材料成型加工与工艺学 习题解答7
材料成型加工与工艺学-习题解答(1,2)汇总
习题解答:第一章1.分别定义“高分子材料”和“塑料”。
高分子材料以高分子化合物为基础的材料。
塑料塑料根据加热后的情况又可分为热塑性塑料和热固性塑料。
加热后软化,形成高分子熔体的塑料成为热塑性塑料。
主要的热塑性塑料有聚乙烯(PE)、聚丙烯(PP )、聚苯乙烯(PS )、聚甲基丙烯酸甲酯(PMMA,俗称有机玻璃)、聚氯乙烯(PVC)、尼龙(Nylon)、聚碳酸酯(PC)、聚氨酯(PU)、聚四氟乙烯(特富龙, PTFE)、聚对苯二甲酸乙二醇酯(PET,PETE )。
加热后固化,形成交联的不熔结构的塑料称为热固性塑料。
常见的有环氧树脂, 酚醛塑料,聚酰亚胺,三聚氰氨甲醛树脂等。
塑料的加工方法包括注射,挤出,膜压,热压,吹塑等等。
2.高分子材料成型加工的定义与实质.研究聚合物加工成型的原理与工艺. 材料是科学与工业技术发展的基础。
加工过程中高分子表现出形状、结构、和性质等方面的变化。
形状转变往往是为满足使用的最起码要求而进行的;材料的结构转变包括高分子的组成、组成方式、材料宏观与微观结构的变化等;高分子结晶和取向也引起材料聚集态变化,这种转变主要是为了满足对成品内在质量的要求而进行的,一般通过配方设计、材料的混合、采用不同加工方法和成型条件来实现。
加工过程中材料结构的转变有些是材料本身固有的,亦或是有意进行的;有些则是不正常的加工方法或加工条件引起的。
大多数情况下,高分子的加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状。
高分子加工与成型通常有以下形式:高分子熔体的加工、类橡胶状聚合物的加工、高分子液体的加工、低分子聚合物或预聚物的加工、高分子悬浮体的加工以及高分子的机械加工。
3.高分子材料工程特征的含义介绍高分子材料、成型加工工艺、材料及制品性能三者的关系,强调成型加工对制品性能的重要性,即高分子材料制品的性能即与材料本身的性质有关,又很大程度上受成型加工过程所产生的附加性质的影响。
材料成型加工及工艺设计学习题解答
第八章注射成型2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同?(p278)注射螺杆与挤出螺杆在结构上有何区别:(a)注射螺杆长径比较小,约在10~15之间。
(b)注射螺杆压缩比较小,约在2~5之间。
(c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。
为了提高塑化量,加料段较长,约为螺杆长度的一半。
(d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。
(p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。
移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。
是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。
3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因?(p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。
既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。
同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。
6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。
(p298)料温高时注射压力减小;反之,所需的注射压力加大。
8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。
(p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。
缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。
反过来,骤冷所得制品的结晶度下降,韧性较好。
但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。
中速冷塑料的结晶和曲性较适中,是用得最多的条件。
2019年自考《材料加工和成型工艺》试题及答案
2019年自考《材料加工和成型工艺》试题及答案选择题1.为了防止铸件过程中浇不足以及冷隔等缺陷产生,可以采用的工程措施有( )。
A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。
2.顺序凝固和同时凝固均有各自的优缺点。
为保证铸件质量,通常顺序凝固适合于( ),而同时凝固适合于( )。
A.吸气倾向大的铸造合金;B.产生变形和裂纹倾向大的铸造合金;C.流动性差的铸造合金;D.产生缩孔倾向大的铸造合金。
3.铸造应力过大将导致铸件产生变形或裂纹。
消除铸件中残余应力的方法是( );消除铸件中机械应力的方法是( )。
A.采用同时凝固原则;B.提高型、芯砂的退让性;C.及时落砂;D.时效处理。
4.合金的铸造性能主要是指合金的( )和( )。
A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.应力大小;F.裂纹倾向。
6.如图2-2所示应力框铸件。
浇注并冷却到室温后,各杆的应力状态为( )。
若用钢锯沿A-A线将φ30杆锯断,此时断口间隙将( )。
断口间隙变化的原因是各杆的应力( ),导致φ30杆( ),φ10杆( )。
