∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △DOB =12×4×6-12×4×2=8.单元测试 反比例函数(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列函数中,变量y 是x 的反比例函数的是( ) A .y =1x 2 B .y =x -1C .y =2x +3D .y =1x-12.已知y =8x n -2,当n =________时,y 是x 的反比例函数( )A .1B .-1C .1或-1D .0 3.下列各点中,在反比例函数y =3x 图象上的是( )A .(3,1)B .(-3,1)C .(3,13)D .(13,3)4.若反比例函数y =k -1x 的图象位于第二、四象限,则k 的取值可以是( )A .0B .1C .2D .以上都不是5.对于反比例函数y =2x,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大6.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( )7.下面关于反比例函数y =-3x 与y =3x的说法,不正确的是( )A .其中一个函数的图象可由另一个函数的图象沿x 轴或y 轴翻折“复印”得到B .它们的图象都是轴对称图形C .它们的图象都是中心对称图形D .当x>0时,两个函数的函数值都随自变量的增大而增大 8.反比例函数y =kx 的图象如图所示,则k 的值可能是( )A .-1 B.12C .1D .29.已知反比例函数y =10x ,当1<x <2时,y 的取值范围是( )A .0<y <5B .1<y <2C .5<y <10D .y >1010.如图,M 为反比例函数y =kx 的图象上的一点,MA 垂直于y 轴,垂足为点A ,△MAO 的面积为2,则k 的值为( )A .-4B .4C .-2D .211.已知直线y =mx 与双曲线y =kx 的一个交点坐标为(3,4),则它们的另一个交点坐标为( )A .(-3,4)B .(-4,-3)C .(-3,-4)D .(4,3) 12.若y 与1x 成反比例,x 与1z 成正比例,则y 是z 的( )A .正比例函数B .反比例函数C .一次函数D .以上均不对13.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y =3x 图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是( )A .y 3>y 1>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 2>y 114.在同一直角坐标系中,函数y =kx +1与y =-kx(k ≠0)的图象大致是( )15.如图,A ,B 两点在双曲线y =4x上,分别经过A ,B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .6二、填空题(本大题共5小题,每小题5分,共25分)16.若反比例函数y =kx的图象经过点(-1,2),则k 的值是________.17.小玲将一篇8 000字的社会调查报告录入电脑,那么完成录入的时间t(秒)与录入文字的速度v(字/秒)的函数关系式是________.18.已知y 是x 的反比例函数,当x>0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式:________________________.19.如图,已知函数y =kx 的图象经过点A(2,2),结合图象,请直接写出函数值y≥-2时,自变量x 的取值范围是____________.20.如图,反比例函数y =kx (k >0)的图象与矩形ABCO 的两边相交于E ,F 两点,若E 是AB 的中点,S △BEF =2,则k的值为________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)已知反比例函数的图象与直线y =2x 相交于点A(1,a),求这个反比例函数的表达式.22.(8分)反比例函数y =kx ,当x 的值由4增加到6时,y 的值减少3,求这个反比例函数的表达式.23.(10分)已知反比例函数y =k -1x(k 为常数,k ≠1).(1)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围;(2)若k =13,试判断点C(2,5)是否在这个函数的图象上,并说明理由.24.(12分)如图,在平面直角坐标系中,点O 为原点,反比例函数y =kx 的图象经过点(1,4),菱形OABC 的顶点A在函数的图象上,对角线OB 在x 轴上.(1)求反比例函数的表达式; (2)直接写出菱形OABC 的面积.25.(12分)如图,已知反比例函数y =kx (k >0)的图象经过点A(1,m),过点A 作AB⊥y 轴于点B ,且△AOB 的面积为1.(1)求m ,k 的值;(2)若一次函数y =nx +2(n≠0)的图象与反比例函数y =kx 的图象有两个不同的公共点,求实数n 的取值范围.26.(14分)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t =kv ,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要多少时间?27.(16分)已知:如图,反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A(1,4)、点B(-4,n).(1)求一次函数和反比例函数的表达式;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.参考答案1.B 2.A 3.A 4.A 5.C 6.D 7.D 8.B 9.C 10.B 11.C 12.B 13.A 14.D 15.D 16.-2 17.t =8 000v 18.答案不唯一,只要k>0即可,如:y =2x 19.x≤-2或x >0 20.8 21.设反比例函数表达式为y =kx .将点A(1,a)代入直线y =2x ,得a =2×1=2.∴点A 的坐标为(1,2),代入y =kx ,得k =2.