2020-2021哈尔滨备战中考数学压轴题专题复习——相似的综合

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021哈尔滨备战中考数学压轴题专题复习——相似的综合

一、相似

1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.

(1)求点C的坐标(用含a的代数式表示);

(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;

(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.

【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,

而抛物线与x轴的一个交点A的坐标为(﹣1,0)

∴抛物线与x轴的另一个交点B的坐标为(3,0)

设抛物线解析式为y=a(x+1)(x﹣3),

即y=ax2﹣2ax﹣3a,

当x=0时,y=﹣3a,

∴C(0,﹣3a)

(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),

∴AB=4,OC=3a,

∴S△ACB= AB•OC=6,

∴6a=6,解得a=1,

∴抛物线解析式为y=x2﹣2x﹣3

(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,

∵点G与点C,点F与点A关于点Q成中心对称,

∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,

∴OF=2m+1,HF=1,

当∠CGF=90°时,

∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,

∴∠GQH=∠HGF,

∴Rt△QGH∽Rt△GFH,

∴ = ,即,解得m=9,

∴Q的坐标为(9,0);

当∠CFG=90°时,

∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,

∴∠CFO=∠FGH,

∴Rt△GFH∽Rt△FCO,

∴ = ,即 = ,解得m=4,

∴Q的坐标为(4,0);

∠GCF=90°不存在,

综上所述,点Q的坐标为(4,0)或(9,0).

【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;

(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;

(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得

Rt△QGH∽Rt△GFH,则可得比例式,代入可求得m的值,则点Q的坐标可求解;

②当∠CFG=90°时,同理可得另一个Q坐标。

2.如图,在中,,点M是AC的中点,以AB为直径作

分别交于点.

(1)求证:;

(2)填空:

若,当时, ________;

连接,当的度数为________时,四边形ODME是菱形.

【答案】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM.∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME

(2)2;

【解析】【解答】解:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴ =

.∵AD=2DM,∴DM:MA=1:3,∴DE= AB= ×6=2.

故答案为:2.

②当∠A=60°时,四边形ODME是菱形.理由如下:

连接OD、OE.

∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°.∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.

故答案为:60°.

【分析】(1)要证MD=ME,只须证∠MDE=∠MED即可。根据直角三角形斜边上的中线等于斜边的一半可得BM=AM=MC,则∠A=∠ABM,由圆内接四边形的性质易得∠MED=∠A,∠MDE=∠MBA,所以可得∠MDE=∠MED;

(2)①由(1)易证得DE∥AB,可得比例式,结合①中的已知条件即可求解;

②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE,由题意易得△ODE,△DEM都是等边三角形,所以可得OD=OE=EM=DM,由菱形的判定即可求解。

3.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.

(1)问题发现

①当α=0°时, =________;②当α=180°时, =________.

(2)拓展探究

试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.

(3)问题解决

当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.

【答案】(1);

(2)解:如图2,

当0°≤α<360°时,的大小没有变化,

∵∠ECD=∠ACB,

∴∠ECA=∠DCB,

又∵,

∴△ECA∽△DCB,

(3)解:①如图3,

∵AC=4 ,CD=4,CD⊥AD,

∴AD=

∵AD=BC,AB=DC,∠B=90°,

∴四边形ABCD是矩形,

∴BD=AC= .

②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,

相关文档
最新文档