图2-2A.增大;B.减小;C.消失;D.伸长;E.缩短;F.不变;G.φ30杆受压,φ10杆受拉; H.φ30杆受拉,φ10杆受压。
7.常温下落砂之前,在下图所示的套筒铸件中( )。
常温下落砂以后,在该铸件中( )。
A.不存在铸造应力;B.只存在拉应力;C.存在残余热应力;D.只存在压应力;E.存在机械应力;F.C和E。
8.铸铁生产中,为了获得珠光体灰口铸铁,可以采用的方法有( )。
A.孕育处理;B.适当降低碳、硅含量;C.适当提高冷却速度;D.A、B和C;E.A和C。
9.HTl00、KTH300-06、QT400-18的力学性能各不相同,主要原因是它们的( )不同。
A.基体组织;B.碳的存在形式;C.石墨形态;D.铸造性能。
10.灰口铸铁(HT)、球墨铸铁(QT)、铸钢(ZG)三者铸造性能的优劣顺序( );塑性的高低顺序为( )。
材料成型加工与工艺学习题解答
材料成型加工与工艺学习题解答Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1.物料的混合有哪三种基本的运动形式聚合物成型时熔融物料的混合以哪一种运动形式为主为什么i.分子扩散ii.涡流扩散iii.体积扩散体积扩散为主, 因为他主要是指流体质点、液滴或固体粒子由系统的一个空间位置向另一空间位置的运动, 或两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均布.对流混合通过两种机理发生, 一种体积对流,另一种层流对流混合, 前者通过塞流对物料进行体积重新排列, 而不需要物料连续变形, 这种重复的重新排列可以是无规的, 也可以是有序的. 在固体掺混机中混合式无规的, 而在静态混合机的混合则是有序的. 而层流对流混合是通过层流而使物料变形, 它发生在熔体之间的混合, 在固体粒子之间的混合不会发生层流混合.层流混合中, 物料要受到剪切、伸长(拉伸)和挤压(捏合).分子扩散主要在与低分子的混合.在浓度梯度驱使下,各组分自发地由浓度较大的区域迁移到浓度较小的区域从而达到各处组分均化的一种扩散形式。
分子扩散在气体和低粘度液体中占支配地位。
在固体与固体间,分子扩散作用是很小的。
在聚合物加工中,熔体与熔体间分子扩散极慢,无实际意义。
但若参与混合的组分之一是低分子物质,则分子扩散可能是一个重要因素。
涡流扩散主要会造成聚合物的黏度提高导致混合时施予聚合物的剪切力要上升, 容易导致聚合物降解.由系统内产生的紊流而实现的一种扩散形式。
在聚合物加工中粘度高,而且要实现紊流,熔体的速度必须很高,势必使熔体发生破裂,也会造成聚合物的降解,故很少发生涡旋扩散。
2.什么是”非分散混合”, 什么是”分散混合”, 两者各主要通过何种物料运动和混合操作来实现Page 154非分散均匀的定义在混合中仅增加粒子在混合物中空间分布均匀性而不减小尺寸的过程称为非分散均匀或简单混合。
材料成形工艺基础习题答案
1.金属材料的机械性能通常用哪几个指标衡量?答:强度、塑性、硬度、冲击韧性、疲劳极限等。
2.何谓同素异晶转变,纯铁不同温度下的晶格变化如何?答:同素异晶转变:金属在固态下,随温度的改变由一种晶格转变为另一种晶格的现象称为同素异晶转变。
纯铁在1538。
C结晶为σ-Fe ,体心立方结构;温度降到1394。
C时,σ-Fe转变为γ-Fe,面心立方结构;降到912。
C时,γ-Fe转变为α-Fe,为体心立方结构3.从状态图看含碳0.4%、0.9%的碳钢在室温下由哪些组织构成?答:0.4%由铁素体(F)+珠光体(P)0.9%由二次渗碳体(Fe3CⅡ)+珠光体(P)4. 淬火的目的是什么?答:淬火的主要目的是使奥氏体化后的工年获得尽量多的马氏体(或下贝氏体组织),然后配以不同的温度回火获得各种需要的性能。
例如:提高钢件的机械性能,诸如硬度、耐磨性、弹性极限、疲劳强度等,改善某些特殊钢的物理或者化学性能,如增强磁钢的铁磁性,提高不锈钢的耐蚀性等。
5.某弹簧由优质碳素钢制造,应选用什么牌号的钢?应选用怎样的热处理工艺?答:含碳量在0.6%-0.9%之间,65、70、85、65Mn.65Mn淬火+中温回火6.从下列钢号中,估计出其主要元素大致含量20 45 T10 16Mn 40Cr答:0.2%C 、0.45%C、1.0%C,Mn≤0.4%,Si≤0.35、0.16%C,Mn1.2%-1.6% 、0.4%C,0.8-1.1%Cr7.简述铸造成型的实质及优缺点。
答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。
优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。
8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响?答:合金流动性取决于 1.合金的化学成分 2.浇注温度 3.浇注压力 4.铸型的导热能力5.铸型的阻力合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。
材料成型工艺基础习题解答
第一章金属材料与热处理1、常用的力学性能有哪些?各性能的常用指标是什么?答:刚度:弹性模量E强度:屈服强度和抗拉强度塑性:断后伸长率和断面收缩率硬度:冲击韧性:疲劳强度:2、4、金属结晶过程中采用哪些措施可以使其晶粒细化?为什么?答:过冷细化:采用提高金属的冷却速度,增大过冷度细化晶粒。
变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。
7、9、什么是热处理?钢热处理的目的是什么?答:热处理:将金属材料或合金在固态范围内采用适当的方法进行加热、保温和冷却,以改变其组织,从而获得所需要性能的一种工艺。
热处理的目的:强化金属材料,充分发挥钢材的潜力,提高或改善工件的使用性能和加工工艺性,并且可以提高加工质量、延长工件和刀具使用寿命,节约材料,降低成本。