∴反比例函数的表达式为y =2x . 22.当x =4时,y =k 4;当x =6时,y =k 6.∵当x 的值由4增加到6时,y 的值减少3,∴k 4-k6=3.解得k=36.∴这个反比例函数的表达式为y =36x . 23.(1)∵这个函数图象的每一分支上,y 随x 的增大而减小,∴k -1>0.解得k >1.(2)点C(2,5)不在这个函数的图象上.理由:∵当k =13时,k -1=12,∴反比例函数的表达式为y =12x .当x =2时,y =6≠5,∴点C(2,5)不在这个函数的图象上. 24.(1)∵反比例函数y =kx 的图象经过点(1,4),∴4=k 1.即k =4.∴反比例函数的表达式为y =4x .(2)8. 25.(1)由已知,得S △AOB =12×1×m =1,解得m =2.把A(1,2)代入反比例函数表达式,得k =2.(2)由(1)知反比例函数表达式是y =2x ,由题意知2x =nx +2有两个不同的解,方程去分母,得nx 2+2x -2=0,则Δ=4+8n >0,解得n >-12且n≠0. 26.(1)将(40,1)代入t =k v ,得1=k 40,解得k =40.∴该函数的表达式为t =40v .当t =0.5时,0.5=40m,解得m =80.所以k =40,m =80.(2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时. 27.(1)把A 点(1,4)分别代入反比例函数y =k x ,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3.反比例函数的表达式是y =4x ,一次函数表达式是y =x +3.(2)设AB 与x 轴交于点C.当x =-4时,y =-1,∴B(-4,-1).当y =0时,x +3=0,x =-3,∴C(-3,0).∴S △AOB =S △AOC +S △BOC =12×3×4+12×3×1=152.(3)∵B(-4,-1),A(1,4),∴根据图象可知:当x >1或-4<x <0时,一次函数值大于反比例函数值.。
北师大版九年级上册6.1 反比例函数 同步练习(带答案)
反比例函数同步练习一、选择题1.下列函数关系中是反比例函数关系的是()A. 等边三角形面积S与边长a的关系B. 直角三角形两锐角∠A与∠B的关系C. 长方形面积一定时,长y与宽x的关系D. 等腰三角形顶角的度数与底角度数的关系2.下列函数中,不是反比例函数的是()A. xy=2B. y=−k3x (k≠0)C. y=3x−1D. x=5y−13.下列说法正确的是()A. 圆面积公式S=πr2中,S与r成正比例关系B. 三角形面积公式S=12aℎ中,当S是常量时,a与h成反比例关系C. y=2x+2中,y与x成反比例关系D. y=x+13中,y与x成正比例关系4.已知x与y成反比例,z与x成正比例,则y与z的关系是()A. 成正比例B. 成反比例C. 既成正比例也成反比例D. 以上都不是5.反比例函数中常数k为()A. −3B. 2C. −12D. −326.若函数y=x2m+1为反比例函数,则m的值是()A. 1B. 0C. 12D. −17.下列函数:①y=x−2,②y=x3,③y=4x,④y=x2.y是x的反比例函数的有()A. 0个B. 1个C. 2个D. 3个8.反比例函数y=23x中k的值是()A. 2B. 23C. 32D. 39.反比例函数y=−13x的比例系数是()A. 1B. −1C. 3D. −1310.下列函数中,属于反比例函数的是()A. 两个变量的和等于5B. 两个变量的差等于5C. 两个变量的积等于5D. 两个变量的商等于5二、填空题11.若y=(5+m)x2+n是反比例函数,则m、n的取值是______12.反比例函数y=(m−2)x2m+1的函数值为13时,自变量x的值是_________.13.函数关系式y−1=3x+2可看作________与________成反比例,其中比例系数是________.14.若y=m−1mx是关于x的反比例函数,则m必须满足______________.15.下列函数:①y=2x−1;②y=−5x ;③y=x2+8x−2;④y=3x3;⑤y=12x;⑥y=ax.其中y是x的反比例函数的有________.(填序号)16.已知y=y1+y2,y1与x成正比例、y2与x成反比例,且当x=1时,y=4,当x=2时,y=5,则当x=4时,y的值是_______.17.反比例函数的表达式为y=(m−1)x m2−2,则m=___________.三、解答题18.已知函数y=(m2+2m)x m2−m−1(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.19.已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=−1;当x=3时,y=5,求y与x的函数关系式.20.已知函数y=(5m−3)x2−n+(n+m).(1)当m,n为何值时,该函数是一次函数?(2)当m,n为何值时,该函数是正比例函数?(3)当m,n为何值时,该函数是反比例函数?21.已知y=y1+y2,y1与x2+2成正比例;y2与x−2成反比例,且当x=1时,y=6;当x=−1时,y=8.(1)写出y关于x的函数解析式;(2)当x=5时,求y的值.答案和解析1.【答案】C【解答】解:A.等边三角形面积S 与边长a 的关系,不是反比例函数的关系,不符合题意;B .直角三角形两锐角与的关系,不是反比例函数的关系,不符合题意;C .长方形面积一定时,长y 与宽x 的关系,是反比例函数的关系,符合题意;D .等腰三角形的顶角度数与底角度数的关系,不是反比例函数的关系,不符合题意. 故选C .2.【答案】C【解析】解:A 、B 、D 选项都符合反比例函数的定义;C 选项不是反比例函数.3.【答案】B【解析】解:A 、圆面积公式S =πr 2中,S 与r 2成正比例关系,故原题说法错误; B 、三角形面积公式S =12aℎ中,当S 是常量时,a 与h 成反比例关系,故原题说法正确; C 、y =2x +2中,y 与x 不成反比例关系,故原题说法错误;D 、y =x+13中,y 与x +1成正比例关系,故原题说法错误;4.【答案】B【解答】解:∵x 与y 成反比例,z 与x 成正比例,∴设x = k y ,z =ax , 故x = z a ,则 k y = z a ,故yz =ka(常数),则y 与z 的关系是:成反比例.故选:B .5.【答案】D【解答】解:反比例函数解析式可知常数k 为−32. 故选D .6.【答案】D【解答】解:根据题意得2m+1=−1,解得m=−1.故选D.7.【答案】B【解析】【试题解析】解:①y=x−2,属于一次函数;②y=x3,属于正比例函数;③y=4x,属于反比例函数;④y=x2,属于二次函数.8.【答案】B【解答】解:反比例函数y=23x 中k的值是23,故选B.9.【答案】D【解析】解:反比例函数y=−13x 的比例系数是−13,10.【答案】C【解答】解:根据反比例函数的定义可知:两个变量的积为常数.故选C.11.【答案】m≠−5,n=−3【解析】解:根据题意得:{2+n=−15+m≠0,解得m≠5,n=−3.反比例函数的一般形式为y=kx(k≠0),可以决定x的系数,即得m和n.反比例函数解析式的一般式y =k x (k ≠0)中,特别注意不要忽略k ≠0这个条件. 12.【答案】−9【解答】解:∵y =(m −2)x 2m+1是反比例函数,则有{2m +1=−1m −2≠0, 解得m =−1,因而函数解析式是y =−3x ,当函数值为13时,即−3x =13,解得x =−9.故自变量x 的值是−9.故答案为−9. 13.【答案】y −1;x +2;3【解答】解:函数关系式y −1=3x+2,可看作y −1与 x +2成反比例,其中反比例系数是3. 故答案为y −1;x +2;3. 14.【答案】m ≠0且m ≠1【解答】解:由题意得m ≠0且m −1≠0,解得m ≠0且m ≠1.故答案为m ≠0且m ≠1.15.【答案】②⑤【解答】解:①y =2x −1,y 是x 一次函数,故此项错误; ②y =−5x ,y 是x 的反比例函数,故此项正确; ③y =x 2+8x −2,y 不是x 的反比例函数,故此项错误; ④y =3x 3,y 是x 3的反比例函数,故此项错误;⑤y =12x ,y 是x 的反比例函数,故此项正确; ⑥y =a x,当a ≠0时,y 是x 的反比例函数,故此项错误. 故答案是②⑤. 16.【答案】8.5【解答】解:y 1与x 成正比例,则可以设y 1=mx ,y 2与x 成反比例,则可以设y 2=n x ,因而y 与x 的函数关系式是y =y 1+y 2=mx +n x , ∵当x =1时,y =4,当x =2时,y =5,∴可以得到方程组:{m +n =42m +n 2=5,解得:{m =2n =2, 因而y 与x 之间的函数关系式y =2x +2x ,当x =4时,y =8+12=8.5.故答案为:8.5. 17.【答案】−1【解答】解:∵y =(m −1)x m 2−2是反比例函数,∴m 2−2=−1,m −1≠0,∴m =−1.故答案为−1.18.【答案】解:(1)由y =(m 2+2m)x m 2−m−1是正比例函数,得 m 2−m −1=1且m 2+2m ≠0,解得m =2或m =−1;(2)由y =(m 2+2m)x m 2−m−1是反比例函数,得 m 2−m −1=−1且m 2+2m ≠0,解得m =1.故y 与x 的函数关系式y =3x −1.19.【答案】解:∵y 1与x 成正比例,y 2与x 成反比例, ∴y 1=kx ,y 2=m x .∵y =y 1+y 2,∴y =kx +m x ,∵当x =1时,y =−1;当x =3时,y =5, ∴−1=k +m 且5=3k +m 3,解得k =2,m =−3.∴y =2x −3x . 20.【答案】解:(1)当函数y =(5m −3)x 2−n +(m +n)是一次函数时, 2−n =1,且5m −3≠0,解得n =1且m ≠35.(2)当函数y =(5m −3)x 2−n +(m +n)是正比例函数时,{2−n =1,m +n =0,5m −3≠0, 解得n =1,m =−1.(3)当函数y =(5m −3)x 2−n +(m +n)是反比例函数时,{2−n =−1,m +n =0,5m −3≠0, 解得n =3,m =−3. 21.【答案】解:∵y 1与x 2+2成正比例,∴y 1=k 1(x 2+2),(k 1≠0),∵y 2与x −2成反比例,∴y 2=k 2x−2,(k 2≠0);∴y =y 1+y 2=k 1(x 2+2)+k2x−2, ∵当x =1时,y =6;当x =−1时,y =8,∴{6=3k 1−k 28=3k 1−13k 2, 解得{k 1=3k 2=3,,∴y=3(x2+2)+3;x−2=82.(2)当x=5时,y=3(25+2)+35−2。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
北师大版九年级数学上册《6.2反比例函数的图象与性质》同步测试题及答案
北师大版九年级数学上册《6.2反比例函数的图象与性质》同步测试题及答案一、单选题1.反比例函数y=k x是经过点(2,3),那么这个反比例函数的图象应在()A.第一、二象限B.第一、三象限C.第二,三象限D.第二、四象限2.在同一平面直角坐标系中,函数y=kx+k与y=k x(k≠0)的图象可能是()A.B.C.D.3.已知反比例函数y=−6x,则下列描述正确的是()A.图象位于第一、三象限B.图象必经过点(4,32)C.图象必经过点(4,−32)D.y随x的增大而减小4.对于反比例函数y=−4x,①这个函数图象的两个分支分别位于第二、四象限,②这个函数的图象既是轴对称图形又是中心对称图形,③点(−2,−2)不在这个函数图象上,④若点A(a,b)和点B(a+2,c)在该函数图象上,则c>b.上述四个判断中,不正确的个数是()A.3B.2C.1D.05.如图,反比例函数y=4x图象的对称轴的条数是()A.0B.1C.2D.36.在反比例函数y=1−k x的图象的每一条曲线上,y随x的增大而增大,则k的值可以是()A.-1B.0C.1D.27.下列函数中,当x>0时,y随x的增大而增大的是()A.y=−3x B.y=−x+3C.y=−5x D.y=1 2x8.若点(−2,y1),(−1,y2),(2,y3)在双曲线y=k x(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.在平面直角坐标系中,点P是y轴正半轴上的任意一点,过点P作x轴的平行线,分别与反比例函数y=−12x和y=16x的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()A.10B.12C.14D.2810.