第二章铸造成型技术2、合金的铸造性能是指哪些性能,铸造性能不良,可能会引起哪些铸造缺陷?答:合金的铸造性能指:合金的充型能力、合金的收缩、合金的吸气性;充型能力差的合金产生浇不到、冷隔、形状不完整等缺陷,使力学性能降低,甚至报废。
合金的收缩合金的吸气性是合金在熔炼和浇注时吸入气体的能力,气体在冷凝的过程中不能逸出,冷凝则在铸件内形成气孔缺陷,气孔的存在破坏了金属的连续性,减少了承载的有效面积,并在气孔附近引起应力集中,降低了铸件的力学性能。
6、什么是铸件的冷裂纹和热裂纹?防止裂纹的主要措施有哪些?答:热裂是在凝固末期,金属处于固相线附近的高温下形成的。
在金属凝固末期,固体的骨架已经形成,但树枝状晶体间仍残留少量液体,如果金属此时收缩,就可能将液膜拉裂,形成裂纹。
冷裂是在较低温度下形成的,此时金属处于弹性状态,当铸造应力超过合金的强度极限时产生冷裂纹。
防止措施:热裂——合理调整合金成分,合理设计铸件结构,采用同时凝固原则并改善型砂的退让性。
冷裂——对钢材材料合理控制含磷量,并在浇注后不要过早落砂。
2021自考《材料加工和成型工艺》习题集及答案
2021自考《材料加工和成型工艺》习题集及答案一、选择题1.为了防止铸件过程中浇不足以及冷隔等缺陷产生,可以采用的工程措施有( )。
A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。
2.顺序凝固和同时凝固均有各自的优缺点。
为保证铸件质量,通常顺序凝固适合于( ),而同时凝固适合于( )。
A.吸气倾向大的铸造合金;B.产生变形和裂纹倾向大的铸造合金;C.流动性差的铸造合金;D.产生缩孔倾向大的铸造合金。
3.铸造应力过大将导致铸件产生变形或裂纹。
消除铸件中残余应力的方法是( );消除铸件中机械应力的方法是( )。
A.采用同时凝固原则;B.提高型、芯砂的退让性;C.及时落砂;D.时效处理。
4.合金的铸造性能主要是指合金的( )和( )。
A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.应力大小;F.裂纹倾向。
6.如图2-2所示应力框铸件。
浇注并冷却到室温后,各杆的应力状态为( )。
若用钢锯沿A-A线将φ30杆锯断,此时断口间隙将( )。
断口间隙变化的原因是各杆的应力( ),导致φ30杆( ),φ10杆( )。
图2-2A.增大;B.减小;C.消失;D.伸长;E.缩短;F.不变;G.φ30杆受压,φ10杆受拉; H.φ30杆受拉,φ10杆受压。
7.常温下落砂之前,在下图所示的套筒铸件中( )。
常温下落砂以后,在该铸件中( )。
A.不存在铸造应力;B.只存在拉应力;C.存在残余热应力;D.只存在压应力;E.存在机械应力;F.C和E。
8.铸铁生产中,为了获得珠光体灰口铸铁,可以采用的方法有( )。
A.孕育处理;B.适当降低碳、硅含量;C.适当提高冷却速度;D.A、B和C;E.A和C。
9.HTl00、KTH300-06、QT400-18的力学性能各不相同,主要原因是它们的( )不同。
A.基体组织;B.碳的存在形式;C.石墨形态;D.铸造性能。
10.灰口铸铁(HT)、球墨铸铁(QT)、铸钢(ZG)三者铸造性能的优劣顺序( );塑性的高低顺序为( )。
工程材料及成型工艺基础习题及答案
〔2〕影响液态合金充型能力的因素有合金的流动性、浇注条件、铸型充填条件。
〔1〕合金在铸造生产条件下,获得优质铸件的难易程度。 〔2〕流动性和收缩。合金的流动性越好、收缩越小,铸造性能越好。
2.什么是合金的铸造性能?衡量合金铸造性能的主要指标是什么 ?其是如何影响的?
图2-3 铸铁顶盖的两种设计方案
8.分析图2-4所示零件分型方案的优缺点,并选择其中与零件生产类型相适应的分型方案。
大批量生产
单件生产
1
2
方案1
方案1
方案2
方案2
图(b)方案1:优点是起模高度小,砂箱高度减小;缺点是分开模造型对合箱精度要求较高,不易保证整个螺纹内孔外表的质量,且需要砂芯. 方案2:优点是整体模造型,铸件的尺寸精度易于保证;铸件螺纹内孔外表质量均匀;可以直接铸出铸件的内腔,省去了型芯。缺点是下砂箱高度大,起模高度较大. 单件生产时,应选择方案2。
图2-1 铸造应力框铸件
5. 灰口铸铁的组织和性能决定于什么因素?为什么在灰口铸铁中,碳硅含量越高,则其强度越低?
1〕灰口铸铁的组织和性能决定于化学成分和冷却速度。
2〕因为碳、硅含量越高,铸铁中的石墨片就越粗大,石墨数量也越多,对基体的破坏就越严重。同时基体中铁素体的量增加,珠光体的量减少。所以铸铁的强度越低。
金属材料成形根底作业〔2〕
4.铸件在凝固过程中所造成的体积缩减如得不到液态金属的补充,将产生缩孔或缩松。凝固温度范围窄的合金,倾向于“逐层凝固〞,因此易产生缩孔;而凝固温度范围宽的合金,倾向于“糊状凝固〞,因此易产生缩松。 5.准确地估计铸件上缩孔可能产生的位置是合理安排冒口和冷铁的主要依据。生产中确定缩孔位置的常用方法有画等温线法、内切圆法和计算机模拟凝固法等。 6.顺序凝固原则主要适用于 逐层凝固的合金,其目的是消除缩孔;同时凝固原则主要适用于 糊状凝固的合金,其目的是减小应力。
(完整版)高分子材料成型加工课后习题答案
1、什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现?答:①非分散混合在混合中仅增加离子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。
这种混合的运动基本形式是通过对流来实现的,可以通过包括塞形流动和不需要物料连续变形的简单体积排列和置换来达到。
②分散混合是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。
分散混合主要是靠剪切应力和拉伸应力作用实现的。
分散混合的目的是把少数组分的固体颗粒和液相滴分散开来,成为最终粒子或允许的更小颗粒或滴,并均匀地分散到多组分中,这就涉及少组分在变形粘性流体中的破裂为题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。
2、在热固性塑料模压成型中,提高压力应相应地降低还是升高模压压力才对模压成型工艺有利?为什么?答:在一定温度范围内,模温升高,物料流动性提高,模压压力可降低,但模温提高也会使塑料的交联反应速率加速,从而导致熔融物料的粘度迅速增高,反而需要更高的模压压力。
3、热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么?答:对塑料进行预热可以提高流动性,降低模压压力,但如果预热温度过高或预热时间过长会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压是需更高的压力来保证物料充满型腔。
1、什么是聚合物的结晶取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际影响?答:结晶是聚合物分子在三维空间呈周期性重复排列的过程,而取向是取向单元在外力作用下择优排列的过程,取向单元可以是:基团、链段、分子链、晶粒、晶片或变形的球晶等。
结晶是材料自身的性质,只发生在分子、原子、离子这些基础的单元上,取向的产生是外力作用的结果,取向单元也更多样。
结晶可以影响材料的拉伸强度、弹性模量、冲击强度、耐热性、耐候性、吸水性、透明性、透气性、成型收缩性等物性。
取向后的聚合物,在取向方向和垂直于取向方向上性能差异特别显著。
《材料成型工艺基础》部分习题答案
《材料成型工艺基础》部分习题答案《材料成型工艺基础》部分习题答案「篇一」答:高速钢刀具磨损的主要原因是切削时,切削、工件材料中含有的一些硬度极高的微小硬质点及积屑瘤碎片和锻、铸件表面残留的夹砂在刀具表面刻划出沟纹硬质合金刀具磨损的主要原因是磨粒磨损、粘接磨损、扩散磨损、氧化磨损。
异同点:除磨粒磨损外,粘接磨损、扩散磨损、氧化磨损与温度有关原因:在不同切削速度下引起刀具磨损的原因及剧烈程度不同42道具破损与磨损的原因有何本质区别?答:刀具的破损实际上就是刀具的非正常磨损。
破损与磨损的本质区别在于,磨损是不可避免的,而且磨损是刀具缓慢失效的过程,而刀具的破损在生产中是可以避免的,而且破损会使刀具迅速失效7试述铸钢的铸造性能及铸造工艺特点。
答:铸钢的强度高。
具有优良的'塑性,适合制造承受大能量冲击符合下高强度、高韧性的铸件。
工艺特点:a.铸钢用砂应具有高的耐火度、良好的透气性和退让性、低的发气量等b.安放冒口和冷铁c.在两壁交接处设防裂肋,以防止铸钢件部分产生裂纹d.铸钢件的热处理23电弧的三个区是哪三个区?每个区的电现象怎样?由此导致的温度分布有何特点?答:阴极区、阳极区、弧柱区阴极区,阴极材料发射电子的强度与其待女子的逸出功有关,阴极温度下降阳极区,阳极区接受有弧柱来的电子留和向弧柱提供正离子流。
阳极温度升高弧柱区,中性的气体原子和分子受到电场的作用产生激励或电离。
弧柱具有较高的温度37什么是逆铣?什么是顺铣?各有什么特点?答:切削部分刀齿的旋转方向与工件进给方向相反叫逆铣切削部分刀齿旋转方向与工件进给方向相同叫顺铣特点:逆铣刀齿刚接触工件时不能切入工件、只在加工表面挤压滑行、降压表面质量。
加剧刀具磨损;顺铣可提高铣刀耐用度和加工表面质量、铣削力始终压向工作台43简述磨削的特点答:a磨削加工的精度高,表面粗糙度值小b磨削的径向磨削力大,且作用在工艺系统刚性较差的方向c磨削温度高d砂轮有自锐作用e磨削除可以加工铸铁、碳钢、合金钢等一般结构材料外,还能加工一般刀具难以切削的高硬度材料,但不宜加工塑性较大的有色金属f磨削加工的工艺范围广,还常用于各种刀具的刃磨g 磨削在切削加工中的比重日益增加。
材料科学:材料成型工艺学考试考试题(最新版).doc
材料科学:材料成型工艺学考试考试题(最新版) 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。
1、问答题 什么叫刀具的前角?什么叫刀具的后角?简述前角、后角的改变对切削加工的影响。
本题答案: 2、问答题 冲裁件的切断面具有明显的区域性特征.通常由塌角、光面、毛面、毛刺四部分组成?这四个部分是怎样形成的? 本题答案: 3、填空题 共析钢等温转变中,高温转变产物的组织,按硬度由高到低的顺序,其组织名称和表示符号分别是( )、( )、( )。
本题答案: 4、填空题 金属粉末的基本性能包括( );( )、颗粒形状和大小以及技术特征等。
本题答案: 5、问答题 压铸机由哪几个基本部分组成? 本题答案: 6、问答题 压铸时金属的浇注温度如何影响铸件质量,选择浇注温度总的原则是什么?姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------本题答案:7、问答题两个内径分别为60mm和120mm、高均为30mm的带孔坯料,分别套在直径为60mm的芯轴上扩孔,试用最小阻力定律分析产生什么不现的效果?本题答案:8、问答题何谓弯曲变形?其变形特点是什么?当锻件有数处弯曲变形时其变形顺序如何?本题答案:9、问答题挤压零件生产的特点是什么?本题答案:10、问答题简述注射成型塑件的影响因素。
本题答案:11、问答题什么是板料的弯曲变形?本题答案:12、问答题何谓冒口的有效补缩距离?本题答案:13、问答题与其他刀具相比,高速钢有什么特点。
常用的牌号有哪些?主要用来制造哪些刀具?本题答案:14、问答题合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?本题答案:15、填空题钎焊的接头强度较低,为了提高接头的承载能力,钎焊采用()接头。