如图,A,B是反比例函数y=8x图象上的两点,分别过点A,B作x轴,y轴的垂线,构成图中的三个相邻且不重叠的小矩形S1,S2,S3已知S2=3,S1+S3的值为()A.16B.10C.8D.5二、填空题11.若双曲线y=kx(k≠0)在第二、四象限,则直线y=kx-2不经过第象限.12.若反比例函数y=k x的图象经过点(-2,6)和(4,m),则m=.13.直线y=kx与双曲线y=2x交于A(x1,y1)、B(x2,y2)两点,则x1y2﹣3x2y1的值为.14.如图,点A(5a−1,2)、B(8,1)都在反比例函数y=kx(k≠0)的图象上,点P是直线y=x上的一个动点,则PA+PB的最小值是.15.如图,双曲线y=k x经过Rt △BOC斜边上的中点A,与BC交于点D,S△BOD=21则k=.16.如图,点A是反比例函数y=k x(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=.三、作图题17.在平面直角坐标系中,画出函数y=4x的图象.四、解答题18.如图,点A在反比例函数y=10x的图象上,过点A作y轴的平行线交反比例函数y=kx(k<0)的图象于点B,点C在y轴上,若△ABC的面积为8,求k的值.19.已知函数y1=kx,y2=−kx(k>0)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a−4,求a和k的值.20.(1,√3)是反比例函数图象上的一点,直线AC经过坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的表达式.五、综合题21.已知反比例函数y=kx,其中k>−2,且k≠0,1≤x≤2.(1)若y随x的增大而增大,则k的取值范围是;(2)若该函数的最大值与最小值的差是1,求k的值.22.如图,点A在反比例函数y=k x的图象位于第一象限的分支上,过点A作AB△y轴于点B,S△AOB=2.(1)求该反比例函数的表达式(2)若P(x1,y1)、Q(x2,y2)是反比例函数y=kx图象上的两点,且x1<x2,y1<y2,指出点P、Q各位于哪个象限,并简要说明理由.23.在矩形AOBC中OB=6,OA=4.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点,过点F的反比例函数y=k x(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.24.如图反比例函数y=k x与一次函数y=ax+b的图象交于点A(1,3)和B(﹣3,n)两点.(1)求反比例函数与一次函数的解析式;(2)由图象直接写出当x 取什么值时,一次函数的值大于反比例函数的值.(3)连OA 、OB ,求出△OAB 的面积.参考答案与解析1.【答案】B【解析】【解答】解:∵反比例函数y =k x 经过点(2,3)∴k=2×3=6>0∴反比例函数图象位于第一、三象限故答案为:B .【分析】将(2,3)代入y =k x中求出k 值,根据k 的符号进行判断即可. 2.【答案】D【解析】【解答】解:①当k >0时,y =kx+k 过一、二、三象限;y =k x过一、三象限; ②当k <0时,y =kx+k 过二、三、四象限;y =k x 过二、四象限A .由反比例函数知k<0,一次函数y =kx+k 应过二、三、四象限,故该选项不符合题意;B .由反比例函数知k<0,一次函数y =kx+k 中k >0,故该选项不符合题意;C .由反比例函数知k >0,一次函数y =kx+k 应过一、二、三象限,故该选项不符合题意;D .由反比例函数知k >0,一次函数y =kx+k 应过一、二、三象限,故该选项符合题意.故答案为:D .【分析】①当k >0时,y =kx+k 过一、二、三象限;y =k x过一、三象限;②当k <0时,y =kx+k 过二、三、四象限;y =k x过二、四象限,据此逐一判断即可. 3.【答案】C【解析】【解答】解:A 、反比例函数y =−6x,k <0,经过二、四象限,选项A 不符合题意; B 、当x=4时y =−6x =−64=−32,图象不经过点(4,32),选项B 不符合题意; C 、当x=4时y =−6x =−64=−32,图象经过点(4,−32),选项C 符合题意; D 、反比例函数图象分为两部分,在每个象限内,y 随x 的增大而增大,选项D 不符合题意; 故答案为:C .【分析】反比例函数y =−6x,由于k <0可得经过二、四象限,且在每个象限内,y 随x 的增大而增大,将x=2时y=-32,据此逐一判断即可. 4.【答案】C【解析】【解答】解: 对于反比例函数y =−4x,它的图象既是轴对称图形又是中心对称图形,故②正确; ∵−4<0∴这个函数图象的两个分支分别位于第二、四象限,故①正确;当x =−2时y =2∴点(−2,−2)不在这个函数图象上,故③正确;若a 和a +2同号,则c >b若a 和a +2异号,则b >c ,故④不正确;∴不正确的个数是1.故答案为:C.【分析】根据反比例函数的解析式可知:其图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此判断①④;根据反比例函数图象的对称性可判断②;令x=-2,求出y的值,据此判断③. 5.【答案】C【解析】【解答】解:如下图沿直线y=x或y=﹣x折叠反比例函数y=4x图象,直线两旁的部分都能够完全重合,∴反比例函数y=4x图象的对称轴有2条.故答案为:C.【分析】根据轴对称图形特点分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,关键是找到对称轴.6.【答案】D【解析】【解答】解:∵在反比例函数y= 1−kx的图象的每一条曲线上,y随x的增大而增大∴1-k<0∴k>1∴k可以为2.故答案为:D.【分析】由反比例函数y= kx图象的性质可知,当k<0时,在每个象限内,y随x的增大而增大,可列出不等式1-k<0,即k>1,据此即可得出正确答案. 7.【答案】C【解析】【解答】解:A、y=−3x,k<0,故y随着x增大而减小,故该选项不符合题意;B、y=−x+3k<0,故y随着x增大而减小,故该选项不符合题意;k=-5<0,在每个象限里,y随x的增大而增大,故该选项符合题意;C、y=−5xk= 12>0,在每个象限里,y随x的增大而减小,故该选项不符合题意.D、y=12x故答案为:C.【分析】y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;y= kx(k≠0),当k>0时,图象位于一、三象限,且在每一象限内,y随x的增大而减小;当k<0时,图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此一一判断得出答案.8.【答案】D【解析】【解答】解:∵k<0∴反比例函数y=ky随x的增大而增大x图象位于二、四象限,且在每一象限内,∴点(−2,y1),(−1,y2)在第二象限,(2,y3)在第四象限∴y1>0y2>0y3<0∵−2<−1∴y1<y2∴y3<y1<y2.故答案为:D.【分析】根据反比例函数的解析式可知其图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此进行比较.9.【答案】C【解析】【解答】解:如图,连接OA,OB∵△AOB 与△ACB 同底等高∴S △AOB=S △ACB∵AB△x 轴∴AB△y 轴∵A 、B 分别在反比例函数y=-12x 和y=16x的图象上 ∴S △AOP=6,S △BOP=8∴S △ABC=S △AOB=S △AOP+S △BOP=6+8=14.故答案为:C .【分析】连接OA ,OB ,根据反比例函数k 的几何意义可得S △AOP=6,S △BOP=8,再利用S △ABC=S △AOB=S △AOP+S △BOP 计算即可。
2022-2023学年人教版九年级数学下册《26-1反比例函数》同步练习题(附答案)
2022-2023学年人教版九年级数学下册《26.1反比例函数》同步练习题(附答案)一.选择题1.下列函数中,不是反比例函数的是()A.y=x﹣1B.xy=5C.D.2.若y=(a+1)x a2﹣2是反比例函数,则a的值为()A.1B.﹣1C.±1D.任意实数3.如图,过原点的一条直线与反比例函数(k≠0)的图象分别交于A、B两点,若A 点的坐标为(3,﹣5),则B点的坐标为()A.(3,﹣5)B.(﹣5,3)C.(﹣3,+5)D.(+3,﹣5)4.下列函数中,y的值随x值的增大而增大的函数是()A.y=B.y=﹣2x+1C.y=x﹣2D.y=﹣x﹣2 5.已知反比例函数y=﹣,下列说法不正确的是()A.图象经过点(2,﹣4)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.y≤1时,x≤﹣86.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣2,1)在它的图象上B.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2C.它的图象在第二、四象限D.当x>0时y随x的增大而增大7.若反比例函数在每个象限内,y随x的增大而减小,则()A.B.C.D.8.二次函数y=ax2+bx和反比例函数在同一直角坐标系中的大致图象是()A.B.C.D.9.两个反比例函数C1:和C2:在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.1B.2C.3D.410.如图,∠OAB=30°,点A在反比例函数的图象上,过B的反比例函数解析式为()A.B.C.D.二.填空题11.反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是.12.在反比例函数y=的图象的每一支上,y都随x的增大而减小,则k的取值范围是.13.下列函数:①y=﹣5x;②y=3x﹣2;③y=﹣(x>0);④y=3x2(x<0),其中y的值随x的增大而增大的函数为.(填序号)14.若(1,y1)、(2,y2)、(﹣3,y3)都在函数y=﹣的图象上,则y1、y2、y3的大小关系是.15.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是.16.如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.17.如图,四边形OABC是正方形,OA在y轴正半轴上,OC在x轴负半轴上.反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F.若∠EOF=30°,则线段OE的长度为.三.解答题18.已知y是关于x的反比例函数,当x=3时,y=﹣2.(1)求此函数的表达式;(2)当x=﹣4时,函数值是2m,求m的值.19.如图,反比例函数的图象经过点(﹣2,4)和点A(a,﹣2).(Ⅰ)求该反比例函数的解析式和a的值.(Ⅱ)若点C(x,y)也在反比例函数的图象上,当2<x<8时,求函数y 的取值范围.20.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.21.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b≥的x的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求△ABC的面积.22.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.23.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.24.如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.参考答案一.选择题1.解:反比例函数的三种形式为:①y=(k为常数,k≠0),②xy=k(k为常数,k≠0),③y=kx﹣1(k为常数,k≠0),由此可知:只有y=不是反比例函数,其它都是反比例函数,故选:C.2.解:由反比例函数的定义得a+1≠0且a2﹣2=﹣1由a+1≠0得a≠﹣1由a2﹣2=﹣1得a=±1综上所述,a=1.故选:A.3.解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(﹣3,+5).故选:C.4.解:A、y=是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.5.