最新10月浙江自考材料加工和成型工艺试题及答案解析
浙江省2018年10月自学考试材料加工和成型工艺试题课程代码:00699一、填空题(本大题共8小题,每空1分,共15分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.石料占混凝土的__________%以上。
2.砂浆流动性以__________表示。
3.建筑砂浆根据用途可分为:__________、__________、__________。
4.装饰石膏板按板材耐湿性能分为__________、__________两类。
5.__________、__________是钢材中最主要的有害元素。
6.钢材经冷加工(冷拉、冷拔、冷轧)后,性能将会显著改变,主要是__________、__________、__________。
7.生石灰的主要成份是__________、__________。
8.刚化玻璃又称__________。
二、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.修补、墙漏、防水及自应力钢筋混凝土压力管等需运用( )A.膨胀水泥B.矿渣水泥C.石灰水泥D.硅酸盐水泥2.______是混凝土原材料中价格最贵的材料。
( )A.砖B.砂子C.水D.水泥3.下面哪种材料是属于混凝土可能含有的有害物质?( )A.水B.石子C.炉渣D.砂子4.______指材料在绝对密实状态下单位体积的质量。
( )A.强度B.密度C.弹性D.热阻5.建筑上常用的塑料制品,绝大多数都是以______为基本材料。
( )A.合成树脂B.填充料C.增塑剂D.着色剂6.塑料填充料中能够加强其耐热性能的材料是( )A.石棉B.石墨C.云母D.纤维7.主要是轨道、滑轮、隔扇三部分组成的是______隔断。
( )A.折叠式B.空透式C.直滑式D.移动式8.踢脚板的高度一般为( )A.5~8cmB.8~12cmC.12~15cmD.15~18cm9.下面哪一种门符合于减少室内能量损失,人流不集中出入的公共建筑?( )A.升降门B.卷帘门C.平开门D.转门10.在金属方板顶棚装饰构造中,金属方板的安装采用搁置式的多为( )A.T形龙骨B.L形龙骨C.槽钢龙骨D.Z形龙骨11.______是连接龙骨与楼板的承重传力构件。
《高分子材料成型加工》课后部分习题参考答案
2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有:PE,PP,PVC,PS等;工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。
工程塑料有:PA,PET,PBT,POM等;工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。
日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。
热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。
(热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程是物理变化;) 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
(热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。
)酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料,都是热固性塑料。
简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。
如:PE、PP、PTFE。
复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。
材料成型工艺基础作业题答案
铸造部分作业一1、名词解释:铸造、铸型、型芯头、起模斜度、铸造圆角、铸造工艺图答:铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型、冷却凝固后获得一定形状和性能铸件的成型方法。
铸型:决定铸件形状的容器。
型芯头:(为了在铸型中支承型芯的空腔),模样比铸件多出的突出部分称为型芯头。
起模斜度:凡垂直于分型面的立壁,制造模样时必须留出的一定的倾斜度。
铸造圆角:模样上相交壁的交角处做成的圆弧过渡。
铸造工艺图:按规定的工艺符号或文字,将铸造工艺方案、工艺参数、型芯等绘制在零件图上形成的图。
2、造型方法主要有哪两种答:造型的方法主要有手工造型和机器造型。
3、整模、分模、挖砂、活块、刮板和三箱造型各适用于铸造什么样的零件答:整模造型适合一端为最大截面且为平面的铸件;分模造型适合最大截面在中部的铸件;挖沙造型适合分型面为曲面的单件铸件;活块造型适合单件,小批量生产带有凸出部分难以起模的铸件;刮板造型适合等截面的或回转体的大、中型铸件的单件货小批量生产;三箱造型适合单件、小批量生产具有两个分型面的铸件。
4、为什么铸件的重要加工面在铸型中应朝下答:位于铸型下面的区域由于重力的作用,其质量一般比上面区域的好,将铸件重要加工面在铸型中朝下,可避免重要加工表面出现气孔、砂眼、缩孔、缩松等铸造缺陷。
5、大面积的薄壁铸件应放在铸型的什么位置为什么答:大面积的薄壁铸件应放在铸型的下部或侧面,因为这样可以避免浇不到、冷隔等缺陷。
6、为什么尽量使铸件全部或大部位于同一个砂箱中答:使铸件全部或大部位于同一个砂箱中,可以保证铸件尺寸精度,避免错箱等缺陷。