解:A、当x=2时,y=﹣4,即反比例函数y=﹣的图像经过点(2,﹣4),故不符合题意;B、因为反比例函数y=﹣中的k=﹣8,所以图像分别在二、四象限,故不符合题意;C、因为反比例函数y=﹣中的k=﹣8,所以在每个象限内y随x增大而增大,故不符合题意;D、y≤1时,x≤﹣8或x>0,故符合题意;故选:D.6.解:A、当x=﹣2时,y=1,即点(﹣2,1)在它的图象上,不符合题意;B、点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,符合题意;C、反比例函数y=﹣中的k=﹣2<0,所以它的图象在第二、四象限,不符合题意;D、反比例函数y=﹣中的k=﹣2<0,所以当x>0时y随x的增大而增大,不符合题意.故选:B.7.解:∵反比例函数在每个象限内,y随x的增大而减小,∴3k﹣2>0,解得k>,故选:A.8.解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.9.解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=|k|=,S矩形PCOD=|2|=2,∴四边形P AOB的面积=2﹣2•=1.故选:A.10.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图.∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴=,∵S△AOD==3,∴S△BCO=|k|=1,∵经过点B的反比例函数图象在第二象限,∴k=﹣2,故反比例函数解析式为:y=﹣.故选:C.二.填空题11.解:∵△POM的面积为2,∴S=|k|=2,∴k=±4,又∵图象在第四象限,∴k<0,∴k=﹣4,∴反比例函数的解析式为:y=﹣.故答案为:y=﹣.12.解:在反比例函数y=的图象的每一支上,y都随x的增大而减少,∴﹣k+1>0,∴k<1,∴k的取值范围为:k<1.故答案为:k<1.13.解:①对于y=﹣5x,y随x的增大而减小;②对于y=3x﹣2,y随x的增大而增大;③当x>0时,函数y=﹣,y随x的增大而增大;④y=3x2,当x<0时,y随x的增大而减小.故答案为:②③.14.解:∵y=﹣中,k=﹣2<0,∴图象在二、四象限,在每一象限内y随x的增大而增大,∵2>1>0,﹣3<0,∴点(1,y1),B(2,y2)在第四象限,(﹣3,y3)在第二象限,∴y1<y2<0,y3>0.∴y1<y2<y3.故答案为:y1<y2<y3.15.解:∵一次函数y1=k1x+b的图象与反比例函数的图象交于点A(1,m),B(4,n),∴当1<x<4时,y1>y2,当x<0时,y1>y2,即当y1>y2时,x的取值范围是x<0或1<x<4.故答案为:x<0或1<x<4.16.解:延长AC交x轴于E,如图所示:则AE⊥x轴,∵C的坐标为(4,3),∴OE=4,CE=3,∴OC==5,∵四边形OBAC是菱形,∴AB=OB=OC=AC=5,∴AE=5+3=8,∴点A的坐标为(4,8),把A(4,8)代入函数y=(x>0)得:k=4×8=32;故答案为:32.17.解:∵四边形OABC是正方形,∴OA=OC,∠OAF=∠OCE=90°,∵反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F,∴CE×OC=AF×OA=4,∴CE=AF,在△OCE与OAF中,,∴△OCE≌△OAF(SAS),∵∠EOF=30°,∴∠COE=∠AOF=30°,∴OC=CE,∵CE×OC=4,∴CE=2,∴OE=2CE=4,故答案为:4.三.解答题18.解:(1)设y=(k≠0),则k=xy;∵当x=3时,y=﹣2,∴k=3×(﹣2)=﹣6,∴该反比例函数的解析式是:y=﹣;(2)由(1)知,y=﹣,∵x=﹣4时,函数值是2m,∴2m=﹣,∴m=.19.解:(Ⅰ)将点(﹣2,4)代入y=(k≠0),得:k=﹣2×4=﹣8,∴反比例函数解析式为:y=﹣,把点A(a,﹣2)代入y=﹣得﹣=﹣2,∴a=4,A(4,﹣2);(Ⅱ)∵点C(x,y)也在反比例函数的图象上,∴当x=2时,y=﹣4;当x=8时,y=﹣1,∵k=﹣8<0,∴当x>0 时,y随x值增大而增大,∴当2<x<8 时,﹣4<y<﹣1.20.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.21.解:(1)∵把A(3,1)代入y=得:k2=3×1=3,∴反比例函数的解析式是y=,∵B(﹣1,n)代入反比例函数y=得:n=﹣3,∴B的坐标是(﹣1,﹣3),把A、B的坐标代入一次函数y=k1x+b得:,解得:k1=1,b=﹣2,∴一次函数的解析式是y=x﹣2;(2)从图象可知:k1x+b≥的x的取值范围是当﹣1≤x<0或x≥3.(3)过C点作CD∥y轴,交直线AB于D,∵B(﹣1,﹣3),B、C关于原点对称,∴C(1,3),把x=1代入y=x﹣2得,y=﹣1,∴D(1,﹣1),∴CD=4,∴S△ABC=S△ACD+S△BCD=×4×(3+1)=8.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,由旋转可知∠ABO=∠CBD,∴∠BOD=∠CBD,∴OD=BD,由旋转知OB=BD,∴△OBD是等边三角形,∴∠BOD=60°,∴B(1,),∵双曲线y=经过点B,∴k=xy=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,由旋转知AB=BC,∴BC=2OB,∴OC=OB,∴点C(﹣1,﹣),把点C(﹣1,﹣)代入y=,﹣=﹣,∴点C在双曲线上.24.解:(1)∵AB∥y轴,AB⊥x轴.点A(﹣2,1),且平行四边形ABCD对角线交于坐标原点O,∴AM=1,OM=ON=2,∴MN=4,∵平行四边形ABCD的面积为12,∴AB•MN=12,∴AB=3,BM=2.∴点B(﹣2,﹣2).将点B(﹣2,﹣2)代入,得,∴k=4.∴反比例函数的解析式为;(2)在Rt△AOM中,根据勾股定理,得.当△AOP是等腰三角形时,分三种情况讨论:①当OA=OP时,若点P在y轴的负半轴上,则点,若点P在y轴的正半轴上,则点;②当OP=AP时,点P在OA的垂直平分线上,如图,∴,∵∠POG+∠AOM=90°=∠AOM+∠OAM,∴∠POG=∠OAM,∵∠PGO=∠AMO=90°,∴△OAM∽△POG,∴OP=OG=,∴点P3的坐标为;③当AP=AO时,点A在OP4的垂直平分线上,∴点P4的坐标为(0,2).综上可知,点P的坐标为或或或(0,2).。
北师大版九年级数学《反比例函数》综合练习1(含答案)
1 反比例函数学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数;当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、 ⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为_________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题6.已知函数xk y =,当x =1时,y =-3,那么这个函数的解析式是( ).(A)x y 3= (B)xy 3-= (C)x y 31= (D)x y 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4(B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y与x 之间的函数关系式为( ).(A)y =100x (B)x y 100= (C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系;(2)如果S =3cm 2时,h =16cm ,求:①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.参考答案1.xk y =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)x wy =,反比例.3.②、③和⑧. 4.2,x y 1=.5.)0(100>⋅=x x y 6.B . 7.A . 8.(1)x y 6=; (2)x =-4.9.-2,⋅-=x y 410.反比例.11.B . 12.D . 13.(1)反比例; (2)①S h 48=;②h =12(cm), S =12(cm 2). 14.⋅-=325x y15..23x x y -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 3.如图,已知一次函数 y kx b(k 0) 的图象与 x 轴、y 轴分别交于 A、B两点,且与反比例函数
m (m 0) 的图象在第一象限交于 C 点,CD 垂直于 x 轴,垂足为 D,若 OA=OB=OD=1. x (1)求点 A、B、D 的坐标;(2)求一次函数和反比例函数的解析式. y
九年级数学上册 同步讲义
反比例函数综合复习
网络结构:
解析式: 法,已知直线上任意 点坐标; 解析式求法: 形状:一次函数 是经过( , )和( , )的一条直线; ,b 时,直线经过第 象限; 当k ,b 时,直线经过第 象限; 一次函数图象性质 当k 经过象限: ,b 时,直线经过第 象限; 当k ,b 时,直线经过第 象限; 当k 上下平移:与 有关, 直线y kx b向上或向下平移m个单位后,解析式为 图象平移: 左右平移:与 有关, 直线y kx b向左或向右平移m个单位后,解析式为 1. 一次函数与不等式的关系:步骤: 2. 3.
25.如图,已知直线 y1 x m 与 x 轴、y 轴分别交于点 A、B,与双曲线 y 2 ⑶利用图象直接写出:当 x 在什么范围内取值时, y1 y 2 .
26.已知:如图,在平面直角坐标系 xOy 中,Rt△OCD 的一边 OC 在 x 轴上,∠C=90 ,点 D 在第一象限 OC=3,DC=4,反比例函数的图象经过 OD 的中点 A. (1)求该反比例函数的解析式; (2)若该反比例函数的图象与 Rt△OCD 的另一边 DC 交于点 B,求过 A、B 两点的直线的解析式.
19.如图,直线 y kx(k 0) 与双曲线 y
4 交于 A(x1,y1) ,B(x2,y2)两点,则 2 x1 y 2 7 x 2 y1 =_____ x
第 20 题图 第 21 题图 4 20.函数 y1 x x ≥ 0 ,y2 x 0 的图象如图所示,则结论:①两函数图象的交点 A 的坐标为(2,2); x ②当 x>2 时, y2 y1 ;③当 x=1 时,BC=3;④当 x 逐渐增大时, y1 随着 x 的增大而增大, y2 随着 x 的增大 而减小.其中正确结论的序号是 21.如图,△P1OA1、△P2A1A2 是等腰直角三角形,点 P1、P2 在函数 y 都在 x 轴上,则点 A2 的坐标是_________ 22.已知 y = y1 + y2 , y1与x 成正比例, y2与x 成反比例,且 x=1 时,y=3;x=-1 时,y=1.求 x 时,y 的 值.
C.6.4kg
第 3 页 共 8 页
)
B.5kg
D.7kg
九年级数学上册 同步讲义
11.已知 ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) 是反比例函数 y 小关系是( ) A. y1 0 y2 y3 12.使函数 y (m 4) x m 13.在函数 y 的大小为 14.已知 y
n5 图象经过点(2,3) ,则 n 的值是( ) . x A.-2 B.-1 C.0 D.1 k 2.若反比例函数 y (k 0) 的图象经过点(-1,2) ,则这个函数的图象一定经过点( ) . x 1 1 A.(2,-1) B.(- ,2) C.(-2,-1) D.( ,2) 2 2 3.已知甲、 乙两地相距 s (km) , 汽车从甲地匀速行驶到乙地,则汽车行驶的时间 t (h) 与行驶速度 v (km/h) 的函数关系图象大致是( )
第 1 页 共 8 页
九年级数学上册 同步讲义
例 1.已知 y y1 y 2 , y1 与 x 成反比例, y 2 与 ( x 2) 成正比例, 并且当 x=3 时, y=5; 当 x=1 时, y=-1; 求 y 与 x 之间的函数关系式.
8 与一次函数 y kx b(k 0) 的图象交于 A、B 两点,且点 A 的横坐标和点 x B 的纵坐标都是-2.求: (1)一次函数的解析式; (2)△AOB 的面积.
k 的图象与一次函数 y ax b 的图象交于 M(2,m)和 N(-1,-4)两点. x (1)求这两个函数的解析式; (2)求△MON 的面积; (3)请判断点 P(4,1)是否在这个反比例函数的图象上,并说明理由.