7、浇注位置选择的原则有哪些答:浇铸位置的选择原则有:(1)铸件的重要加工面或重要工作面应处于底面或侧面;(2)铸件的大平面应尽可能朝下或采用倾斜浇铸;(3)铸件的薄壁部分应放在铸型的下部或侧面;(4)铸件的厚大部分应放在顶部或分型面的侧面。
8、铸型分型面的选择原则是什么答:铸型分型面选择原则有:(1)应保证顺利起模;(2)分型面的数目应尽量少;(3)应尽量减少型芯、活块数量;(4)铸件尽可能放在一个砂箱内,或将重要加工面、加工的基准面放在同一砂箱内。
材料成型工艺基础习题解答
第一章金属材料与热处理1、常用的力学性能有哪些?各性能的常用指标是什么?答:刚度:弹性模量E强度:屈服强度和抗拉强度塑性:断后伸长率和断面收缩率硬度:冲击韧性:疲劳强度:2、4、金属结晶过程中采用哪些措施可以使其晶粒细化?为什么?答:过冷细化:采用提高金属的冷却速度,增大过冷度细化晶粒。
变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。
7、9、什么是热处理?钢热处理的目的是什么?答:热处理:将金属材料或合金在固态范围内采用适当的方法进行加热、保温和冷却,以改变其组织,从而获得所需要性能的一种工艺。
热处理的目的:强化金属材料,充分发挥钢材的潜力,提高或改善工件的使用性能和加工工艺性,并且可以提高加工质量、延长工件和刀具使用寿命,节约材料,降低成本。
第二章铸造成型技术2、合金的铸造性能是指哪些性能,铸造性能不良,可能会引起哪些铸造缺陷?答:合金的铸造性能指:合金的充型能力、合金的收缩、合金的吸气性;充型能力差的合金产生浇不到、冷隔、形状不完整等缺陷,使力学性能降低,甚至报废。
合金的收缩合金的吸气性是合金在熔炼和浇注时吸入气体的能力,气体在冷凝的过程中不能逸出,冷凝则在铸件内形成气孔缺陷,气孔的存在破坏了金属的连续性,减少了承载的有效面积,并在气孔附近引起应力集中,降低了铸件的力学性能。
6、什么是铸件的冷裂纹和热裂纹?防止裂纹的主要措施有哪些?答:热裂是在凝固末期,金属处于固相线附近的高温下形成的。
在金属凝固末期,固体的骨架已经形成,但树枝状晶体间仍残留少量液体,如果金属此时收缩,就可能将液膜拉裂,形成裂纹。
冷裂是在较低温度下形成的,此时金属处于弹性状态,当铸造应力超过合金的强度极限时产生冷裂纹。
防止措施:热裂——合理调整合金成分,合理设计铸件结构,采用同时凝固原则并改善型砂的退让性。
冷裂——对钢材材料合理控制含磷量,并在浇注后不要过早落砂。
成型加工工艺部分答案
第一章绪论1、塑料制品的重要成型方法?答:挤出成型;压延成型;注射成型;吹塑成型;泡沫塑料的成型2、成型方法的定义?①压延成型:压延成型多用于热塑性塑料.它是将经过塑炼的塑料,送到多组平行排列、反向旋转的热辊筒中,经多次压延而成制品.多生产薄膜或薄片.②挤塑成型:挤塑成型多用于热塑性塑料。
这是将熔融塑化的塑料.经挤塑机的机头处模具的口型缝隙中挤出,而成与模口形状相仿的型材.多生产板材、管材、棒材、线材、异型材等.③注塑成型:注塑成型多用于热塑性塑料.它与挤塑成型相类似,所不同的是熔融塑料经喷嘴进入的是闭合模具内,在模具内凝固成型而得制品。
多生产小包装盒,日用品.异型零件等.它也可用于热闹性塑料加工.④吹塑成型:吹塑成型多用于热塑性塑料。
这是将熔融塑料置于模具中,在压缩空气压力下,将塑料吹胀升紧贴模具内表面。
经冲却、脱模而成制品.多生产各类中空包装容器,也可生产薄膜、薄片等.⑤加热成型:加热成型多用热塑性塑料.这是将塑料片材加热成弹性态,再施以压力使之贴附于模具上成型。
多生产盆类、盘类制品.⑥压制成型:压制成型是利用压力将置于模具内的粉料压紧至结构紧密,称为具有一定形状和尺寸的坯体的成型方法。
第二章1、成型的分子定向、组成部分、如何产生及影响?答:塑料中的聚合物大分子、细而长的纤维状填料分子在成型过程中由于受到应力作用而产生分子整齐、平行排列的现象,这种现象称之为分子取向。
影响:定向的单元如果存在于制品中,则制品的整体就会出现各向异性。
各向异性有时会在制品中特意形成,这样就能使制品沿拉伸方向的拉伸强度和抗蠕变性能得到提高。
但在制造许多厚度较大的制品时,又力图消除这种现象。
因为制品存在的定向现象不仅定向不一致,而且各部分的定向程度也有差别,这样会使制品在有些方向上的力学强度得到提高,而在另外一些方向上必会变劣,甚至发生翘曲或裂缝。
2、产生流动缺陷的重要原因?什么是溶体破裂?什么情况下会发生?答:重要原因:(1)管壁上的滑移(2)端末效应:入口效应;离模膨胀(3)弹性对层流的干扰(4)“鲨鱼皮”症(5)熔体破裂熔体破裂:是指聚合物熔体在导管中流动时,如剪切速率大于某一极限值,往住产生不稳定流动,挤出物表面出现凹凸不平或外形发生竹节状、螺旋状等畸变.以至支离、断裂。
材料成型基础课后习题答案
材料成型基础课后习题答案材料成型基础课后习题答案材料成型是一门重要的工程学科,涉及到材料的加工、成型和变形等方面。
在学习这门课程时,我们经常会遇到一些习题,通过解答这些习题,可以加深对材料成型基础知识的理解和掌握。
下面是一些常见的材料成型基础课后习题及其答案,供大家参考。
1. 什么是材料成型?答:材料成型是指将原始材料通过一系列的工艺操作,使其发生形状、尺寸和性能的变化,最终得到所需的成品的过程。
2. 材料成型的分类有哪些?答:材料成型可以分为塑性成型和非塑性成型两大类。
塑性成型是指通过材料的塑性变形来实现成型的过程,如锻造、压力成型等;非塑性成型是指通过材料的断裂、破碎等非塑性变形来实现成型的过程,如切削加工、焊接等。
3. 什么是锻造?答:锻造是一种常用的塑性成型方法,通过对金属材料进行加热后的塑性变形,使其在模具的作用下得到所需的形状和尺寸。
锻造可以分为冷锻和热锻两种方式。
4. 锻造的优点有哪些?答:锻造具有以下几个优点:- 可以改善金属材料的内部组织结构,提高其力学性能;- 可以提高材料的密度和均匀性;- 可以减少材料的加工量,提高生产效率;- 可以节约材料和能源。