24.如图,已知反比例函数 y
k ( x 0) 分别交于点 C、D, x 且 C 点的坐标为(-1,2).⑴分别求出直线 AB 及双曲线的解析式;⑵求出点 D 的坐标;
( 1) ( , 2) ( , 3) 解析式: 图象形状:是 法,已知双曲线上任意 点坐标; 解析式求法: 时,图象分布在第 象限; 当k 象限分布: 时,图象分布在第 象限; 当k 图象性质 时,y随x的增大而 当x 反比例函数 当k 时, ; 时,y随x的增大而 当x 增减性: 时,y随x的增大而 当x 当 k 时, ; 当x 时,y随x的增大而 点P(x, y)在双曲线 上,过P作x轴、y轴作垂线,围成矩形 k 则该矩形面积S 矩形 k , 则构成的S Rt 2
值是 ( ) A.正数 B.负数 C.非正数 D.不能确定 1 6.函数 y 与函数 y x 的图象在同一平面直角坐标系内的交点的个数是( ) x A.一个 B.二个 C.三个 D.零个 2 7.若点(3,4)是反比例函数 y m 2 m 1 图象上一点,则此函数图象必须经过点( ) x A.(2,6) B.(2,-6) C.(4,-3) D.(3,-4) 8.若 y 与 x 成正比例,x 与 z 成反比例,则 y 与 z 之间的关系是( ) A.成正比例 B.成反比例 C.不成正比例也不成反比例 D.无法确定 9.如图,A 为反比例函数 y A.6
3k 2 2 k 1
) D.(2,-7) ) D.4
4.若反比例函数 y (2k 1) x 的图象位于第二、四象限,则 k 的值是( A.0 B.0 或 1 C.0 或 2 5.已知反比例函数 y
k ( k 0 ) 的图像上有两点 A( x1 , y1 ),B( x 2 , y 2 ),且 x1 x 2 ,则 y1 y 2 的 x
k 满足( ) . x A.当 x>0 时,y>0 B.在每个象限内,y 随 x 的增大而减小 C.图象分布在第一、三象限 D.图象分布在第二、四象限 1 5.如图,点 P 是 x 轴正半轴上一个动点,过点 P 作 x 轴的垂线 PQ 交双曲线 y 于点 Q,连结 OQ,点 P 沿 x x 轴正方向运动时,Rt△QOP 的面积( ) . A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定
k 图象上一点,AB 垂直 x 轴于 B 点,若 S AOB 3 ,则 k 的值为( x 3 B.3 C. D.不能确定 2
)
10.在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积 V 时,气体的密度ρ也随 之改变.ρ与 V 在一定范围内满足ρ= A.1.4kg
m ,它的图象如图所示,则该气体的质量 m 为( V
2
4 的图象上三点,且 x1 0 x2 x3 ,则 y1 , y2 , y3 的大 x
C. y1 0 y3 y2 D. y1 0 y3 y2 .
B. y1 0 y2 y3
9 m 19
是反比例函数,m=
,图象在每个象限内 y 随 x 的增大而
1 k2 2 ( - 2,y 1) 的图象上有三个点 ,(-1,y2), ( ,y3) ,函数值 y1 , y 2 ,y 3 (k为常数) 2 x
2
第 19 题图
4 ( x 0 ) 的图象上,斜边 OA1、A1A2 x
1 2
第 4 页 共 8 页
九年级数学上册 同步讲义
8 ( m 0 ) 的图象交于 A,B 两点, x 且 A 点的横坐标与 B 点的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.
23.如图,已知一次函数 y kx b(k 0) 的图象与反比例函数 y
0
第 5 页 共 8 页
九年级数学上册 同步讲义
k (k 0) 经过直角三角形 OAB 斜边 OA 的中点 D,且与直角边 AB 相交于点 C.若点 x A 的坐标为(-6,4) ,求△AOC 的面积.
27.如图,已知双曲线 y
28.如图,已知点 A 在双曲线 y= 的面积和△ABC 的周长.
16.已知反比例函数 y 17.已知函数 y kx 与 y 的面积为____ 18.已知 A(x1,y2),B(x2,y2)都在 y
4 的图象交于 A、B 两点,过点 A 作 AC 垂直于y轴,垂足为点 C,则△BOC x
6 图像上。若 x1 x 2 3 ,则 y1 y 2 的值为 x
例 4.如图,双曲线 y
5 在第一象限的一支上有一点 C(1,5),过点 C 的直线 y kx b(k 0) 与 x 轴交 x
于点 A(a,0). (1)求点 A 的横坐标 a 与 k 的函数关系式(不写自变量取值范围). (2)当该直线与双曲线在第一象限的另一个交点 D 的横坐标是 9 时,求△COA的面积.
6 上, 且 OA=4,过 A 作 AC⊥x 轴于 C,OA 的垂直平分线交 OC 于 B. 求△AOC x
1 k x 的图象与反比例函数 y (k 0) 在第一象限的图象交于 A 点,过 A 点作 2 x x 轴的垂线,垂足为 M,已知△OAM 的面积为 1. (1)求反比例函数的解析式; (2)如果 B 为反比例函数在第一象限图象上的点(点 B 与点 A 不重合) ,且 B 点的横坐标为 1,在 x 轴 上求一点 P,使 PA+PB 最小.