5. 什么是压力成型?答:压力成型是一种常用的塑性成型方法,通过对材料施加压力,使其发生塑性变形,最终得到所需的形状和尺寸。
压力成型包括挤压、拉伸、冲压等多种方法。
6. 压力成型的应用领域有哪些?答:压力成型广泛应用于汽车制造、航空航天、电子产品等领域。
例如,汽车制造中的车身板件、发动机零件等都是通过压力成型得到的。
7. 什么是切削加工?答:切削加工是一种常用的非塑性成型方法,通过对材料进行切削、剪切等操作,使其发生变形,最终得到所需的形状和尺寸。
切削加工包括车削、铣削、钻削等多种方法。
8. 切削加工的优点有哪些?答:切削加工具有以下几个优点:- 可以实现高精度的加工,得到精确的形状和尺寸;- 可以加工各种材料,包括金属、塑料、陶瓷等;- 可以加工复杂的形状和结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章压制成型2. 简述热固性塑料模压成型的工艺步骤。
将热固性模塑料在以加热到指定温度的模具中加压,使物料熔融流动并均匀地充满模腔,在加热和加压的条件下经过一定的时间,使其发生化学反应而变成具有三维体形结构的热固性塑料制品。
(1)计量(2)预压(3)预热(4)嵌件安放(5)加料(6)闭模(7)排气(8)保压固化(9)脱模冷却(10)制品后处理4. 在热固性塑料模压成型中,提高模温应相应地降低还是提高模压压力才对模压成型工艺有利?为什么?在一理论的操作温度下,模温提高时,物料的黏度下降、流动性增加,可以相对应的降低模压;但若继续升高模温会使塑料交联反应速度增快、固化速率升高此时便需要提高模压。
一般而言提高温度应提高模压压力。
8. 试述天然橡胶硫化后的物理性能的变化,并解释之。
橡胶在硫化的过程中,交联密度发生了显着的变化。
随着交联密度的增加,橡胶的密度增加,气体、液体等小分子就难以在橡胶内运动,宏观表现为透气性、透水性减少,而且交联后的相对分子质量增大,溶剂分子难以在橡胶分子之间存在,宏观表现为能使生胶溶解的溶剂只能使硫化胶溶胀,而且交联度越大,溶胀越少。
硫化也提高了橡胶的热稳定性和使用温度范围。
天然橡胶在硫化过程中,随着线型大分子逐渐变为网状结构,可塑性减小,拉伸强度、定伸强度、硬度、弹性增加,而伸长率、永久变形、疲劳生热等相应减小,但若硫化时间再延长,则出现拉伸强度、弹性逐渐下降,伸长率、永久变形反而会上升的现象。
10. 橡胶的硫化历程分为几个阶段?各阶段的实质和意义是什么?(1) 焦烧阶段又称硫化诱导期,是指橡胶开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内有良好的流动性。
对于模型硫化制品,胶料的流动、充模必须在此阶段完成,否则就会发生焦烧,出现制品花纹不清、缺胶等缺陷。
焦烧阶段的长短决定了胶料的焦烧性能和操作安全性。
(2) 预硫化阶段焦烧期以后橡胶开始交联的阶段。
在此阶段,随着交联反应得进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能如撕裂性能、耐磨性能等却优于正硫化阶段时的胶料。
预硫化阶段的长短反应了橡胶硫化反应速度的快慢,主要取决于胶料的配方。
(3) 正硫化阶段橡胶的交联反应达到一定的程度,此时各项物理机械性能均达到或接近最佳值,其综合性能最佳。
此时交联键发生重排、裂解等反应,同时存在的交联、裂解反应达到了平衡,因此胶料的物理机械性能在一个阶段基本上保持恒定或者变化很少,所以该阶段也称为平坦硫化阶段。
此阶段所取的温度和时间称为正硫化温度和正硫化时间。
硫化平坦阶段的长短取决于胶料的配方,主要是生胶、促进剂和防老剂的种类。
(4) 过硫阶段正硫化以后继续硫化便进入过硫阶段。
交联反应和氧化及热断链反应贯穿于橡胶硫化过程的始终,只是在不同的阶段,这两种反应所占的地位不同,在过硫阶段中往往氧化及热断链反应占主导地位,因此胶料出现物理机械性能下降的现象。
天然橡胶、丁苯橡胶等主链为线形大分子结构,在过硫阶段断链多于交联而出现硫化返原现象;对于大部分合成橡胶,如丁苯、丁腈橡胶,在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称硫化非返原性胶料。
11. 橡胶制品生产过程中,残余焦烧时间的长短与橡胶制品的类型有什么关系?剩余胶烧时间是指胶料在模型中加热时保持流动性的时间。
如果胶料在混炼、停放、熟炼和成型中所耗的时间过长或温度过高,则操作焦烧时间长,占去的整个胶烧时间就多,则剩余焦烧时间就少,易发生焦烧。
因此,为了防止焦烧,一方面设法使胶料具有较长的焦烧时间,如使用后效性促进剂;另一方面在混炼、停放、熟炼、成型等加工时应低温、迅速,以减少操作焦烧时间。
15. 某一胶料的硫化温度系数为2,当硫化温度为137℃时,测出其硫化时间为80 min,若将硫化温度提高到143℃,求该胶料达正硫化所需要的时间?上述胶料的硫化时间缩短到60 min时,求所选取的硫化温度是多少?使用范特霍夫方程式:(T2-T1)/10K/ t(1) t=21(143-137)/10280/ t=2t=52.77 min1.516 t80=22(T2-T1)/10K(2) t/ t=21(T2-137)/10280/60=137)/10(T2-1.333=2两边同成以log0.1248=(T2-137)/10.log2T2=141.16℃16. 某胶料的硫化温度系数为2,在实验室中用试片测定,当硫化温度达到143℃时,硫化平坦时间为20~80 min,该胶料在140℃下于模型中硫化了70 min,问是否达到正硫化?使用范特霍夫方程式:首先考虑某橡胶在143℃的硫化平坦时间开始点 20min 推算其在140℃下其硫化平坦时间开始点(T2-T1)/10K(1) t/ t=21(140-143)/10220/ t=220=0.8122 tt=24.62 min22 首先考虑某橡胶在143℃的硫化平坦时间终止点 80min 推算其在140℃下其硫化平坦时间终止点(T2-T1)/10K/ t(2) t=21(140-143)/102=80/ t280=0.8122 tt=98.50 min22 最后即依上列方程得知判断出某橡胶在140℃下其硫化平坦时间为时已达到了正硫化且并未进入过硫阶段。
70 min24.62~98.50 min 其在17. 绘出增强热固性塑料层压板成型时热压过程五个时期的温度和压力与时间的关系曲线,并说明各时期的温度和压力在成型中的作用。
(pic. 6-25, page 207)220200180160140溫度120100壓力806040200第五階段第三階段第四階段第一階段第二階段第一阶段为塑料开始预热阶段板胚的温度从室温升至树脂开始交联反应的温度,这时树脂开始熔化并进一步渗入增强材料中,同时使部分挥发物排出。
此时施加的最高压力的1/3~1/2,一般为4~5MPa之间,若压力过大,胶液将大量流失。
第二阶段为塑料中间保温阶段树脂在较低的反应速度下进行交联固化反应,直至溢料不能成丝为止,然后开始升温升压。
第三阶段将温度和压力升至最高,此时树脂的流动性已下降,高温高压不会造成胶液流失,却能加快交联反应。
升温速度不宜过快,以免制品出现裂纹和分层,但应加足压力。
第四阶段热压保温阶段在规定的压力和温度下(9~10MPa,160~170),保持一段时间,使树脂充分交联固化。
第五阶段冷却阶段树脂充分交联固化后即可逐渐降温冷却。
冷却时应保持一定压力,否则制品表面发泡和翘曲变形。
第七章挤出成型1. 挤出机螺杆的结构上为何分段?分段的根据是什么?螺杆对物料所产生的作用在螺杆的全长范围内各段的不同。
根据物料在螺杆中的温度、压力、黏度等的变化特征,可将螺杆分为加料段、压缩段和均化段。
(1)加料段其长度随塑料品种而异,挤出结晶型热塑性塑料的加料段要求较长,使塑料有足够的时间,慢慢软化,该段约占螺杆全长60%~65%。
挤出无定型塑料的加料段较短,约占螺杆10%~25%。
但硬质无定型塑料也要求长一些,软质无定型塑料则较短。
(2)压缩段的长度与塑料的性质、塑料的压缩率有关。
无定型塑料压缩段较长,为螺杆全长55%~65%,熔融温度范围宽的塑料其压缩段最长,如PVC挤出成型用的螺杆,压缩段为100%,即全长均起压缩作用,这样的螺杆叫做渐变螺杆。
结晶型塑料,熔融温度范围较窄,压缩段较短,为3~5D,某些熔化温度范围很窄的结晶型塑料,如PA,s其压缩段更短,甚至仅为一个螺杆长度,这样的螺杆叫做突变螺杆。
(3)均化段螺杆由于从压缩段来的物料已达到所需的压缩比,故均化段一般无压缩作用,螺距和槽深可以不变,这一段常常是等距等深的浅槽螺纹。
对于渐变型螺杆,本段螺杆螺距最小或是槽深最浅,这种螺杆实际上无均化段,常用于PVC 等热敏性塑料。
可避免黏流态物料在均化段停留时间过长而导致分解。
对于一般塑料,如PE、PS等,为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20%~25%。
3. 什么叫做压缩比?挤出机螺杆设计中的压缩比根据什么来确定?指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之比,它表示塑料通过螺杆的全过程被压缩的程度。
压缩比一般在2~5之间,压缩比的大小取决于挤出塑料的种类和形态,粉状塑料的相对密度小,夹带的空气多,其压缩比应大于粒料塑料。
另外挤出薄壁状制品时,压缩比应比挤出厚壁制品的大。
6. 提高挤出机加料段固体输送能力,应对设备采取什么措施?指出其理论依据。
根据固体输送理论:ff cosθA A bs bs=推导后:2DH(D-H)n[(tanθ?q=πtanΦ)/ (tanθ+tanΦ)]1s1H;(1)在螺杆直径不变时,增大螺杆深度1f;(2)减小物料与螺杆的静摩擦因子sf;(3)增大物料与料筒的静摩擦因子b(4)选择合适的螺旋角θ,使(tanθ?tan Φ)/ (tanθ+tanΦ)最大。
7. 塑料在挤出机中的熔化长度的意义是什么?挤出过程中,在加料段内是充满未熔融的固体粒子,在均化段内则充满着已熔化的物料,而在螺杆中间的压缩段内固体粒子与熔融物共存,物料的熔化过程就是在此区段内进行的,故压缩段又称为熔化区。
在熔化区,物料的熔融过程是逐渐进行的,自熔化区A开始,固体床的宽度将逐渐减小,熔池的宽度逐渐增加,直到熔化区终点B,固体床的宽度下降到零,进入均化段,固体床消失,螺杆全部充满熔体。
从熔化开始到固体床的宽度降到为零为止的总长度,称之为熔化长度。
熔化长度的大小反映了固体的熔化速度,一般熔化速度越高则熔化长度越短,反之越长。
8. 塑料熔体在挤出机螺槽内有几种流动形式?造成这几种流动的主要原因是什么?(1)正流是物料沿螺槽方向(z方向)向机头的流动,这是均化段熔体的主流,是由于螺杆旋转时螺柃的推挤作用所引起的,从理论分析上来说,这种流动是由于物料在螺槽中受机筒摩擦拖曳作用而产生的,故也称为拖曳流动,它起挤出物料的作用。
其体积流量用q表示,正流在螺槽中沿螺槽深度方向的V, D速度分布是线性变化的。
(2)逆流沿螺槽与正流方向相反(-z方向)的流动,它是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。
其体积流量用q表示,逆流的速度分布是按抛物线关系变化的。
V, P正流和逆流的综合称为净流,是正流和逆流两种速度的代数和。
(3)横流物料沿x轴与y轴两方向在螺槽内往复流动,也是螺杆旋转时螺柃的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步均匀塑化影响很大,其体积流量用q表示。
V, T (4) 漏流物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动。